1
|
Nakamura T, Tsutsui C, Okuda Y, Abe-Kanoh N, Okazawa S, Munemasa S, Murata Y, Kato Y, Nakamura Y. Benzyl isothiocyanate and its metabolites inhibit cell proliferation through protein modification in mouse preosteoclast RAW264.7 cells. J Biochem Mol Toxicol 2022; 36:e23184. [PMID: 35920443 DOI: 10.1002/jbt.23184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Benzyl isothiocyanate (BITC), derived from cruciferous vegetables, is an organosulfur compound exerting antiproliferative effects in several human cancer cells. In this study, we assessed BITC as a potential osteoclastogenesis inhibitor and investigated its underlying mechanism. BITC at 5 μM significantly decreased the viability of the osteoclast-like differentiating RAW264.7 cells, coinciding with the downregulation of the primary biomarkers for osteoclast differentiation, such as the tartrate-resistant acid phosphatase activity and nuclear factor of activated T-cells gene expression. Not only BITC but also its metabolites, inhibited cell proliferation in the normal RAW264.7 cells, suggesting that BITC shows an anti-osteoclastogenesis effect in vivo after its ingestion and metabolism, possibly through an antiproliferative action. Both BITC and its metabolites also enhanced the DNA fragmentation and the caspase-3 activity, whereas their higher concentrations tended to suppress these effects. BITC was intracellularly accumulated when the cells were treated with its metabolites via their degradation into the free form. A quantitative experiment using the proteolysis/high performance liquid chromatography technique showed that the amount of BITC-lysine thiourea in the cells was also increased in a time-dependent manner, suggesting that lysine modification of the cellular proteins actually took place in the cells treated by BITC. Among the cellular proteins, the cleaved caspase-3 was identified as a potential target for lysine modification by BITC. Taken together, BITC dissociated from its metabolites as well as its free form might modulate osteoclastogenesis, possibly through inhibition of cell proliferation by protein modification.
Collapse
Affiliation(s)
- Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Chiharu Tsutsui
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yu Okuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Naomi Abe-Kanoh
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.,Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Saori Okazawa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoji Kato
- Graduate School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Kyriakou S, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants (Basel) 2022; 11:antiox11040642. [PMID: 35453327 PMCID: PMC9029005 DOI: 10.3390/antiox11040642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Isothiocyanates are biologically active secondary metabolites liberated via enzymatic hydrolysis of their sulfur enriched precursors, glucosinolates, upon tissue plant disruption. The importance of this class of compounds lies in their capacity to induce anti-cancer, anti-microbial, anti-inflammatory, neuroprotective, and other bioactive properties. As such, their isolation from natural sources is of utmost importance. In this review article, an extensive examination of the various parameters (hydrolysis, extraction, and quantification) affecting the isolation of isothiocyanates from naturally-derived sources is presented. Overall, the effective isolation/extraction and quantification of isothiocyanate is strongly associated with their chemical and physicochemical properties, such as polarity-solubility as well as thermal and acidic stability. Furthermore, the successful activation of myrosinase appears to be a major factor affecting the conversion of glucosinolates into active isothiocyanates.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
- Correspondence: ; Tel.: +357-22392626
| |
Collapse
|
3
|
Wang Y, Ouyang Q, Chang X, Yang M, He J, Tian Y, Sheng J. Anti-photoaging effects of flexible nanoliposomes encapsulated Moringa oleifera Lam. isothiocyanate in UVB-induced cell damage in HaCaT cells. Drug Deliv 2022; 29:871-881. [PMID: 35277099 PMCID: PMC8920399 DOI: 10.1080/10717544.2022.2039802] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skin photoaging is premature skin aging damage that occurs after repeated exposure to ultraviolet (UV) radiation. Although isothiocyanates extracted from the moringa tree (Moringa oleifera Lam.) (MITC) exhibit excellent effects against skin photoaging, its application is restricted because of its characteristics, such as extremely low water solubility, bioavailability, and easy degradation. Currently, flexible nanoliposomes have gained increasing interest as a biocompatible polymer for applications such as transdermal drug delivery. We prepare amphiphilic hyaluronic acid (HA) conjugated with ceramide (CE) to modify nanoliposomes for MITC (HACE/MITC NPs) delivery. The HACE/MITC nanoparticles (NPs) are prepared and characterized for entrapment efficiency, particle size, polydispersity index, zeta potential, in vitro release, in vivo skin permeation, and in vitro protective effect of photoaging. The zeta potential of MITC NPs and HACE/MITC NPs is −24.46 mV and −24.93 mV, respectively. After modification of HACE, the entrapment efficient of MITC liposome increased from 62.54% to 70.67%, and the particle size decreased from 266.1 nm to 192.8 nm. In vivo skin permeation, permeated drug increased from 49.42 to 71.40%. Moreover, the results showed that the entrapment of MITC in nanoliposomes improves its stability, efficacy, and skin permeation. Further, HACE/MITC NPs are favorable for uptake by HaCaT cells without requiring changes in cell morphology, which significantly improves the activities of antioxidant enzymes, scavenges UVB-induced reactive oxygen species, protects skin from damage, and reduces MMP-1, MMP-3, and MMP-9 expression caused by radiation-induced photoaging. Our results strongly suggest that flexible nanoliposomes successfully improved the cell membrane permeation of MITC, and that anti-photoaging and HACE/MITC NPs can potentially be used as candidates for photoaging therapy.
Collapse
Affiliation(s)
- Yijin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qianqian Ouyang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, PR China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Xuefei Chang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Junpeng He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Yunnan Province Engineering Research Center of Functional Food of Homologous of Drug and Food, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Zirintunda G, Biryomumaisho S, Kasozi KI, Batiha GES, Kateregga J, Vudriko P, Nalule S, Olila D, Kajoba M, Matama K, Kwizera MR, Ghoneim MM, Abdelhamid M, Zaghlool SS, Alshehri S, Abdelgawad MA, Acai-Okwee J. Emerging Anthelmintic Resistance in Poultry: Can Ethnopharmacological Approaches Offer a Solution? Front Pharmacol 2022; 12:774896. [PMID: 35237147 PMCID: PMC8883056 DOI: 10.3389/fphar.2021.774896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
Limited pharmacological studies have been conducted on plant species used against poultry helminths. The objective of this study was to provide a basis for plant based anthelmintics as possible alternatives against poultry anthelmintic resistance. The study justified the need for alternative anthelmintics. The study places emphasis on the increasing anthelmintic resistance, mechanism of resistance, and preparational protocols for plant anthelmintics and their associated mechanism of action. Pharmaceutical studies on plants as alternative therapies for the control of helminth parasites have not been fully explored especially in several developing countries. Plants from a broad range of species produce a wide variety of compounds that are potential anthelmintics candidates. Important phenolic acids have been found in Brassica rapa L. and Terminalia avicenniodes Guill. and Perri that affect the cell signaling pathways and gene expression. Benzo (c) phenanthridine and isoquinoline alkaloids are neurotoxic to helminths. Steroidal saponins (polyphyllin D and dioscin) interact with helminthic mitochondrial activity, alter cell membrane permeability, vacuolation and membrane damage. Benzyl isothiocyanate glucosinolates interfere with DNA replication and protein expression, while isoflavones from Acacia oxyphylla cause helminth flaccid paralysis, inhibit energy generation, and affect calcium utilization. Condensed tannins have been shown to cause the death of nematodes and paralysis leading to expulsion from the gastro-intestinal tract. Flavonoids from Chenopodium album L and Mangifera indica L act through the action of phosphodiesterase and Ca2+-ATPase, and flavonoids and tannins have been shown to act synergistically and are complementary to praziquantel. Artemisinins from Artemisia cina O. Berg are known to disrupt mitochondrial ATP production. Terpenoids from Cucurbita moschata L disrupt neurotransmission leading to paralysis as well as disruption of egg hatching. Yeast particle encapsulated terpenes are effective for the control of albendazole-resistant helminths.
Collapse
Affiliation(s)
- Gerald Zirintunda
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Savino Biryomumaisho
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Scotland, United Kingdom
- School of Medicine, Kabale University, Kabale, Uganda
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Albeheira, Egypt
| | - John Kateregga
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Patrick Vudriko
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Sarah Nalule
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Deogracious Olila
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University, Soroti, Uganda
| | - Mariam Kajoba
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Kevin Matama
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Mercy Rukundo Kwizera
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Mohammed M. Ghoneim
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud Abdelhamid
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Sameh S. Zaghlool
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Al Jouf, Saudi Arabia
| | - James Acai-Okwee
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| |
Collapse
|
5
|
Yang Q, Nakamura T, Seto M, Miyagawa M, Xu W, Zhu B, Munemasa S, Murata Y, Nakamura Y. A multidrug resistance-associated protein inhibitor is a potential enhancer of the benzyl isothiocyanate-induced apoptosis induction in human colorectal cancer cells. J Biochem Mol Toxicol 2021; 35:e22791. [PMID: 33880814 DOI: 10.1002/jbt.22791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/15/2021] [Accepted: 04/01/2021] [Indexed: 12/16/2022]
Abstract
The increasing drug efflux through the ATP-binding cassette (ABC) transporters is the most plausible mechanism that mediates resistance to the anticancer phytochemicals, such as benzyl isothiocyanate (BITC), as well as chemotherapy drugs. To identify a potential component to overcome this resistance by combinatory utilization, we focused on multidrug resistance-associated proteins (MRPs) pumping various drug metabolites with glutathione as well as the organic anions. The pharmacological treatment of an MRP inhibitor, MK571, significantly potentiated the BITC-induced antiproliferation, coincided with the enhanced accumulation of BITC and glutathione in human colorectal cancer HCT-116 cells. MK571 also enhanced the apoptosis induction as well as activation of the mitogen-activated protein kinases and caspase-3, whereas it did not affect their basal levels. These results suggested that, since MRPs might play a pivotal role in the BITC efflux, MK571 potentiates the BITC-induced antiproliferation in human colorectal cancer cells through inhibition of the glutathione-dependent BITC efflux.
Collapse
Affiliation(s)
- Qifu Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China.,Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.,School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Masayuki Seto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Miku Miyagawa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Wensi Xu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China.,Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.,School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Rapid and sensitive analysis of benzyl isothiocyanate in peel, pulp, and seeds of Carica papaya Linn. by headspace gas chromatography-mass spectrometry. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04356-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractA rapid and sensitive headspace gas chromatography-mass spectrometry (HS-GC–MS) method was established for the determination of benzyl isothiocyanate (BITC) in the peel, pulp, and seeds of Carica papaya Linn. Tween 80 solution with a concentration of 0.002% (w/v) was chosen as a headspace medium for solving the poor solubility of BITC in water without using organic solvents and ensuring high headspace efficiencies. Extraction parameters had been evaluated and optimized by using an orthogonal design with an OA9(34) table. Optimal headspace conditions were obtained when vials were equilibrated at 80 °C for 20 min at a stirring speed of 375 rpm. The calibration curve obtained by using GC–MS was linear in a concentration range of 10–320 ng/mL. The recoveries of peel, pulp, and seeds ranged from 97.3 to 100.6% with RSDs less than 3.0%. The method is simple, rapid, sensitive, and environmentally friendly. It is suitable for analyzing BITC in papaya fruit and is expected to have important application potential in the extraction of water-insoluble volatile components in foods, plants, medicines, and other samples.
Collapse
|
7
|
Chong KY, Brooks MSL. Effects of recycling on the aqueous two-phase extraction of bioactives from haskap leaves. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Liu X, Yang Q, Nakamura Y. Inhibition of Drug Resistance Mechanisms Improves the Benzyl Isothiocyanate–Induced Anti-Proliferation in Human Colorectal Cancer Cells. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40495-020-00227-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|