1
|
M.F. Elshaghabee F, A. Abd El-Maksoud A, M. Ambrósio F. de Gouveia G. Recent Development in Antioxidant of Milk and Its Products. Biochemistry 2023. [DOI: 10.5772/intechopen.109441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Free radicals are produced in humans through natural metabolism or the external environment, such as diet. These free radicals are neutralized by the antioxidant system, whereas enzymes, for example, catalase, superoxide dismutase, and glutathione peroxidase, play an important role in preventing excessive free radicals. Food antioxidants give a good hand in enhancing the human antioxidant system; high consumption of a diet rich in natural antioxidants protects against the risk of diseases such as cardiovascular, cancer, diabetes, and obesity. Milk and its products are popular for a wide range of consumers. Milk contains casein, whey protein, lactoferrin, milk lipid and phospholipids, vitamins, and microelements, for example, selenium (Se), which have antioxidant properties. Furthermore, probiotication of milk either sweet or fermented could enhance the antioxidant capacity of milk. This chapter focuses on presenting recent review data on milk components with antioxidant activity and their health benefits, probiotics as antioxidant agents, and methods for enhancing the antioxidant capacity of dairy products. The key aim of this chapter is to focus on major strategies for enhancing the antioxidant capacity of milk and its products.
Collapse
|
2
|
Liu J, Song G, Zhou L, Yuan Y, Wang D, Yuan T, Li L, Yuan H, Xiao G, Gong J. Recent advances in the effect of ultrasound on the binding of protein−polyphenol complexes in foodstuff. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Affiliation(s)
- Jiayuan Liu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Like Zhou
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Yawen Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Haina Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Gongnian Xiao
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| |
Collapse
|
3
|
Santos MA, Okuro PK, Fonseca LR, Cunha RL. Protein-based colloidal structures tailoring techno- and bio-functionality of emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Makori SI, Mu TH, Sun HN. Functionalization of sweet potato leaf polyphenols by nanostructured composite β-lactoglobulin particles from molecular level complexations: A review. Food Chem 2022; 372:131304. [PMID: 34655825 DOI: 10.1016/j.foodchem.2021.131304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022]
Abstract
Sweet potato leaf polyphenols (SPLPs) have shown potential health benefits in the food and pharmaceutical industries. Nowadays, consumption of SPLPs from animal feeds to foodstuff is becoming a trend worldwide. However, the application of SPLPs is limited by their low bioavailability and stability. β-lactoglobulin (βlg), a highly regarded whey protein, can interact with SPLPs at the molecular level to form reversible or irreversible nanocomplexes (NCs). Consequently, the functional properties and final quality of SPLPs are directly modified. In this review, the composition and structure of SPLPs and βlg, as well as methods of molecular complexation and mechanisms of formation of SPLPsβlgNCs, are revisited. The modified functionalities of SPLPsβlgNCs, especially protein conformational structures, antioxidant activity, solubility, thermal stability, emulsifying, and gelling properties including allergenic potential, digestibility, and practical applications are discussed for SPLPs future development.
Collapse
Affiliation(s)
- Shadrack Isaboke Makori
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China; Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), P.O. Box 30650, GPO, Nairobi, Kenya
| | - Tai-Hua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Hong-Nan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| |
Collapse
|
5
|
Royal jelly improves the physicochemical properties and biological activities of fermented milk with enhanced probiotic viability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
El-Maksoud AAA, Makhlouf AIA, Altemimi AB, El-Ghany IHA, Nassrallah A, Cacciola F, Abedelmaksoud TG. Nano Milk Protein-Mucilage Complexes: Characterization and Anticancer Effect. Molecules 2021; 26:molecules26216372. [PMID: 34770781 PMCID: PMC8588565 DOI: 10.3390/molecules26216372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022] Open
Abstract
The anticancer activity of natural compounds has recently attracted multidisciplinary research. In this study, the complexation of milk proteins (MP) with Isabgol husk mucilage (IHM) and Ziziphus spina-christi mucilage (NabM) was investigated. In this context, the physicochemical properties of milk protein mucilage complexes (MPMC) including pH, Carr's index, water solubility, and water absorption indices were measured, and the flow behavior was studied. In addition, the amino acid profile, protein digestibility, and phenolic and flavonoids content of MPMC were explored, and the microstructure of the complexes was visualized using transmission electron microscopy. The antioxidant and anticancer potencies of MPMC against two cancerous cell lines, human liver cancer HEPG-2 and breast cancer MCF-7, in comparison with two normal cell lines, namely, Bj-1 and MCF-12F, were tested using neutral red uptake assay. The results revealed that MPMC had scavenging activity against DPPH, ABTS, and HS radicals. Moreover, MPMC has the potential to prevent DNA damage induced by oxidative stress in Type-Fenton's reaction. The results of the neutral red assay showed significant growth inhibition of both HEPG-2, MCF-7, whereas no significant cytotoxic effect was detected against Bj-1 and MCF-12F. RT-qPCR results indicated MPMC stimulated apoptosis as revealed by the upregulation of the pro-apoptosis gene markers Casepase-3, p53, Bax. Meanwhile, the anti-apoptosis Bcl-2 gene was downregulated. However, no significant difference was observed in normal cell lines treated with MPMC. In conclusion, MPMC can be considered as a promising anticancer entity that can be used in the development of novel cancer therapeutics with comparable activity and minimal side effects compared to conventional cancer chemotherapies.
Collapse
Affiliation(s)
- Ahmed Ali Abd El-Maksoud
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
- Correspondence: (A.A.A.E.-M.); (F.C.)
| | - Amal I. A. Makhlouf
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo 12411, Egypt;
| | - Ammar B. Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah 61004, Iraq;
| | | | - Amr Nassrallah
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Francesco Cacciola
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
- Correspondence: (A.A.A.E.-M.); (F.C.)
| | | |
Collapse
|
7
|
Massounga Bora AF, Li X, Liu L, Zhang X. Enhanced In Vitro Functionality and Food Application of Lactobacillus acidophilus Encapsulated in a Whey Protein Isolate and (-)-Epigallocatechin-3-Gallate Conjugate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11074-11084. [PMID: 34499505 DOI: 10.1021/acs.jafc.1c02158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present study investigated the potential of free radical grafting conjugation of whey protein isolate (WPI) and (-)-epigallocatechin-3-gallate (EGCG), followed by freeze-drying, for the safe delivery of probiotic Lactobacillus acidophilus (LA) upon digestion and in food systems. WPI-EGCG-LA microspheres presented higher encapsulation efficiency (97%) than native WPI-LA (70%) and maltodextrin (MD-LA 75%). The physicochemical characteristics of all microspheres, including moisture content, water activity, and hygroscopicity, were within the acceptable range for the stability of industrial powders. Scanning electron microscopy of WPI-EGCG-LA revealed a glass-like structure, with a smoother and less porous surface area than WPI-LA and MD-LA, as a result of the strong binding affinity between WPIs and EGCG. Particle sizes ranged from 438.4 to 453.3 μm. The structural stability of WPI-EGCG-LA was further confirmed by Fourier transform infrared spectra, which revealed some changes in the protein secondary structure. Thermogravimetric and differential scanning calorimetry analysis showed that WPI-EGCG conjugates had higher thermal stability than native WPIs and MD. Additionally, cells encapsulated in WPI-EGCG conjugates demonstrated higher in vitro survivability and surface hydrophobicity compared to free or WPI- and MD-encapsulated cells. Furthermore, WPI-EGCG-LA microspheres exerted enhanced in vitro antioxidant (78%) and antidiabetic (52%) activities. Finally, the WPI-EGCG conjugates remarkably improved probiotic viability (8.55 ± 0.1 log cfu/g) during 30 days of storage in an apple juice drink of pH (3.2 ± 0.01). Hence, the WPI-EGCG conjugate represents a propitious carrier to enhance probiotic functional properties upon digestion and during storage in low-pH food products.
Collapse
Affiliation(s)
- Awa Fanny Massounga Bora
- Food College, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
| |
Collapse
|
8
|
Elshaghabee FMF, Abd El-Maksoud AA, Alharbi SA, Alfarraj S, Mohamed MSM. Fortification of Acidophilus- bifidus- thermophilus (ABT) Fermented Milk with Heat-Treated Industrial Yeast Enhances Its Selected Properties. Molecules 2021; 26:3876. [PMID: 34201949 PMCID: PMC8271856 DOI: 10.3390/molecules26133876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 02/03/2023] Open
Abstract
The improvement of milk dairy products' quality and nutritional value during shelf-life storage is the ultimate goal of many studies worldwide. Therefore, in the present study, prospective beneficial effects of adding two different industrial yeasts, Kluyveromyces lactis and Saccharomyces cerevisiae pretreated by heating at 85 °C for 10 min to be inactivated, before fermentation on some properties of ABT fermented milk were evaluated. The results of this study showed that the addition of 3% and 5% (w/v) heat-treated yeasts to the milk enhanced the growth of starter culture, Lactobacillus acidophilus, Bifidobacteria, and Streptococcus thermophilus, during the fermentation period as well as its viability after 20 days of cold storage at 5 ± 1 °C. Furthermore, levels of lactic and acetic acids were significantly increased from 120.45 ± 0.65 and 457.80 ± 0.70 µg/mL in the control without heat-treated yeast to 145.67 ± 0.77 and 488.32 ± 0.33 µg/mL with 5% supplementation of Sacch. cerevisiae respectively. Moreover, the addition of heat-treated yeasts to ABT fermented milk enhanced the antioxidant capacity by increasing the efficiency of free radical scavenging as well as the proteolytic activity. Taken together, these results suggest promising application of non-viable industrial yeasts as nutrients in the fermentation process of ABT milk to enhance the growth and viability of ABT starter cultures before and after a 20-day cold storage period by improving the fermented milk level of organic acids, antioxidant capacity, and proteolytic activities.
Collapse
Affiliation(s)
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mahmoud S. M. Mohamed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
9
|
Zhang M, Wang L, Liu Y, Li J. Effects of antioxidants, proteins, and their combination on emulsion oxidation. Crit Rev Food Sci Nutr 2021; 62:8137-8160. [PMID: 33998841 DOI: 10.1080/10408398.2021.1925869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lipid oxidation largely determines the quality of emulsion systems as well as their final products. Therefore, an increasing number of studies have focused on the control of lipid oxidation, particularly on its mechanism. In this review, we discuss the factors affecting the efficiency of antioxidants in emulsion systems, such as the free radical scavenging ability, specifically emphasizing on the interfacial behavior and the influence of surfactants on the interfacial distribution of antioxidants. To enhance the antioxidant efficiency of antioxidants in emulsion systems, we discussed whether the combination of antioxidants and proteins can improve antioxidant effects. The types, mixing applications, structures, interface behaviors, effects of surfactants on interfacial proteins, and the location of proteins are associated with the antioxidant effects of proteins in emulsion systems. Antioxidants and proteins can be combined in both covalent and non-covalent ways. The fabrication conditions, conjugation methods, interface behaviors, and characterization methods of these two combinations are also discussed. Our review provides useful information to guide better strategies for providing stability and controlling lipid oxidation in emulsions. The main challenges and future trends in controlling lipid oxidation in complex emulsion systems are also discussed.
Collapse
Affiliation(s)
- Mi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lifeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
10
|
Wu G, Hui X, Gong X, Tran KN, Stipkovits L, Mohan MS, Brennan MA, Brennan CS. Functionalization of bovine whey proteins by dietary phenolics from molecular-level fabrications and mixture-level combinations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
El-Maksoud AAA, Korany RMS, El-Ghany IHA, El-Beltagi HS, Ambrósio F de Gouveia GM. Dietary solutions to dyslipidemia: Milk protein-polysaccharide conjugates as liver biochemical enhancers. J Food Biochem 2020; 44:e13142. [PMID: 31905423 DOI: 10.1111/jfbc.13142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/23/2022]
Abstract
Protein-polysaccharide interactions have been a focus of scientific attention. This study aimed to improve the antioxidant and hepatoprotective effects of buffalo total milk proteins and whey protein hydrolysate (WPH) through noncovalent interactions with Psyllium husk (ispaghula) mucilage (PHM) and Nabq mucilage (NabM). Chemical composition, phenolic content, and antioxidant activities of milk protein-mucilage complexes were explored. The effects of resulting complexes on liver function, hyperlipidemia, and histopathology of the liver in rats fed high-fat diet (HFD) were investigated. The results showed that the complexes exerted significant effect on normalizing tested parameters; WPH-NabM had the most significantly decreased level of malondialdehyde content and the liver histopathological examination proved an improvement in all groups fed with these complexes. These complexes can be used as functional protection elements against the nonalcoholic fatty liver disease. PRACTICAL APPLICATIONS: PHM, NabM, and their complexes with milk proteins were proved to improve liver function, enhancing most of its measurable parameters and also diminishing the risk of cardiovascular disease. Mice with HFD achieved better health circumstances by combining these ingredients in their diet. Knowing how much these diseases proliferate in the western world and its correlation with high-fat consumption and modern lifestyle, its conjugation with PHM/NabM-MP complexes may reduce the negative impact of unhealthy food intake and, on some parameters, even improving the whole liver function. For that reason, the present study supports and pushes forward the dissemination and consumption of ispaghula or Nabq (the polysaccharides sources) or supplements originating from them. Although many interactions concerning milk proteins have already been analyzed, our study also proposes the interaction with bioactive polysaccharides as useful, opening a field of research aimed at the better application of milk proteins.
Collapse
Affiliation(s)
| | - Reda M S Korany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Hossam S El-Beltagi
- Department of Agricultural Biotechnology, Faculty of Agricultural and Food Science, King Faisal University, Alhassa, Saudi Arabia.,Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Gustavo M Ambrósio F de Gouveia
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|