1
|
Liu J, Gensberger-Reigl S, Zenker H, Schichtl TM, Utz W, Pischetsrieder M. Regioselective analysis of heat-induced conformational changes of β-lactoglobulin by quantitative liquid chromatography-mass spectrometry analysis of chemical labeling kinetics. Food Chem 2024; 460:140716. [PMID: 39106758 DOI: 10.1016/j.foodchem.2024.140716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
β-Lactoglobulin is a main allergen in cow's milk; its allergenicity is strongly impacted by processing. To understand heat-induced epitope-specific effects, the present study analyzed regiospecific conformational changes of heated native β-lactoglobulin variant A (BLG-A). Complementary fluorescence spectroscopy methods indicated two denaturation phases comprising minor sequential conformational changes (25-75 °C) and complete transitions (80-90 °C). Regioselective conformational changes of BLG-A in the native state (25 °C), sequential (70 °C) and complete transition (90 °C) were determined by quantitative liquid chromatography-mass spectrometry analysis of chemical labeling kinetics covering 14 lysine residues and the N-terminus. Conformational changes in two phases were observed for N-terminus, K8 (both N-terminal chain), K60 (β-sheet C), K75 (β-sheet D), K77 (DE loop), K83 (β-sheet E), K100 and K101 (FG loop). The residues K14 (β-sheet A1), K47 (β-sheet B), K69, K70 (both β-sheet D), and K91 (β-sheet F) were not involved in conformational changes.
Collapse
Affiliation(s)
- Jiajia Liu
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany.
| | - Sabrina Gensberger-Reigl
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany.
| | - Hannah Zenker
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany.
| | - Theresa Maria Schichtl
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany.
| | - Wolfgang Utz
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany.
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany; FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
2
|
Luo H, Ma Y, Bi J, Li Z, Wang Y, Su Z, Gerstweiler L, Ren Y, Zhang S. Experimental and molecular dynamics simulation studies on the physical properties of three HBc-VLP derivatives as nanoparticle protein vaccine candidates. Vaccine 2024; 42:125992. [PMID: 38811268 DOI: 10.1016/j.vaccine.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Self-assembling virus-like particles (VLPs) are promising platforms for vaccine development. However, the unpredictability of the physical properties, such as self-assembly capability, hydrophobicity, and overall stability in engineered protein particles fused with antigens, presents substantial challenges in their downstream processing. We envision that these challenges can be addressed by combining more precise computer-aided molecular dynamics (MD) simulations with experimental studies on the modified products, with more to-date forcefield descriptions and larger models closely resembling real assemblies, realized by rapid advancement in computing technology. In this study, three chimeric designs based on the hepatitis B core (HBc) protein as model vaccine candidates were constructed to study and compare the influence of inserted epitopes as well as insertion strategy on HBc modifications. Large partial VLP models containing 17 chains for the HBc chimeric model vaccines were constructed based on the wild-type (wt) HBc assembly template. The findings from our simulation analysis have demonstrated good consistency with experimental results, pertaining to the surface hydrophobicity and overall stability of the chimeric vaccine candidates. Furthermore, the different impact of foreign antigen insertions on the HBc scaffold was investigated through simulations. It was found that separately inserting two epitopes into the HBc platform at the N-terminal and the major immunogenic regions (MIR) yields better results compared to a serial insertion at MIR in terms of protein structural stability. This study substantiates that an MD-guided design approach can facilitate vaccine development and improve its manufacturing efficiency by predicting products with extreme surface hydrophobicity or structural instability.
Collapse
Affiliation(s)
- Hong Luo
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide 5005, Australia; State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Yanyan Ma
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jingxiu Bi
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide 5005, Australia
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yingli Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Lukas Gerstweiler
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide 5005, Australia.
| | - Ying Ren
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
3
|
Schild K, Sönnichsen FD, Martin D, Garamus VM, Van der Goot AJ, Schwarz K, Keppler JK. Unraveling the effects of low protein-phenol binding affinity on the structural properties of beta-lactoglobulin. Food Chem 2023; 426:136496. [PMID: 37331143 DOI: 10.1016/j.foodchem.2023.136496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023]
Abstract
Non-covalent interactions of phenolics with proteins cannot always be readily identified, often leading to contradictory results described in the literature. This results in uncertainties as to what extent phenolics can be added to protein solutions (for example for bioactivity studies) without affecting the protein structure. Here, we clarify which tea phenolics (epigallocatechin gallate (EGCG), epicatechin and gallic acid) interact with the whey protein β-lactoglobulin by combining various state-of-the-art-methods. STD-NMR revealed that all rings of EGCG can interact with native β-lactoglobulin, indicating multidentate binding, as confirmed by the small angle X-ray scattering experiments. For epicatechin, unspecific interactions were found only at higher protein:epicatechin molar ratios and only with 1H NMR shift perturbation and FTIR. For gallic acid, none of the methods found evidence for an interaction with β-lactoglobulin. Thus, gallic acid and epicatechin can be added to native BLG, for example as antioxidants without causing modification within wide concentration ranges.
Collapse
Affiliation(s)
- Kerstin Schild
- Laboratory of Food Process Engineering, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht Platz 10, D-24118 Kiel, Christian-Albrechts-Universität Kiel, Germany.
| | - Frank D Sönnichsen
- Otto Diels Institute of Organic Chemistry. Otto-Hahn Platz 4, D-24098 Kiel, Christian-Albrechts-Universität Kiel, Germany.
| | - Dierk Martin
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Hermann Weigmann Strasse 1, 24103 Kiel, Germany.
| | - Vasil M Garamus
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| | - Atze Jan Van der Goot
- Laboratory of Food Process Engineering, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht Platz 10, D-24118 Kiel, Christian-Albrechts-Universität Kiel, Germany.
| | - Julia K Keppler
- Laboratory of Food Process Engineering, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
4
|
Guo Y, Liu C, Ma Y, Shen L, Gong Q, Hu Z, Wang Z, Liu X, Guo Z, Zhou L. Study on the Structure, Function, and Interface Characteristics of Soybean Protein Isolate by Industrial Phosphorylation. Foods 2023; 12:foods12051108. [PMID: 36900624 PMCID: PMC10000779 DOI: 10.3390/foods12051108] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The impacts of industrial phosphorylation on the structural changes, microstructure, functional, and rheological features of soybean protein isolate (SPI) were spotlighted. The findings implied that the spatial structure and functional features of the SPI changed significantly after treatment with the two phosphates. Sodium hexametaphosphate (SHMP) promoted aggregation of SPI with a larger particle size; sodium tripolyphosphate (STP) modified SPI with smaller particle size. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) results showed insignificant alterations in the structure of SPI subunits. Fourier transform infrared (FTIR) and endogenous fluorescence noted a decline in α-helix quantity, an amplification in β-fold quantity, and an increase in protein stretching and disorder, indicating that phosphorylation treatment fluctuated the spatial structure of the SPI. Functional characterization studies showed that the solubility and emulsion properties of the SPI increased to varying degrees after phosphorylation, with a maximum solubility of 94.64% for SHMP-SPI and 97.09% for STP-SPI. Emulsifying activity index (EAI) and emulsifying steadiness index (ESI) results for STP-SPI were better than those for SHMP-SPI. Rheological results showed that the modulus of G' and G″ increased and the emulsion exhibited significant elastic behavior. This affords a theoretical core for expanding the industrial production applications of soybean isolates in the food and various industries.
Collapse
Affiliation(s)
- Yanan Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Caihua Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yitong Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lulu Shen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qi Gong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhaodong Hu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Bukhdruker S, Varaksa T, Orekhov P, Grabovec I, Marin E, Kapranov I, Kovalev K, Astashkin R, Kaluzhskiy L, Ivanov A, Mishin A, Rogachev A, Gordeliy V, Gilep A, Strushkevich N, Borshchevskiy V. Structural insights into the effects of glycerol on ligand binding to cytochrome P450. Acta Crystallogr D Struct Biol 2023; 79:66-77. [PMID: 36601808 DOI: 10.1107/s2059798322011019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/16/2022] [Indexed: 01/06/2023] Open
Abstract
New antitubercular drugs are vital due to the spread of resistant strains. Carbethoxyhexyl imidazole (CHImi) inhibits cytochrome P450 CYP124, which is a steroid-metabolizing enzyme that is important for the survival of Mycobacterium tuberculosis in macrophages. The available crystal structure of the CYP124-CHImi complex reveals two glycerol molecules in the active site. A 1.15 Å resolution crystal structure of the glycerol-free CYP124-CHimi complex reported here shows multiple conformations of CHImi and the CYP124 active site which were previously restricted by glycerol. Complementary molecular dynamics simulations show coherence of the ligand and enzyme conformations. Spectrophotometric titration confirmed the influence of glycerol on CHImi binding: the affinity decreases more than tenfold in glycerol-containing buffer. In addition, it also showed that glycerol has a similar effect on other azole and triazole CYP124 ligands. Together, these data show that glycerol may compromise structural-functional studies and impede rational drug-design campaigns.
Collapse
Affiliation(s)
- Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Tatsiana Varaksa
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk 220084, Belarus
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Irina Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk 220084, Belarus
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Ivan Kapranov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Kirill Kovalev
- EMBL Outstation Hamburg, c/o DESY, 22607 Hamburg, Germany
| | - Roman Astashkin
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Leonid Kaluzhskiy
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow 119121, Russian Federation
| | - Alexis Ivanov
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow 119121, Russian Federation
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Andrey Rogachev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Valentin Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk 220084, Belarus
| | | | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| |
Collapse
|
6
|
Zhou Y, Zhou Y, Wan J, Zhu Q, Liu L, Gu S, Li H. Effects of sorbitol-mediated curing on the physicochemical properties and bacterial community composition of loin ham during fermentation and ripening stages. Food Chem X 2022; 17:100543. [PMID: 36845517 PMCID: PMC9943751 DOI: 10.1016/j.fochx.2022.100543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, the impacts of loin ham with sorbitol-mediated curing on its physicochemical properties and bacterial community composition during fermentation and ripening were investigated. The salt content, pH, and water activity (aw) were lower in the sorbitol group than in the control group throughout the fermentation and ripening stages (P < 0.05). In addition, the L* values were higher in the sorbitol group (P < 0.05). Additionally, microbial diversity diminished in all groups as the fermentation and ripening process proceeded, with Lactobacillus turning into the dominant genus in the control group and Staphylococcus and Lactobacillus becoming dominant in the sorbitol group. Pearson's correlation analysis confirmed that the physicochemical properties have been significantly correlated with the bacterial community. In conclusion, sorbitol-mediated curing not only facilitates salt reduction while prolonging the storage period of loin ham, but also improves the distribution of bacterial community in loin ham and enhances its quality.
Collapse
Affiliation(s)
- Yeling Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Jing Wan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China,Corresponding author at: Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China.
| | - Linggao Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Sha Gu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Hongying Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China
| |
Collapse
|
7
|
Thermofluor-Based Optimization Strategy for the Stabilization of Recombinant Human Soluble Catechol- O-Methyltransferase. Int J Mol Sci 2022; 23:ijms232012298. [PMID: 36293152 PMCID: PMC9603843 DOI: 10.3390/ijms232012298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023] Open
Abstract
Catechol-O-methyltransferase (COMT) has been involved in a number of medical conditions including catechol-estrogen-induced cancers and a great range of cardiovascular and neurodegenerative diseases such as Parkinson's disease. Currently, Parkinson's disease treatment relies on a triple prophylaxis, involving dopamine replacement by levodopa, the use of aromatic L-amino acid decarboxylase inhibitors, and the use of COMT inhibitors. Typically, COMT is highly thermolabile, and its soluble isoform (SCOMT) loses biological activity within a short time span preventing further structural and functional trials. Herein, we characterized the thermal stability profile of lysate cells from Komagataella pastoris containing human recombinant SCOMT (hSCOMT) and enzyme-purified fractions (by Immobilized Metal Affinity Chromatography-IMAC) upon interaction with several buffers and additives by Thermal Shift Assay (TSA) and a biological activity assessment. Based on the obtained results, potential conditions able to increase the thermal stability of hSCOMT have been found through the analysis of melting temperature (Tm) variations. Moreover, the use of the ionic liquid 1-butyl-3-methylimidazolium chloride [C4mim]Cl (along with cysteine, trehalose, and glycerol) ensures complete protein solubilization as well as an increment in the protein Tm of approximately 10 °C. Thus, the developed formulation enhances hSCOMT stability with an increment in the percentage of activity recovery of 200% and 70% when the protein was stored at 4 °C and -80 °C, respectively, for 12 h. The formation of metanephrine over time confirmed that the enzyme showed twice the productivity in the presence of the additive. These outstanding achievements might pave the way for the development of future hSCOMT structural and biophysical studies, which are fundamental for the design of novel therapeutic molecules.
Collapse
|
8
|
Liu L, Zhou Y, Wan J, Zhu Q, Bi S, Zhou Y, Gu S, Chen D, Huang Y, Hu B. Mechanism of polyhydroxy alcohol-mediated curing on moisture migration of minced pork tenderloin: On the basis of molecular docking. Food Chem X 2022; 15:100401. [PMID: 36211757 PMCID: PMC9532708 DOI: 10.1016/j.fochx.2022.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Polyhydroxy alcohols affect salt diffusion and moisture migration. Polyhydroxy alcohols cause the water to migrate out to reduce aw in meat. Polyhydroxy alcohols retard salt diffusion into the meat by forming a viscose barrier. Polyhydroxy alcohols can prevent meat structural damage by binding to myosin.
This study investigated the mechanism of glycerol, xylitol, and sorbitol-mediated curing of cured minced pork tenderloin. The use of polyhydroxy alcohol during mediated curing significantly reduced the salt content (p < 0.01) and water activity (aw) of the cured pork tenderloin. Low-field nuclear magnetic resonance (LFNMR) revealed that 1 % glycerol, 1 % xylitol, 1 % sorbitol, and 10 % glycerol-mediated curing decreased water mobility, and improved water holding capacity (WHC), and produced uniform dense microstructures. Raman spectroscopy and molecular docking indicated that polyhydroxy alcohols formed hydrogen bonds with myosin, as well as hydrogen bonds with free water molecules to convert free water into bound water to reduce aw, and altered the hydrophobic environment of myosin surface to reduce structural damage caused by high salt content. In conclusion, using polyhydroxy alcohol to mediate curing can effectively reduce the salt content of cured meat and provide a theoretical basis for its application in the cured meat industry.
Collapse
|
9
|
Stewart AM, Shanmugam M, Kutta RJ, Scrutton NS, Lovett JE, Hay S. Combined Pulsed Electron Double Resonance EPR and Molecular Dynamics Investigations of Calmodulin Suggest Effects of Crowding Agents on Protein Structures. Biochemistry 2022; 61:1735-1742. [PMID: 35979922 PMCID: PMC9454100 DOI: 10.1021/acs.biochem.2c00099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Calmodulin (CaM) is a highly dynamic Ca2+-binding
protein
that exhibits large conformational changes upon binding Ca2+ and target proteins. Although it is accepted that CaM exists in
an equilibrium of conformational states in the absence of target protein,
the physiological relevance of an elongated helical linker region
in the Ca2+-replete form has been highly debated. In this
study, we use PELDOR (pulsed electron–electron double resonance)
EPR measurements of a doubly spin-labeled CaM variant to assess the
conformational states of CaM in the apo-, Ca2+-bound, and
Ca2+ plus target peptide-bound states. Our findings are
consistent with a three-state conformational model of CaM, showing
a semi-open apo-state, a highly extended Ca2+-replete state,
and a compact target protein-bound state. Molecular dynamics simulations
suggest that the presence of glycerol, and potentially other molecular
crowding agents, has a profound effect on the relative stability of
the different conformational states. Differing experimental conditions
may explain the discrepancies in the literature regarding the observed
conformational state(s) of CaM, and our PELDOR measurements show good
evidence for an extended conformation of Ca2+-replete CaM
similar to the one observed in early X-ray crystal structures.
Collapse
Affiliation(s)
- Andrew M Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames 50011, Iowa, United States.,Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Roger J Kutta
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.,Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg 93040, Germany
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Janet E Lovett
- SUPA School of Physics and Astronomy and BSRC, The University of St Andrews, St Andrews KY16 9SS, U.K
| | - Sam Hay
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
10
|
Xiao-Hui G, Jing W, Ye-Ling Z, Ying Z, Qiu-Jin Z, Ling-Gao L, Dan C, Yan-Pei H, Sha G, Ming-Ming L. Mediated curing strategy: An overview of salt reduction for dry-cured meat products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2029478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Gong Xiao-Hui
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Wan Jing
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
- Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang, Guizhou, China
| | - Zhou Ye-Ling
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Zhou Ying
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Zhu Qiu-Jin
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
- Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang, Guizhou, China
| | - Liu Ling-Gao
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Chen Dan
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Huang Yan-Pei
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Gu Sha
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Li Ming-Ming
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Li J, Miao P, Guan X, Gao F, Khan AJ, Wang T, Zhang F. Interaction Between 7-Ethyl-10-Hydroxycamptothecin and β-Lactoglobulin Based on Molecular Docking and Molecular Dynamics Simulations. J MACROMOL SCI B 2021. [DOI: 10.1080/00222348.2021.1945080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jiawei Li
- Pharmacy Laboratory, Inner Mongolia International Mongolian Hospital, Hohhot, China
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Pandeng Miao
- Pharmacy Laboratory, Inner Mongolia International Mongolian Hospital, Hohhot, China
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Xiaoying Guan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Feng Gao
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Abdul Jamil Khan
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Tegexibaiyin Wang
- Pharmacy Laboratory, Inner Mongolia International Mongolian Hospital, Hohhot, China
| | - Feng Zhang
- Pharmacy Laboratory, Inner Mongolia International Mongolian Hospital, Hohhot, China
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Arrabito G, Ferrara V, Bonasera A, Pignataro B. Artificial Biosystems by Printing Biology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907691. [PMID: 32511894 DOI: 10.1002/smll.201907691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/09/2020] [Indexed: 05/09/2023]
Abstract
The continuous progress of printing technologies over the past 20 years has fueled the development of a plethora of applications in materials sciences, flexible electronics, and biotechnologies. More recently, printing methodologies have started up to explore the world of Artificial Biology, offering new paradigms in the direct assembly of Artificial Biosystems (small condensates, compartments, networks, tissues, and organs) by mimicking the result of the evolution of living systems and also by redesigning natural biological systems, taking inspiration from them. This recent progress is reported in terms of a new field here defined as Printing Biology, resulting from the intersection between the field of printing and the bottom up Synthetic Biology. Printing Biology explores new approaches for the reconfigurable assembly of designed life-like or life-inspired structures. This work presents this emerging field, highlighting its main features, i.e., printing methodologies (from 2D to 3D), molecular ink properties, deposition mechanisms, and finally the applications and future challenges. Printing Biology is expected to show a growing impact on the development of biotechnology and life-inspired fabrication.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Vittorio Ferrara
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, Catania, 95125, Italy
| | - Aurelio Bonasera
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| |
Collapse
|
13
|
Ding F, Peng W, Peng YK, Liu BQ. Estimating the potential toxicity of chiral diclofop-methyl: Mechanistic insight into the enantioselective behavior. Toxicology 2020; 438:152446. [DOI: 10.1016/j.tox.2020.152446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
|