1
|
Bai G, Zhao M, Chen XW, Ma CG, Ma Y, Xianqing H. Fabrication, characterization and simulated gastrointestinal digestion of sea buckthorn pulp oil microcapsule: effect of wall material and interfacial bilayer stabilization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1737-1744. [PMID: 39390660 DOI: 10.1002/jsfa.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Sea buckthorn (Hippophae rhamnoides L.) pulp oil is rich in functional components; however, low water solubility and stability limit its applications. This study fabricated sea buckthorn pulp oil microcapsules using whey protein isolate (WPI), soy protein isolate (SPI), sodium caseinate (NaCN), gum arabic (GA), starch sodium octenylsuccinate (OSAS) and SPI mixed with chitosan (CHI). The influences of these wall materials on physicochemical properties, release behavior and digestibility were explored. RESULTS Protein-based wall materials (WPI, NaCN, SPI) demonstrated lower bulk densities due to their porous structures and larger particle sizes, while GA and OSAS produced denser microcapsules. Encapsulation efficiency was the highest for protein-based microcapsules (79.41-89.12%) and the lowest for GA and OSAS. The surface oil percentage of protein-based microcapsules (1.41-4.40%) was lower than that of the other microcapsules. Protein-based microcapsules showed concave and cracked surfaces, while GA and OSAS microcapsules were spherical and smooth. CHI improved reconstitution performance, leading to faster dissolution. During simulated gastrointestinal digestion, protein-based microcapsules released more free fatty acids (FFAs) in the intestinal phase, while CHI-modified SPI microcapsules showed a delayed release pattern due to thicker walls. CONCLUSION Protein-based wall materials were more effective for sea buckthorn pulp oil microencapsulation, providing higher encapsulation efficiency, better flow properties and releasing more FFAs. The addition of CHI led to the layer-by-layer self-assembly of the microcapsule wall and resulted in sustained release during in vitro intestinal digestion. These findings suggested the potential of protein-based microcapsules for targeted delivery and improved applications of bioactive oils in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ge Bai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Man Zhao
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Xiao-Wei Chen
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Chuan-Guo Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Yan Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Huang Xianqing
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| |
Collapse
|
2
|
Zhou L, Tse TJ, Chicilo F, Meda V, Reaney MJT. Electrostatic field as an emergent technology in refining crude oils: a review. Crit Rev Food Sci Nutr 2024; 64:11796-11808. [PMID: 37552117 DOI: 10.1080/10408398.2023.2244080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Vegetable oils and fatty acid esters (FAEs) are commonly used in various industrial and commercial applications. However, the presence of contaminants in these oils can severely affect their functionality and suitability. Conventional refining techniques for vegetable oils typically involve degumming, neutralization, bleaching and deodorization. Meanwhile, refining of FAEs often utilize wet or dry washing processes. These are often resource-intensive, producing substantial waste products, causing neutral oil loss, and can also result in the loss of micronutrients. To address these challenges, researchers have explored the use of nano-adsorbents and electrostatic field (E-field) technologies as alternatives in purifying industrial dielectric oils by removing polar particles and contaminants. Nano-adsorbents demonstrated increased efficiency in removing polar contamination while minimizing neutral oil loss. However, removal of these spent adsorbents can be challenging due to their nano-size, and physicochemical properties. The use of these materials combined with E-field technologies offers a novel and sustainable solution for removing spent nano-adsorbents and contaminants. This review provides an overview of current traditional and novel refining technologies for vegetable oils and FAEs, including their associated limitations. Compared to conventional methods, E-field treatment offers several advantages, making it an attractive alternative to conventional approaches in food processing and oil refining.
Collapse
Affiliation(s)
- Li Zhou
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Timothy J Tse
- Department of Food and Bioproducts Science, University of Saskatchewan, Saskatoon, Canada
| | - Farley Chicilo
- Department of Food and Bioproducts Science, University of Saskatchewan, Saskatoon, Canada
| | - Venkatesh Meda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Martin J T Reaney
- Department of Food and Bioproducts Science, University of Saskatchewan, Saskatoon, Canada
- Prairie Tide Diversified Inc, Saskatoon, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Xing X, Chen X, You X, Huang J, Xue D. Zearalenone degrading enzyme evolution to increase the hydrolysis efficiency under acidic conditions by the rational design. Food Chem 2024; 456:140088. [PMID: 38878543 DOI: 10.1016/j.foodchem.2024.140088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Abstract
Based on rational design, zearalenone degrading enzyme was evolved to improve the hydrolysis efficiency under acidic conditions. At pH 4.2 and 37 °C, the activity of the zearalenone degrading enzyme evolved with 8 mutation sites increased from 7.69 U/mg to 38.67 U/mg. Km of the evolved zearalenone degrading enzyme decreased from 283.61 μM to 75.33 μM. The evolved zearalenone degrading enzyme was found to effectively degrade zearalenone in pig stomach chyme. Molecular docking revealed an increase in the number of hydrogen bonds and π-sigma interactions between the evolved zearalenone degrading enzyme and zearalenone. The evolved zearalenone degrading enzyme was valuable for hydrolyzing zearalenone under acidic conditions.
Collapse
Affiliation(s)
- Xingyue Xing
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China
| | - Xiaowei Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China
| | - Xihuo You
- School of Bioengineering and Health, Wuhan Textile University, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Agrichina Huawei Biopharmaceutical (Hubei) Co., Ltd, Qichun 435300, PR China
| | - Jie Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China
| | - Dongsheng Xue
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
4
|
De Troyer L, De Zutter N, De Saeger S, Dumoulin F, Croubels S, De Baere S, De Gelder L, Audenaert K. Actinobacteria as Promising Biocontrol Agents for In Vitro and In Planta Degradation and Detoxification of Zearalenone. Toxins (Basel) 2024; 16:253. [PMID: 38922147 PMCID: PMC11209476 DOI: 10.3390/toxins16060253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Zearalenone (ZEN) is a prevalent mycotoxin found in grains and grain-derived products, inducing adverse health effects in both animals and humans. The in-field application of microorganisms to degrade and detoxify ZEN is a promising strategy to enhance the safety of food and feed. In this study, we investigated the potential of three actinobacterial strains to degrade and detoxify ZEN in vitro and in planta on wheat ears. The residual ZEN concentration and toxicity in the samples were analysed with UHPLC-MS/MS and a bioluminescence BLYES assay, respectively. Streptomyces rimosus subsp. rimosus LMG19352 could completely degrade and detoxify 5 mg/L ZEN in LB broth within 24 h, along with significant reductions in ZEN concentration both in a minimal medium (MM) and on wheat ears. Additionally, it was the only strain that showed a significant colonisation of these ears. Rhodococcus sp. R25614 exhibited partial but significant degradation in LB broth and MM, whereas Streptomyces sp. LMG16995 degraded and detoxified ZEN in LB broth after 72 h by 39% and 33%, respectively. Although all three actinobacterial strains demonstrated the metabolic capability to degrade and detoxify ZEN in vitro, only S. rimosus subsp. rimosus LMG19352 showed promising potential to mitigate ZEN in planta. This distinction underscores the importance of incorporating in planta screening assays for assessing the potential of mycotoxin-biotransforming microorganisms as biocontrol agents.
Collapse
Affiliation(s)
- Larissa De Troyer
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Noémie De Zutter
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bio-Analysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Frédéric Dumoulin
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bio-Analysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Siegrid De Baere
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Leen De Gelder
- Laboratory of Environmental Biotechnology, Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Jiao F, Cui X, Shi S, Jiang G, Dong M, Meng L. Capacity and kinetics of zearalenone adsorption by Geotrichum candidum LG-8 and its dried fragments in solution. Front Nutr 2024; 10:1338454. [PMID: 38274209 PMCID: PMC10808330 DOI: 10.3389/fnut.2023.1338454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
The application of LG-8 and its dry fragments as zearalenone (ZEN) adsorbents was investigated. The study showed that Geotrichum candidum LG-8 and its fragments dried at 55°C or through lyophilization are able to adsorb around 80% of ZEN. However, besides in water and 55°C-drying conditions, SEM indicated that higher 90% of ZEN binding tended to occur when cell walls of fragments were intact with less adhesion among themselves. Notably, ZEN/LG-8 fragments complexes were quite stable, as only 1.262% and 1.969% of ZEN were released after successive pH treatments for 4 h and 5 min. The kinetic data signified that adsorption of ZEN onto LG-8 fragments followed well the pseudo-first-order kinetic model. Isotherm calculations showed Langmuir model was favourable and monolayer adsorption of ZEN occurred at functional binding sites on fragments surface. Therefore, we conclude that it can be an alternative biosorbent to treat water contained with ZEN, since LG-8 is low-cost biomass and its fragments have a considerable high biosorption capacity avoiding impacting final product quality and immunodeficient patients.
Collapse
Affiliation(s)
- Fengping Jiao
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xianping Cui
- Division of Hepatobiliary and Pancreatic Surgery, Affiliated Provincial Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shujin Shi
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | | | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ling Meng
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
6
|
Yu MH, Pang YH, Yang C, Liao JW, Shen XF. Electrochemical oxidation diminished toxicity of zearalenone significantly, while reduction increased. Food Chem 2023; 429:136768. [PMID: 37453332 DOI: 10.1016/j.foodchem.2023.136768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Zearalenone (ZEN), one of the most common mycotoxins in cereals, poses a severe health risk to humans. In this study, electrochemical oxidation and reduction degraded ZEN in solution completely within 8 min and 20 min. The structure of ZEN products was elucidated by mass spectrometry (MS), and their toxicity was evaluated by ECOSAR software and cytotoxicity assay. From simulation, electrochemical oxidation products had lower acute and chronic toxicity, and the product at 9.0 V is not harmful (LC50/EC50 greater than 100 mg/L, ChV greater than 10 mg/L). CCK-8 assay further confirmed their less cytotoxicity. To our surprise, LC50, EC50, and ChVs of all electrochemical reduction products were lower than 1 mg/L, and cell viabilities were less than ZEN, meaning the higher toxicity of electrochemical reduction products. On this Basis, electrochemical oxidation was applied in ZEN contaminated wheat with a degradation rate of 92.32 ± 2.37%, indicating its potential to degrade ZEN practically.
Collapse
Affiliation(s)
- Ming-Hang Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun-Wei Liao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Efremenko E, Senko O, Maslova O, Lyagin I, Aslanli A, Stepanov N. Destruction of Mycotoxins in Poultry Waste under Anaerobic Conditions within Methanogenesis Catalyzed by Artificial Microbial Consortia. Toxins (Basel) 2023; 15:205. [PMID: 36977096 PMCID: PMC10058804 DOI: 10.3390/toxins15030205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
To reduce the toxicity of modern feeds polluted by mycotoxins, various sorbents are added to them when feeding animals. A part of the mycotoxins is excreted from the body of animals with these sorbents and remains in the manure. As a result, bulk animal wastes containing mixtures of mycotoxins are formed. It is known that it is partially possible to decrease the initial concentration of mycotoxins in the process of anaerobic digestion (AD) of contaminated methanogenic substrates. The aim of this review was to analyze the recent results in destruction of mycotoxins under the action of enzymes present in cells of anaerobic consortia catalyzing methanogenesis of wastes. The possible improvement of the functioning of the anaerobic artificial consortia during detoxification of mycotoxins in the bird droppings is discussed. Particular attention was paid to the possibility of effective functioning of microbial enzymes that catalyze the detoxification of mycotoxins, both at the stage of preparation of poultry manure for methanogenesis and directly in the anaerobic process itself. The sorbents with mycotoxins which appeared in the poultry wastes composed one of the topics of interest in this review. The preliminary alkaline treatment of poultry excreta before processing in AD was considered from the standpoint of effectively reducing the concentrations of mycotoxins in the waste.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
8
|
Lu T, Guo Y, Zeng Z, Wu K, Li X, Xiong Y. Identification and detoxification of AFB1 transformation product in the peanut oil refining process. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Wu W, Huang X, Liang R, Guo T, Xiao Q, Xia B, Wan Y, Zhou Y. Determination of 63 mycotoxins in grain products by ultrahigh-performance liquid chromatography coupled with quadrupole-Orbitrap mass spectrometry. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
Lu T, Guo Y, Shi J, Li X, Wu K, Li X, Zeng Z, Xiong Y. Identification and Safety Evaluation of Ochratoxin A Transformation Product in Rapeseed Oil Refining Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14931-14939. [PMID: 36331822 DOI: 10.1021/acs.jafc.2c04532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ochratoxin A (OTA) is an important mycotoxin detected in edible oil, and it can be effectively removed by classical edible oil refining processes. However, the fate of OTA in the refining process has not been reported. In this study, we systematically tracked the OTA changes during the oil refining process by fortifying 100 μg/kg OTA in crude rapeseed oil. Results showed that about 10.57%, 88.85%, and 0.58% of OTA were removed during the degumming, deacidification, and decolorization processes. Among them, 16.25% OTA was transferred to the byproducts, including 9.85% in degumming wastewater, 5.68% in soap stock, 0.14% in deacidification wastewater, and 0.58% in the decolorizer; 83.75% OTA was found to transform into the lactone ring opened OTA (OP-OTA) during the deacidification stage, which is attributed to the hydrolysis of the lactone ring of OTA in the alkali refining. The OP-OTA was verified to distribute in the soap stock, and small amounts of OP-OTA could be transferred to deacidified wastewater when the OTA pollution level reached 500 μg/kg in crude rapeseed oil. The OP-OTA exhibited strong toxicity, especially nephrotoxicity, as reflected by the cell viability assay and in silico toxicity. Therefore, the safety of the soap stock processing products from OTA-contaminated rapeseed deserves attention.
Collapse
Affiliation(s)
- Tianying Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Yuqian Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Jiachen Shi
- Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Kesheng Wu
- Jiangxi Agricultural Technology Extension Center, Nanchang, Jiangxi 330096, P.R. China
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| |
Collapse
|
11
|
Tan H, Li Y, Zhou H, Guo T, Zhou Y, Zhang Y, Ma L. Temperature and pH levels: Key factors effecting hidden/free zearalenone during maize processing. Food Res Int 2022; 160:111721. [DOI: 10.1016/j.foodres.2022.111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
|
12
|
Identification of Deoxynivalenol and Degradation Products during Maize Germ Oil Refining Process. Foods 2022; 11:foods11121720. [PMID: 35741918 PMCID: PMC9223215 DOI: 10.3390/foods11121720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
Deoxynivalenol (DON) contamination in germs and germ oil is posing a serious threat to food and feed security. However, the transformation pathway, the distribution of DON, and its degradation products in edible oil refining have not yet been reported in detail. In this work, we systematically explored the variation of DON in maize germ oil during refining and demonstrated that the DON in germ oil can be effectively removed by refining, during which a part of DON was transferred to the wastes, and another section of DON was degraded during degumming and alkali refining. Moreover, the DON degradation product was identified to be norDON B by using the ultraviolet absorption spectrum, high-performance liquid chromatography (HPLC), ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF MS), and nuclear magnetic resonance (NMR) methods, and the degradation product was found to be distributed in waste products during oil refining. This study provides a scientific basis and useful reference for the production of non-mycotoxins edible oil by traditional refining.
Collapse
|
13
|
Sohrabi H, Majidi MR, Arbabzadeh O, Khaaki P, Pourmohammad S, Khataee A, Orooji Y. Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. ENVIRONMENTAL RESEARCH 2022; 204:112082. [PMID: 34555403 DOI: 10.1016/j.envres.2021.112082] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/18/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEN), a significant class of mycotoxin which is considered as a xenoestrogen, permits, similar to natural estrogens, it's binding to the receptors of estrogen resulting in various reproductive diseases especially, hormonal misbalance. ZEN has toxic effects on human and animal health as a result of its teratogenicity, carcinogenicity, mutagenicity, nephrotoxicity, genotoxicity, and immunotoxicity. To ensure water and environmental resources safety, precise, rapid, sensitive, and reliable analytical and conventional methods can be progressed for the determination of toxins such as ZEN. Different selective nanomaterial-based compounds are used in conjunction with different analytical detection approaches to achieve this goal. The current review demonstrates the state-of-the-art advances of nanomaterial-based electrochemical sensing assays including various sensing, apta-sensing and, immunosensing studies to the highly sensitive determination of various ZEN families. At first, a concise study of the occurrence, structure, toxicity, legislations, and distribution of ZEN in monitoring has been performed. Then, different conventional and clinical techniques and procedures to sensitive and selective sensing techniques have been reviewed and the efficient comparison of them has been thoroughly discussed. This study has also summarized the salient features and the requirements for applying various sensing and biosensing platforms and diverse immobilization techniques in ZEN detection. Finally, we have defined the performance of several electrochemical sensors applying diverse recognition elements couples with nanomaterials fabricated using various recognition elements coupled with nanomaterials (metal NPs, metal oxide nanoparticles (NPs), graphene, and CNT) the issues limiting development, and the forthcoming tasks in successful construction with the applied nanomaterials.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Omid Arbabzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Pegah Khaaki
- Department of Biology, Faculty of Natural Science, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Sajjad Pourmohammad
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey.
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
14
|
Bai G, Ma CG, Chen XW, Jing LL, Yan YP. Molecular insights into the loss of phytosterols during the neutralisation of corn oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Pan Y, Liu C, Yang J, Tang Y. Conversion of Zearalenone to β-Zearalenol and Zearalenone-14,16-diglucoside by Candida parapsilosis ATCC 7330. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Tan H, Zhou H, Guo T, Li J, Zhang C, Wang S, Zhang Y, Ma L. Zein structure and its hidden zearalenone: Effect of zein extraction methods. Food Chem 2021; 374:131563. [PMID: 34823935 DOI: 10.1016/j.foodchem.2021.131563] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/15/2021] [Accepted: 11/06/2021] [Indexed: 12/25/2022]
Abstract
Zein, the plant protein, has received great attention in the last years. However, hidden zearalenone (ZEN), the zein-bound ZEN present in zein would have a great hazard to humans and animals. To date, the fates of hidden ZEN under different extraction methods of zein have not been clarified. In this study, the effect of zein extraction methods on conversion of free ZEN with hidden ZEN and its corresponding mechanism were studied. Results showed that the acid extraction condition promoted the formation of hidden ZEN (up to 92.03%), which was closely related to increased hydrophobic cavity of zein. However, alkaline extraction condition caused the conversion of hidden ZEN (from 58.82% to 13.33%) into free ZEN (from 41.18% to 86.67%), which was attributed to the great denaturation of zein. This study is of great significance for controlling hidden ZEN during zein extraction and maize processing.
Collapse
Affiliation(s)
- Hongxia Tan
- College of Food Science, Southwest University, Chongqing 400715, P.R. China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, P.R. China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P.R. China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing 400715, P.R. China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P.R. China
| | - Jiaxin Li
- College of Food Science, Southwest University, Chongqing 400715, P.R. China
| | - Chi Zhang
- College of Food Science, Southwest University, Chongqing 400715, P.R. China
| | - Shuo Wang
- College of Food Science, Southwest University, Chongqing 400715, P.R. China; School of Medicine, Tianjin Key Lab Food Science and Health, Nankai University, Tianjin 300071, P.R. China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, P.R. China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P.R. China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, P.R. China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, P.R. China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P.R. China.
| |
Collapse
|
17
|
Wang Y, Qiu X, Wang F, Li Y, Guo H, Nie L. Single-crystal ordered macroporous metal-organic framework as support for molecularly imprinted polymers and their integration in membrane formant for the specific recognition of zearalenone. J Sep Sci 2021; 44:4190-4199. [PMID: 34543515 DOI: 10.1002/jssc.202100393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/07/2022]
Abstract
Zearalenone is a fungal contaminant that is widely present in grains. Here, a novel molecularly imprinted membrane based on SOM-ZIF-8 was developed for the rapid and highly selective identification of zearalenone in grain samples. The molecularly imprinted membrane was prepared using polyvinylidene fluoride, cyclododecyl 2,4-dihydroxybenzoate as a template and SOM-ZIF-8 as a carrier. The factors influencing the extraction of zearalenone using this membrane, including the solution pH, extraction time, elution solvent, elution time, and elution volume, were studied in detail. The optimized conditions were 5 mL of sample solution at pH 6, extraction time of 45 min, 4 mL of acetonitrile:methanol = 9:1 as elution solvent, and elution time of 20 min. This method displayed a good linear range of 12-120 ng/g (R2 = 0.998) with the limits of detection and quantification of this method are 1.7 and 5.5 ng/g, respectively. In addition, the membrane was used to selectively identify zearalenone in grain samples with percent recoveries ranging from 87.9 to 101.0% and relative standard deviation of less than 6.6%. Overall, this study presents a simple and effective chromatographic pretreatment method for detecting zearalenone in food samples.
Collapse
Affiliation(s)
- Yulin Wang
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, Guangdong, P.R. China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan, P. R. China
| | - Xiuzhen Qiu
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, Guangdong, P.R. China
| | - Fuyu Wang
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, Guangdong, P.R. China
| | - Yangyang Li
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, Guangdong, P.R. China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan, P. R. China
| | - Huishi Guo
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, Guangdong, P.R. China
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan, P. R. China
| |
Collapse
|
18
|
The mycotoxins in edible oils: An overview of prevalence, concentration, toxicity, detection and decontamination techniques. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Yang SB, Zheng HC, Xu JY, Zhao XY, Shu WJ, Li XM, Song H, Ma YH. New Biotransformation Mode of Zearalenone Identified in Bacillus subtilis Y816 Revealing a Novel ZEN Conjugate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7409-7419. [PMID: 34180240 DOI: 10.1021/acs.jafc.1c01817] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An increasing number of Bacillus strains have been identified, and the removal capacity of zearalenone (ZEN) was determined; however, they failed to reveal the detoxification mechanism and transformation product. Here, Bacillus subtilis Y816, which could transform 40 mg/L of ZEN within 7 h of fermentation, was identified and studied. First, the biotransformation products of ZEN and 17-β-estradiol (E2) were identified as ZEN-14-phosphate and E2-3-phosphate by HPLC-TOF-MS and NMR, respectively. An intracellular zearalenone phosphotransferase (ZPH) was found through transcriptome sequencing analysis of B. subtilis Y816. The phosphorylated reaction conditions of ZEN by ZPH were further revealed in this work. Furthermore, the phosphorylated conjugates showed reduced estrogenic toxicity compared with their original substances (ZEN and α/β-zearalenol) using an engineered yeast biosensor system. The first report on the phosphorylated conjugated mode of ZEN in B. subtilis Y816 will inspire new perspectives on the biotransformation of ZEN in Bacillus strains.
Collapse
Affiliation(s)
- Shi Bin Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hong Chen Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jian Yong Xu
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xing Ya Zhao
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wen Ju Shu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiang Ming Li
- Preventive Medicine Department, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Hui Song
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yan He Ma
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
20
|
Hu M, Ge W, Liu X, Zhu Y. Preconcentration and Determination of Zearalenone in Corn Oil by a One-Step Prepared Polydopamine-Based Magnetic Molecularly Imprinted Polymer (MIP) with High-Performance Liquid Chromatography with Fluorescence (HPLC-FLD) Detection. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1931268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Meihua Hu
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, China
| | - Wen Ge
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, China
| | - Xiujuan Liu
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, China
| | - Yuling Zhu
- School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang, China
| |
Collapse
|
21
|
Tan H, Zhou H, Guo T, Zhang Y, Li J, Zhang C, Ma L. Effect of temperature and pH on the conversion between free and hidden zearalenone in zein. Food Chem 2021; 360:130001. [PMID: 34000631 DOI: 10.1016/j.foodchem.2021.130001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022]
Abstract
Food processing might induce the transformation of hidden ZEN (zein-bound ZEN) in maize. The objective of this study was to assess the effect of processing factors on free ZEN and hidden ZEN. After zein was treated under different temperature and pH, ZEN was quantified in samples before and after in vitro digestion. The ratios of hidden to total ZEN in zein are decreased from 54.25% to 40.74% after thermal treatment and from 54.25% to 0 after alkaline treatment, respectively. Conversely, acid treatment increased the ratio of hidden to total ZEN from 54.25% to 100%. Thus, it can be concluded that thermal or alkaline condition induced the conversion of hidden ZEN to free ZEN while acid condition promoted the ZEN-zein interactions to form the hidden ZEN. Overall, temperature and pH values played a vital role in the conversion of hidden ZEN during food processing.
Collapse
Affiliation(s)
- Hongxia Tan
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Jiaxin Li
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Chi Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Biological Science Research Center, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
22
|
Wei M, Xin L, Jin H, Huang Y, Liu Y. Electrochemical Aptasensor for Zearalenone Based on DNA Assembly and Exonuclease III as Amplification Strategy. ELECTROANAL 2021. [DOI: 10.1002/elan.202100043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Min Wei
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Lingkun Xin
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Huali Jin
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Yawei Huang
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Yong Liu
- College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 PR China
| |
Collapse
|
23
|
Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116156] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Janik E, Niemcewicz M, Ceremuga M, Stela M, Saluk-Bijak J, Siadkowski A, Bijak M. Molecular Aspects of Mycotoxins-A Serious Problem for Human Health. Int J Mol Sci 2020; 21:E8187. [PMID: 33142955 PMCID: PMC7662353 DOI: 10.3390/ijms21218187] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are toxic fungal secondary metabolities formed by a variety of fungi (moulds) species. Hundreds of potentially toxic mycotoxins have been already identified and are considered a serious problem in agriculture, animal husbandry, and public health. A large number of food-related products and beverages are yearly contaminated by mycotoxins, resulting in economic welfare losses. Mycotoxin indoor environment contamination is a global problem especially in less technologically developed countries. There is an ongoing effort in prevention of mould growth in the field and decontamination of contaminated food and feed in order to protect human and animal health. It should be emphasized that the mycotoxins production by fungi (moulds) species is unavoidable and that they are more toxic than pesticides. Human and animals are exposed to mycotoxin via food, inhalation, or contact which can result in many building-related illnesses including kidney and neurological diseases and cancer. In this review, we described in detail the molecular aspects of main representatives of mycotoxins, which are serious problems for global health, such as aflatoxins, ochratoxin A, T-2 toxin, deoxynivalenol, patulin, and zearalenone.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland
| | - Maksymilian Stela
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Adrian Siadkowski
- Department of Security and Crisis Menagement, Faculty of Applied Sciences, University of Dabrowa Gornicza, Zygmunta Cieplaka 1c, 41-300 Dabrowa Gornicza, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
25
|
Zearalenone Removal from Corn Oil by an Enzymatic Strategy. Toxins (Basel) 2020; 12:toxins12020117. [PMID: 32069863 PMCID: PMC7076758 DOI: 10.3390/toxins12020117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 02/01/2023] Open
Abstract
The estrogen-like mycotoxin zearalenone (ZEN) is one of the most widely distributed contaminants especially in maize and its commodities, such as corn oil. ZEN degrading enzymes possess the potential for counteracting the negative effect of ZEN and its associated high safety risk in corn oil. Herein, we targeted enhancing the secretion of ZEN degrading enzyme by Pichia pastoris through constructing an expression plasmid containing three optimized expression cassettes of zlhy-6 codon and signal peptides. Further, we explored various parameters of enzymatic detoxification in neutralized oil and analyzed tocopherols and sterols losses in the corn oil. In addition, the distribution of degraded products was demonstrated as well by Agilent 6510 Quadrupole Time-of-Flight mass spectrometry. P. pastoris GSZ with the glucoamylase signal was observed with the highest ZLHY-6 secretion yield of 0.39 mg/mL. During the refining of corn oil, ZEN in the crude oil was reduced from 1257.3 to 13 µg/kg (3.69% residual) after neutralization and enzymatic detoxification. Compared with the neutralized oil, no significant difference in the total tocopherols and sterols contents was detected after enzymatic detoxification. Finally, the degraded products were found to be entirely eliminated by washing. This study presents an enzymatic strategy for efficient and safe ZEN removal with relatively low nutrient loss, which provides an important basis for further application of enzymatic ZEN elimination in the industrial process of corn oil production.
Collapse
|