1
|
Yang Y, Ke Y, Xie W, Li Z, Tao L, Shen W, Chen Y, Cheng H, Chen J, Yan G, Li W, Li M, Li J. Amphiphilic disodium glycyrrhizin as a co-former for ketoconazole co-amorphous systems: Biopharmaceutical properties and underlying molecular mechanisms. Int J Pharm 2024; 665:124673. [PMID: 39245085 DOI: 10.1016/j.ijpharm.2024.124673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Co-amorphous systems (CAMs) have been extensively investigated to improve the dissolution of hydrophobic drugs. However, drug precipitation during the storage or dissolution of CAMs has still been a major challenge. Here, disodium glycyrrhizin (Na2GA) was first used as a co-former in CAMs based on its multiple hydroxyl groups and amphiphilic structure. Ketoconazole (KTZ), a BCS class II drug, was selected as a model drug. KTZ-Na2GA CAMs at mass ratios of 1:1, 1:2.5, 1:5 and 1:10 were prepared by the spray drying method and further characterised by PXRD and DSC. The 1:2.5, 1:5 and 1:10 groups exhibited significantly enhanced Cmax (all approximately 26.67-fold) and stable maintenance of supersaturation compared to the crystalline KTZ and the corresponding physical mixtures in non-sink dissolution tests, while the 1:1 group exhibited an unstable medium Cmax (all approximately 14.67-fold). The permeability tests revealed that the permeation rate of KTZ in KTZ-Na2GA CAMs under the concentration of Na2GA in solution above the critical micelle concentration (CMC) showed a significant downwards trend compared to that below CMC. The underlying molecular mechanisms were involved in molecular miscibility, hydrogen bond interactions, solubilisation and crystallisation inhibition by Na2GA. Pharmacokinetic studies demonstrated that the AUC0-∞ of KTZ in 1:1, 1:2.5, 1:5 and 1:10 groups were significantly higher than those of the crystalline KTZ group with 2.13-, 2.30-, 2.16- and 1.86-fold, respectively (p < 0.01). In conclusion, Na2GA has proven to be a promising co-former in CAMs to enhance hydrophobic drug dissolution and bioavailability. Its effect on intestinal permeation rate of drugs also deserves attention.
Collapse
Affiliation(s)
- Yujie Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China; Beichen Institute for Drug Control, Tianjin Institute for Drug Control, Tianjin 300400, China
| | - Yixin Ke
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Wei Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Zhuoyuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China; Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing 210001, China
| | - Lin Tao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China; Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing 210001, China
| | - Wen Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Yaxi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Hongqing Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Jinfeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Guojun Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Wen Li
- Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing 210001, China
| | - Mengyuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
2
|
Yang Y, Liu Y, Xu M, Cai J, Li Q, Wan Z, Yang X. Hierarchical Self-Aggregation of Multifunctional Steviol Glycosides in Aqueous Solutions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16438-16448. [PMID: 38981019 DOI: 10.1021/acs.jafc.4c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Steviol glycosides (SGs) are a natural sweetener widely used in the food and beverage industry, but the low solubility and stability of SG aqueous solutions greatly limit their application performance, especially in liquid formulations. In this work, we explore the solubility behavior of rebaudioside A (Reb A) in water, a major component of SGs, with the aim of clarifying the underlying mechanisms of the solubility and stability constraints of SGs, as well as the impact on their multifunctional properties. We demonstrate for the first time that Reb A exhibits hierarchical self-assembly in solutions, forming spherical micelles first when the concentration exceeds its critical micelle concentration (5.071 mg/mL), which then further assemble into large rod-like aggregates. The formation of such large Reb A aggregates is mainly dominated by hydrogen bonding and short-range Coulomb interaction energy, thus leading to the low solubility and precipitation of Reb A solutions. Surprisingly, aggregated Reb A structures display significantly improved organoleptic properties, revealing that self-aggregation can be developed as a simple, efficient, and green strategy for improving the taste profile of SGs. Additionally, the self-aggregation of Reb A at high concentrations impairs active encapsulation and also affects its interfacial and emulsifying properties.
Collapse
Affiliation(s)
- Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Jiyang Cai
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Cassano R, Curcio F, Sole R, Mellace S, Trombino S. Gallic Acid-Based Hydrogels for Phloretin Intestinal Release: A Promising Strategy to Reduce Oxidative Stress in Chronic Diabetes. Molecules 2024; 29:929. [PMID: 38474441 DOI: 10.3390/molecules29050929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia caused by abnormalities in insulin secretion and/or action. In patients with diabetes, complications such as blindness, delayed wound healing, erectile dysfunction, renal failure, heart disease, etc., are generally related to an increase in ROS levels which, when activated, trigger hyperglycemia-induced lesions, inflammation and insulin resistance. In fact, extensive cell damage and death occurs mainly due to the effect that ROS exerts at the level of cellular constituents, causing the deterioration of DNA and peroxidation of proteins and lipids. Furthermore, elevated levels of reactive oxygen species (ROS) and an imbalance of redox levels in diabetic patients produce insulin resistance. These destructive effects can be controlled by the defense network of antioxidants of natural origin such as phloretin and gallic acid. For this reason, the objective of this work was to create a nanocarrier (hydrogel) based on gallic acid containing phloretin to increase the antioxidant effect of the two substances which function as fundamental for reducing the mechanisms linked to oxidative stress in patients suffering from chronic diabetes. Furthermore, since the bioavailability problems of phloretin at the intestinal level are known, this carrier could facilitate its release and absorption. The obtained hydrogel was characterized using Fourier transform infrared spectroscopy (FT-IR). Its degree of swelling (a%) and phloretin release were tested under pH conditions simulating the gastric and intestinal environment (1.2, 6.8 and 7.4). The antioxidant activity, inhibiting lipid peroxidation in rat liver microsomal membranes induced in vitro by a free radical source, was evaluated for four hours. All results showed that gallate hydrogel could be applied for releasing intestinal phloretin and reducing the ROS levels.
Collapse
Affiliation(s)
- Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Silvia Mellace
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
4
|
Wang F, Ma R, Zhu J, Zhan J, Li J, Tian Y. Physicochemical properties, in vitro digestibility, and pH-dependent release behavior of starch-steviol glycoside composite hydrogels. Food Chem 2024; 434:137420. [PMID: 37696154 DOI: 10.1016/j.foodchem.2023.137420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/29/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Steviol glycosides possess Bola-form amphiphilic structure, which can solubilize hydrophobic phytochemicals and exert physical modification to the hydrophilic matrix. However, the effect of steviol glycosides on the starch hydrogel is still unclear. Herein, the physicochemical properties, in vitro digestibility, and release behavior of starch hydrogel in the presence of steviol glycosides were investigated. The results showed that the addition of steviol glycosides promoted the gelatinization and gelation of starch, and endowed the starch hydrogel with softer texture, larger volume, and higher water holding capacity. The hydrophobic curcumin was well integrated into hydrogel by steviol glycosides, providing the gel with improved colour brilliance. The introduction of steviol glycosides hardly affected the digestibility of starch gel, but it promoted the release rate of curcumin. Notably, this release behavior was pH dependent, which tended to target the alkaline intestine. This work provided some theoretical supports for the development of sugar-free starchy foods.
Collapse
Affiliation(s)
- Fan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5 A Engineering Drive 1, Singapore 117411, Singapore
| | - Jinling Zhan
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5 A Engineering Drive 1, Singapore 117411, Singapore.
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
5
|
Chhimwal J, Dhritlahre RK, Anand P, Ruchika, Patial V, Saneja A, Padwad YS. Amorphous solid dispersion augments the bioavailability of phloretin and its therapeutic efficacy via targeting mTOR/SREBP-1c axis in NAFLD mice. BIOMATERIALS ADVANCES 2023; 154:213627. [PMID: 37748276 DOI: 10.1016/j.bioadv.2023.213627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
The escalating incidences of non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders are global health concerns. Phloretin (Ph) is a natural phenolic compound, that exhibits a wide array of pharmacological actions including its efficacy towards NAFLD. However, poor solubility and bioavailability of phloretin limits its clinical translation. Here, to address this concern we developed an amorphous solid dispersion of phloretin (Ph-SD) using Soluplus® as a polymer matrix. We further performed solid-state characterization through SEM, P-XRD, FT-IR, and TGA/DSC analysis. Phloretin content, encapsulation efficiency, and dissolution profile of the developed formulation were evaluated through reverse phase HPLC. Finally, the oral bioavailability of Ph-SD and its potential application in the treatment of experimental NAFLD mice was investigated. Results demonstrated that the developed formulation (Ph-PD) augments the dissolution profile and oral bioavailability of the native phloretin (Ph). In NAFLD mice, histopathological studies revealed the preventive effect of Ph-SD on degenerative changes, lipid accumulation, and inflammation in the liver. Ph-SD also improved the serum lipid profile, ALT, and AST levels and lowered the interleukin-6 and tumor necrosis factor-α levels in the liver. Further, Ph-SD reduced fibrotic changes in the liver tissues and attenuates NAFLD progression by blocking the mTOR/SREBP-1c pathway. In a nutshell, the results of our study strongly suggest that Ph-SD has the potential to be a therapeutic candidate in the treatment of NAFLD and can be carried forward for further clinical studies.
Collapse
Affiliation(s)
- Jyoti Chhimwal
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rakesh Kumar Dhritlahre
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Prince Anand
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ruchika
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ankit Saneja
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Yogendra S Padwad
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Deshpande RD, Shah DS, Gurram S, Jha DK, Batabyal P, Amin PD, Sathaye S. Formulation, characterization, pharmacokinetics and antioxidant activity of phloretin oral granules. Int J Pharm 2023; 645:123386. [PMID: 37678475 DOI: 10.1016/j.ijpharm.2023.123386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/10/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Phloretin (PHL), a flavonoid of the dihydrogen chalcone class, is reported to have low oral bioavailability due to its poor solubility and absorption. A common approach to enhance the solubility of such flavonoids is solubilization in a polymeric or lipidic matrix which would help in enhance dissolution rate and solubility. Accordingly, in the current study PHL was dissolved in Gelucire® 44/14 by melt-fusion technique and the viscous semisolid melt was adsorbed on a solid carrier to obtain free flowing granules. SeDeM-SLA (Solid-Liquid Adsorption) expert system was employed to select the most suitable carrier. This study achieved positive outcomes through the successful development of formulated oral PHL granules. The granules exhibited good stability, and favourable pharmacokinetic properties. In addition, the selected carrier effectively retained the antioxidant properties of PHL.
Collapse
Affiliation(s)
- Radni D Deshpande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Devanshi S Shah
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Sharda Gurram
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Durgesh K Jha
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Paramita Batabyal
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Purnima D Amin
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
7
|
Wang F, Zhan J, Ma R, Tian Y. Simultaneous improvement of the physical and biological properties of starch films by incorporating steviol glycoside-based solid dispersion. Carbohydr Polym 2023; 311:120766. [PMID: 37028859 DOI: 10.1016/j.carbpol.2023.120766] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/09/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Bioactive compounds are frequently incorporated into polysaccharides (e.g., starch) to form active biodegradable films for food packaging, but some of them are water insoluble (e.g., curcumin, CUR) that will make the films have undesirable performance. Herein, CUR was successfully solubilized into the aqueous starch film solution by steviol glycoside (STE, a natural sweetener)-based solid dispersion. The mechanisms of solubilization and film formation were explored through molecular dynamic simulation and various characterization methods. The results showed that the amorphous state of CUR combined with micellar encapsulation of STE achieved the solubilization of CUR. STE and starch chains cooperated to form the film via hydrogen bonding, while CUR was uniformly and densely distributed within the film in the form of needle-like microcrystals. The as-prepared film exhibited high flexibility, great moisture barrier, and excellent UV barrier (UV transmittance: ∼0 %). Compared with the film containing CUR alone, the as-prepared film possessed higher release efficiency, antibacterial activity, and pH response sensitivity due to the assistance of STE. Hence, the introduction of STE-based solid dispersion can simultaneously improve the biological and physical properties of starch films, which provides a green, nontoxic, and facile strategy for the perfect integration of hydrophobic bioactive compounds and polysaccharide-based films.
Collapse
Affiliation(s)
- Fan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jinling Zhan
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
8
|
Supramolecular aggregates of myricetin improve its bioavailability and its role in counteracting alcoholism. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Zhang T, Myint KZ, Xia Y, Wu J. A comparative study on physicochemical and micellar solubilization performance between monoglucosyl rebaudioside A and rebaudioside A. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2651-2659. [PMID: 34687452 DOI: 10.1002/jsfa.11604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rebaudioside A (RA) and its monoglucosyl derivative, as like rebaudioside D (RD) are the most popular stevia glycosides but possess poor solubility in water, which limited their application as edible surfactants, the applications as in micellar solubilization and drug delivery. Meanwhile, effect of the monoglucosyl attached to RA moiety remains unclear. RESULTS Monoglucosyl rebaudioside A (RAG1) was synthesized via hydrolyzing the transglycosylation product of RA with 95% of RA converted. RAG1 content in raw reaction mixture was as high as 69.5% of total glycosides, and harvested with a content of 88.2% by simple filtration. The RAG1 exhibited an aqueous solubility of 87 folds of RA or 391 folds of RD at 25 °C. The surface activity of RAG1 solution was higher than RA and invincible to RD. The RAG1 micelles promoted aqueous solubility of idebenone (IDE) up to 500 folds higher at 25 °C. The cumulative release rate of IDE encapsulated in RAG1 micelles was 777.5% or 456.7% higher of that of free IDE in simulated gastric/intestinal fluids in 14 h, respectively. The RAG1-IDE remained the same in 98 days at 25 °C. CONCLUSION The α-linked glucosyl to RA induced higher hydrophilicity and surface activity than that resulted by β-linked glucosyl, making RAG1 not only dramatically raise the aqueous solubility of RA, but also endow IDE folds higher in bioaccessibility, yet making the capsule stable at storage. The results would provide a new edible delivery nanocarrier for encapsulation of hydrophobic bioactive components. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tongtong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Khaing Zar Myint
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Yang Y, Xu M, Wan Z, Yang X. Novel functional properties and applications of steviol glycosides in foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Khan KU, Minhas MU, Badshah SF, Suhail M, Ahmad A, Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci 2022; 291:120301. [PMID: 34999114 DOI: 10.1016/j.lfs.2022.120301] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022]
Abstract
Poor aqueous solubility and poor bioavailability are major issues with many pharmaceutical industries. By some estimation, 70-90% drug candidates in development stage while up-to 40% of the marketed products are poorly soluble which leads to low bioavailability, reduced therapeutic effects and dosage escalation. That's why solubility is an important factor to consider during design and manufacturing of the pharmaceutical products. To-date, various strategies have been explored to tackle the issue of poor solubility. This review article focuses the updated overview of commonly used macro and nano drug delivery systems and techniques such as micronization, solid dispersion (SD), supercritical fluid (SCF), hydrotropy, co-solvency, micellar solubilization, cryogenic technique, inclusion complex formation-based techniques, nanosuspension, solid lipid nanoparticles, and nanogels/nanomatrices explored for solubility enhancement of poorly soluble drugs. Among various techniques, nanomatrices were found a promising and impeccable strategy for solubility enhancement of poorly soluble drugs. This article also describes the mechanism of action of each technique used in solubilization enhancement.
Collapse
Affiliation(s)
- Kifayat Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road, Sargodha City, Punjab, Pakistan.
| | - Syed Faisal Badshah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan Ist Road, Kaohsiung City 807, Taiwan, ROC
| | - Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Shakeel Ijaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| |
Collapse
|
12
|
Mohapatra D, Agrawal AK, Sahu AN. Exploring the potential of solid dispersion for improving solubility, dissolution & bioavailability of herbal extracts, enriched fractions, and bioactives. J Microencapsul 2021; 38:594-612. [PMID: 34338596 DOI: 10.1080/02652048.2021.1963342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most drugs' poor aqueous solubility has emerged as a significant challenge in achieving proper therapeutic response following oral administration. Herbal drugs are being used from time immemorial to prevent, mitigate, and cure multiple diseases. However, most of the bioactives phytoconstituents possess limited aqueous solubility & poor oral bioavailability. Solid dispersion (SD) has been realised as an efficient formulation to overcome hydrophobic candidates' solubility issues and improve their oral bioavailability. The current review mainly explores the potential of SD for improving solubility, dissolution & bioavailability of herbal extracts, enriched fractions, and isolated bioactives. Hence, basics of SD, selection of excipients, need for SD of plant products, SD of plant products, selection of preparation method, the chemistry of phytoconstituent-excipient interaction, and hurdles associated with SD of herbal extract/enriched fraction were explored in this review. The SD has the potential to overcome solubility, dissolution, and oral bioavailability issues of poorly soluble phytoconstituents.
Collapse
Affiliation(s)
- Debadatta Mohapatra
- Phytomedicine Research Lab., Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, India
| | - Ashish K Agrawal
- Phytomedicine Research Lab., Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, India
| | - Alakh N Sahu
- Phytomedicine Research Lab., Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, India
| |
Collapse
|
13
|
Tran PHL, Lee BJ, Tran TTD. Fast-Dissolving Solid Dispersions for the Controlled Release of Poorly Watersoluble Drugs. Curr Pharm Des 2021; 27:1498-1506. [PMID: 33087026 DOI: 10.2174/1381612826666201021125844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Solid dispersions offer many advantages for oral drug delivery of poorly water-soluble drugs over other systems, including an increase in drug solubility and drug dissolution. An improvement in drug absorption and the higher bioavailability of active pharmaceutical ingredients in the gastrointestinal tract have been reported in various studies. In certain circumstances, a rapid pharmacological effect is required for patients. Fastdissolving solid dispersions provide an ideal formulation in such cases. This report will provide an overview of current studies on fast-dissolving solid dispersions, including not only solid dispersion powders with fast dissolution rates but also specific dose form for the controlled release of poorly water-soluble drugs. Specifically, the applications of fast-dissolving solid dispersions will be described in every specific case. Moreover, pharmaceutical approaches and the utilization of polymers will be summarized. The classification and analysis of fastdissolving solid dispersions could provide insight into strategies and potential applications in future drug delivery developments.
Collapse
Affiliation(s)
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
14
|
Xu Z, Zheng S, Gao X, Hong Y, Cai Y, Zhang Q, Xiang J, Xie D, Song F, Zhang H, Wang H, Sun X. Mechanochemical preparation of chrysomycin A self-micelle solid dispersion with improved solubility and enhanced oral bioavailability. J Nanobiotechnology 2021; 19:164. [PMID: 34059070 PMCID: PMC8166083 DOI: 10.1186/s12951-021-00911-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/25/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Chrysomycin A (CA) has been reported as numerous excellent biological activities, such as antineoplastic and antibacterial. Though, poor solubility of CA limited its application in medical field. Due to good amphiphilicity and potential anticancer effect of disodium glycyrrhizin (Na2GA) as an excipient, an amorphous solid dispersion (Na2GA/CA-BM) consisting of CA and Na2GA was prepared in the present study by mechanochemical technology (roll mill ML-007, zirconium balls, 30 rpm, 2.5 h) to improve the solubility and oral bioavailability of CA. Then, Na2GA/CA-BM was self-assembled to micelles in water. The interaction of CA and Na2GA in solid state were investigated by X-ray diffraction studies, polarized light microscopy, and scanning electron microscope. Meanwhile, the properties of the sample solution were analyzed by dynamic light scattering and transmission electron. Furthermore, the oral bioavailability and antitumor ability of Na2GA/CA-BM in vivo were tested, providing a theoretical basis for future application of CA on cancer therapy. RESULTS CA encapsulated by Na2GA was self-assembled to nano-micelles in water. The average diameter of nano-micelle was 131.6 nm, and zeta potential was - 11.7 mV. Three physicochemical detections showed that CA was transformed from crystal into amorphous form after treated with ball milling and the solubility increased by 50 times. Na2GA/CA-BM showed a significant increase of the bioavailability about two time that of free CA. Compared with free CA, the in-vivo antitumor studies also exhibited that Na2GA/CA-BM had an excellent inhibition of tumor growth. CONCLUSIONS Na2GA/CA-BM nanoparticles (131.6 nm, - 11.7 mV) prepared by simple and low-cost mechanochemical technology can improve oral bioavailability and antitumor efficacy of CA in vivo, suggesting a potential formulation for efficient anticancer treatment.
Collapse
Affiliation(s)
- Zhuomin Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shanshan Zheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xin Gao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yulu Hong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiuqin Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiani Xiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dehui Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fuxing Song
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Huawei Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
15
|
Hu H, Bai X, Xu K, Zhang C, Chen L. Effect of phloretin on growth performance, serum biochemical parameters and antioxidant profile in heat-stressed broilers. Poult Sci 2021; 100:101217. [PMID: 34161850 PMCID: PMC8237358 DOI: 10.1016/j.psj.2021.101217] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/28/2021] [Accepted: 04/15/2021] [Indexed: 01/29/2023] Open
Abstract
The objective of this work was to evaluate the effect of phloretin on growth performance, serum biochemical parameters, antioxidant profile, glutathione (GSH)-related enzymes, nuclear factor erythroid 2-related 2 (Nrf2) and heat shock protein 70 (HSP70) in heat-stressed broilers. A total of 240, 22-day-old Arbor Acres broilers were divided into 4 groups. The control group was housed at 23.0 ± 0.61°C and fed with basal diet, while the 3 heat-stressed groups (A, B, and C groups) were housed at 30.5 ± 0.69°C and fed with basal diet containing 0, 100, and 200 mg/kg phloretin, respectively. Serum was taken form 42-day-old broilers. Results showed that heat stress decreased (P < 0.05) the final body weight (FBW), body weight gain (BWG), feed intake (FI), serum total protein (TP), triglyceride (TG), triiodothyronine (T3), thyroxine (T4), GSH, catalase (CAT), and total antioxidant capacity (T-AOC) levels, but increased (P < 0.05) the feed-to-gain ratio (FGR) and serum malondialdehyde (MDA) levels in broilers compared with that in the control group. Among the heat-stressed groups, supplementary 200 mg/kg phloretin increased (P < 0.05) the FBW, BWG, FI, serum TP, TG, T4, GSH, CAT, and T-AOC levels, and decreased (P < 0.05) the FGR and serum MDA in broilers. There were significant decreases (P < 0.05) in the glutathione peroxidase (GSH-Px), γ-glutamylcysteine synthetase (γ-GCS), and Nrf2, but significant increases (P < 0.05) in the HSP70 of the broiler serum after heat stress treatment. Among the heat-stressed groups, supplementary 200 mg/kg phloretin increased (P < 0.05) the GSH-Px, γ-GCS, and Nrf2 levels, but decreased (P < 0.05) the serum HSP70 level in the heat-stressed broilers. Under high temperature condition, FBW, BWG, FI, FGR, serum TP, TG, T4, MDA, GSH, CAT, T-AOC, GSH-Px, γ-GCS, Nrf2 and HSP70 were linearly affected by inclusion of phloretin. These results indicated that phloretin may improve growth performance, serum parameters, and antioxidant profiles through regulated GSH-related enzymes, Nrf2 and HSP70 in heat-stressed broilers.
Collapse
Affiliation(s)
- Hong Hu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xi Bai
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Kexing Xu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Cheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
16
|
Ye J, Bao S, Zhao S, Zhu Y, Ren Q, Li R, Xu X, Zhang Q. Self-Assembled Micelles Improve the Oral Bioavailability of Dihydromyricetin and Anti-Acute Alcoholism Activity. AAPS PharmSciTech 2021; 22:111. [PMID: 33748928 DOI: 10.1208/s12249-021-01983-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Dihydromyricetin (DMY) is highly effective in counteracting acute alcohol intoxication. However, its poor aqueous solubility and permeability lead to the low oral bioavailability and limit its clinic application. The aim of this work is to use Solutol®HS15 (HS 15) as surfactant to develop novel micelle to enhance the oral bioavailability of DMY by improving its solubility and permeability. The DMY-loaded Solutol®HS15 micelles (DMY-Ms) were prepared by the thin-film hydration method. The particle size of DMY-Ms was 13.97 ± 0.82 nm with an acceptable polydispersity index of 0.197 ± 0.015. Upon entrapped in micelles, the solubility of DMY in water was increased more than 25-fold. The DMY-Ms had better sustained release property than that of pure DMY. In single-pass intestinal perfusion models, the absorption rate constant (Ka) and permeability coefficient (Papp) of DMY-Ms were 5.5-fold and 3.0-fold than that of pure DMY, respectively. The relative bioavailability of the DMY-Ms (AUC0-∞) was 205% compared with that of pure DMY (AUC0-∞), indicating potential for clinical application. After administering DMY-Ms, there was much lower blood alcohol level and shorter duration of the loss of righting relax (LORR) in drunk animals compared with that treated by pure DMY. In addition, the oral administration of DMY-Ms greatly reduced oxidative stress, and significantly defended liver and gastric mucosa from alcoholic damages in mice with alcohol-induced tissue injury. Taken together, HS 15-based micelle system greatly improves the bioavailability of DMY and represents a promising strategy for the management of acute alcoholism. Graphical abstract.
Collapse
|
17
|
Zhang T, Peng Q, Xia Y, Zhang Y, Myint KZ, Wu J. Steviol glycosides, an edible sweet surfactant that can modulate the interfacial and emulsifying properties of soy protein isolate solution. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Molecular Interactions in Solid Dispersions of Poorly Water-Soluble Drugs. Pharmaceutics 2020; 12:pharmaceutics12080745. [PMID: 32784790 PMCID: PMC7463741 DOI: 10.3390/pharmaceutics12080745] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 11/29/2022] Open
Abstract
Physicochemical characterization is a crucial step for the successful development of solid dispersions, including the determination of drug crystallinity and molecular interactions. Typically, the detection of molecular interactions will assist in the explanation of different drug performances (e.g., dissolution, solubility, stability) in solid dispersions. Various prominent reviews on solid dispersions have been reported recently. However, there is still no overview of recent techniques for evaluating the molecular interactions that occur within solid dispersions of poorly water-soluble drugs. In this review, we aim to overview common methods that have been used for solid dispersions to identify different bond formations and forces via the determination of interaction energy. In addition, a brief background on the important role of molecular interactions will also be described. The summary and discussion of methods used in the determination of molecular interactions will contribute to further developments in solid dispersions, especially for quick and potent drug delivery applications.
Collapse
|
19
|
Stevia rebaudiana Bertoni.: an updated review of its health benefits, industrial applications and safety. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|