1
|
Guo T, O'Connor PJ, Tang W, Ma B, Zhou M, Zhang M. Four birds with one stone: applying nitrification inhibitor on the basis of percarbamide restores yield, decreases fungicide residue, enhances soil multifunctionality and stimulates bacterial community. PEST MANAGEMENT SCIENCE 2025; 81:1067-1079. [PMID: 39467018 DOI: 10.1002/ps.8509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/18/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Fungicide residues were frequently detected in vegetables and soils, which severely affected crop yields and qualities. Reasonable nitrogen management might promote yields and decrease fungicide carbendazim residues in plant-soil systems. Current study explores comprehensive relationships among carbendazim residues, crop yields, soil multifunctionalities and endophytic and soil bacterial communities after applying nitrification inhibitors (3,4-dimethylpyrazole phosphate and dicyandiamide) and percarbamide to different soils. RESULTS Combined nitrification inhibitor and percarbamide additions produced multi-effects on restoring yields, declining fungicide residues, promoting soil multifunctionalities and stimulating bacterial communities. Relative to the control, percarbamide application promoted carbendazim dissipations in upland soils but decreased bacterial community diversities and stabilities in different soils. Compared to exclusive percarbamide, extra dicyandiamide applications decreased carbendazim residues by 25.8% in upland soils and 70.2% in paddy soils, declined carbendazim residues in carrots via improving soil pH, ammonium nitrogen (NH4 +-N) and Proteobacteria ratios. Relative to percarbamide application alone, extra dicyandiamide addition promoted the dry carrot yields by 133.2% in upland soils and 33.5% in paddy soils via promoting soil NH4 +-N, Acidobacteriota and Actinobacteriota ratios and bacterial community diversities and stabilities. Upland soil multifunctionality improvements diminished soil carbendazim residues via promoting soil pH and NH4 +-N, and paddy soil multifunctionalities and endophytic bacterial community structures generated negative influences on carrot carbendazim residues. CONCLUSION Our study suggested that nitrification inhibitor on the basis of percarbamide generated multi-effects on the different crop-soil systems: restoring carrot yields, reducing carbendazim contents, promoting soil multifunctionalities and stimulating bacterial community diversities and stabilities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tao Guo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
| | - Patrick J O'Connor
- Centre for Global Food and Resources, University of Adelaide, Adelaide, Australia
| | - Wenhui Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
| | - Bin Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
| | - Minzhe Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
| | - Manyun Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, Australia
| |
Collapse
|
2
|
Antonio M, Alcaraz MR, Culzoni MJ. Advances on multiclass pesticide residue determination in citrus fruits and citrus-derived products - A critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50012-50035. [PMID: 39088175 DOI: 10.1007/s11356-024-34525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The application of agrochemicals in citrus fruits is widely used to improve the quality of crops, increase production yields, and prolong post-harvest life. However, these substances are potentially toxic for humans and the ecosystem due to their widespread use, high stability, and bioaccumulation. Conventional techniques for determining pesticide residues in citrus fruits are chromatographic methods coupled with different detectors. However, in recent years, the need for analytical strategies that are less polluting for the environment has encouraged the appearance of new alternatives, such as sensors and biosensors, which allow selective and sensitive detection of pesticide residues in real time. A comprehensive overview of the analytical platforms used to determine pesticide residues in citrus fruits and citrus-derived products is presented herein. The review focuses on the evolution of these methods since 2015, their limitations, and possible future perspectives for improving pesticide residue determination and reducing environmental contamination.
Collapse
Affiliation(s)
- Marina Antonio
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - Mirta R Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, 1425, Argentina.
| |
Collapse
|
3
|
Zhou T, Wang F, Tahmasbian I, Ma B, Liu M, Zhang M. Linking Carbendazim Accumulation with Soil and Endophytic Microbial Community Diversities, Compositions, Functions, and Assemblies: Effects of Urea-hydrogen Peroxide and Nitrification Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17689-17699. [PMID: 37934059 DOI: 10.1021/acs.jafc.3c04777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Fungicide carbendazim accumulation in soils and plants is a wide concern. Nitrogen (N) is a substantial nutrient limiting crop growth and affecting soil microbial activity and the community in degrading fungicides. We investigated the effects of urea-hydrogen peroxide (UHP) and nitrification inhibitors Dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP) on carbendazim accumulation and soil and endophytic microbial communities. The UHP application had negligible influences on soil and plant carbendazim accumulation, but the combined UHP and DCD decreased soil carbendazim accumulation by 5.31% and the combined UHP and DMPP decreased plant carbendazim accumulation by 44.36%. The combined UHP and nitrification inhibitor significantly decreased the ratios of soil Firmicutes and endophytic Ascomycota. Soil microbial community assembly was governed by the stochastic process, while the stochastic and deterministic processes governed the endophyte. Our findings could provide considerable methods to reduce fungicide accumulation in soil-plant systems with agricultural N management strategies.
Collapse
Affiliation(s)
- Tangrong Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Fang Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Iman Tahmasbian
- Department of Agriculture and Fisheries, Queensland Government, Toowoomba, Queensland 4350, Australia
| | - Bin Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Mengting Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Manyun Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
4
|
Antonio M, Alcaraz MR, Falcone RD, Culzoni MJ. A micellar-enhanced fluorescence photoinduced four-way calibration method for the determination of multiclass pesticides in lemon juice. Anal Chim Acta 2023; 1279:341778. [PMID: 37827676 DOI: 10.1016/j.aca.2023.341778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023]
Abstract
In this work, a four-way multivariate calibration method for the simultaneous determination of four pesticides - carbendazim (CBZ), thiabendazole (TBZ), pirimiphos-methyl (PMM), and clothianidin (CLT) - in lemon juice is presented. Third-order data were acquired by registering the photoinduced fluorescence of the analytes as excitation-emission matrices at different times of UV-light irradiation, in the presence of organized media (direct micelles) as fluorescence enhancers. The optimal experimental conditions (pH 11.5 and 32 mmol L-1 hexadecyltrimethylammonium chloride surfactant) were determined through a central composite design using the response surface methodology. The analytes were individually calibrated, except for TBZ and CBZ due to the inner filter effect of TBZ on CBZ. Test samples containing all analytes and imidacloprid (as potential interference) were analysed. PARAFAC was utilized to evaluate both the trilinearity and quadrilinearity of the third-order data and four-way arrays, respectively. PMM was successfully determined with quadrilinear PARAFAC decomposition, whereas CLT, TBZ, and CBZ were satisfactorily modelled using U-PLS/RTL due to the loss of quadrilinearity caused by different phenomena. The profitable applicability of the analytical method in the CBZ, TBZ, PMM, and CLT determination in lemon juice samples was demonstrated, achieving limits of detection below the maximum residue levels reported by the European Commission, and mean recoveries at 90 ± 5%.
Collapse
Affiliation(s)
- Marina Antonio
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina
| | - Mirta R Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina.
| | - R Dario Falcone
- Departamento de Química, Universidad Nacional de Río Cuarto, Ruta Nacional 36, km 601, Río Cuarto, X5804BYA, Córdoba, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS, CONICET-UNRC), Ruta Nacional 36, km 601, Río Cuarto, X5804BYA, Córdoba, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina.
| |
Collapse
|
5
|
Santos ALRD, Lima IDM, Vieira AT, Gondim PDM, Cascon P, Faria AMD. Development and application of a mini-QuEChERS method for the determination of pesticide residues in anuran adipose tissues. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5078-5086. [PMID: 37743828 DOI: 10.1039/d3ay01442h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The expansion of monocultures to regions close to conservation areas has put biodiversity at risk, mainly due to the intense use of pesticides. Anurans are highly susceptible to pesticides and may be a biological marker in the contamination of an area. However, methods for determining pesticides in anurans are incipient. In this work, a miniaturized QuEChERS method was developed for the extraction of atrazine, chlorpyrifos, α- and β-endosulfan, α-, β-, θ- and ζ-cypermethrin in anuran adipose tissues. The method was optimized for the tissue sample size scale according to sample mass availability. Extracting solvent and adsorbents for the clean-up step was evaluated, achieving recoveries next to 100% with acetonitrile and without a clean-up step. The mini-QuEChERS method, using 500 mg of adipose tissue, 50 mg of NaCl and 200 mg of MgSO4, 100 μL of ultrapure water, and 1.50 mL of acetonitrile with no purification step, followed by high-performance liquid chromatography analysis and photodiode array detection was validated following the European Community guidelines. The methodology showed a moderate matrix effect for some pesticides, which was corrected using the matrix-matched calibration. The limits of quantification for the pesticide residues in adipose tissues ranged from 10 to 75 μg kg-1. Pesticide recoveries ranged from 74% to 115%, and repeatability and within-lab reproducibility showed relative standard deviations < 11%. The mini-QuEChERS method was applied to extract pesticide residues from the adipose tissues of two species of anurans: Leptodactylus macrosternum and Scinax x-signatus. 25% of samples were positive, detecting endosulfan and chlorpyriphos, confirmed by liquid chromatography coupled to tandem mass spectrometry. The mini-QuEChERS was a simple, economical, and eco-friendly method for extracting pesticide residues in anuran adipose tissue samples.
Collapse
Affiliation(s)
| | - Igor de Melo Lima
- Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlândia, 38304-402, Ituiutaba, Brazil.
| | - Andressa Tironi Vieira
- Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlândia, 38304-402, Ituiutaba, Brazil.
| | | | - Paulo Cascon
- Department of Biology, Federal University of Ceará, 60440-900, Fortaleza, Brazil
| | - Anizio Marcio de Faria
- Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, Brazil
- Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlândia, 38304-402, Ituiutaba, Brazil.
| |
Collapse
|
6
|
Chen R, Qiao X, Liu F, Chen X. Amino acid ionic liquid–based magnetic dispersive solid-phase extraction for benzimidazole residue analysis in fruit juice and human serum based on theoretical screening. Food Chem 2023; 404:134695. [DOI: 10.1016/j.foodchem.2022.134695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
7
|
Chen R, Zhang X, Liu F, Liu C, Peng Q, Qiao X. Theoretical design and preparation of ionic liquid-based magnetic nanoparticles for the magnetic dispersive solid-phase extraction of benzimidazoles in human plasma. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Deng H, Cai X, Ji Y, Yan D, Yang F, Liu S, Deji Z, Wang Y, Bian Z, Tang G, Fan Z, Huang Z. Development of a lateral flow immunoassay for rapid quantitation of carbendazim in agricultural products. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Zhang Y, Zhou Y, Duan T, Kaium A, Li X. Dissipation and dietary risk assessment of carbendazim and epoxiconazole in citrus fruits in China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1415-1421. [PMID: 34375005 DOI: 10.1002/jsfa.11474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Carbendazim and epoxiconazole are widely applied to control anthracnose and sand bark fungal diseases in citrus. The residues of these two fungicides in citrus and their potential risk to consumers have generated much public concern. We therefore sought to investigate the dissipation, residue, and dietary risk assessment of carbendazim and epoxiconazole in citrus. RESULTS The dissipation kinetics and residue levels of carbendazim and epoxiconazole in citrus under field conditions were measured using dispersive solid-phase extraction and ultra-high-performance liquid chromatography-tandem mass spectrometry. The citrus samples were extracted with acetonitrile and purified by primary secondary amine sorbent. The mean recoveries of carbendazim and epoxiconazole ranged from 86.2 to 105.6% and relative standard deviations were ≤9.8%. The half-lives of carbendazim and epoxiconazole in whole citrus ranged from 2.0 to 18.0 days. Hazard quotient (HQ) and risk quotient (RQ) models were applied to whole citrus for dietary exposure risk assessment based on the terminal residue test. Hazard quotients ranged from 0.066 to 0.134% and RQs from 18.48 to 82.12%. CONCLUSION Carbendazim and epoxiconazole in citrus degraded rapidly following first-order kinetics models. The dietary risk of exposure to both carbendazim and epoxiconazole through citrus, based on HQ and RQ, was acceptable for human consumption. This study indicates scientifically validated maximum residue limits in citrus, which are currently lacking for epoxiconazole in China. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Zhang
- College of Plant Protection, Hunan Agricultural University, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Changsha, China
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yong Zhou
- College of Plant Protection, Hunan Agricultural University, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Changsha, China
- Institute of Biotechnology, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Tingting Duan
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Abdul Kaium
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Xiaogang Li
- College of Plant Protection, Hunan Agricultural University, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Changsha, China
| |
Collapse
|
10
|
Carasek E, Morés L, Huelsmann RD. Disposable pipette extraction: A critical review of concepts, applications, and directions. Anal Chim Acta 2022; 1192:339383. [DOI: 10.1016/j.aca.2021.339383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023]
|
11
|
Imprinted polypyrrole recognition film @cobalt oxide/electrochemically reduced graphene oxide nanocomposite for carbendazim sensing. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01613-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Colloidal gold-based lateral flow immunoassay with inline cleanup for rapid on-site screening of carbendazim in functional foods. Anal Bioanal Chem 2021; 413:3725-3735. [PMID: 33851226 DOI: 10.1007/s00216-021-03321-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
In this study, for the first time, we propose a sensitive colloidal gold-based lateral flow immunoassay (LFIA) that can be used to detect carbendazim residues in functional foods. The adoption of inline cleanup LFIA strips effectively improved background interference to reduce misjudgment of results. First, the hapten 2-(methylamino)-1H-benzo[d]imidazole-5-carboxylic acid was used to establish the carbendazim immunoassay method. Subsequently, colloidal gold-mAb preparation and LFIA detection conditions were systematically optimized. For root and fruit samples (ginseng, ginger, jujube, and Chinese wolfberry), the designed strips had a cutoff value of 8 ng/mL. For flower and seed samples (chrysanthemum, coix seed, and malt), the cutoff value was 12 ng/mL. Even in a complex matrix, the established LFIA method demonstrates satisfactory sensitivity and anti-interference ability. This method was successfully applied in detection of carbendazim residues in complex functional foods, and the assay results are consistent with those obtained via liquid chromatography-tandem mass spectrometry. In short, the proposed method is fast and sensitive and has strong anti-interference ability. Furthermore, it provides a new technical method highly relevant to the on-site rapid detection of carbendazim residues in complex sample matrix.
Collapse
|
13
|
Castilho LDMB, Gama VDS, Santos ALRD, Faria AMD. Polar polymer-immobilized stationary phase for aqueous reversed-phase liquid chromatography. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1862868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Verônica dos Santos Gama
- Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlândia, Ituiutaba, Brazil
| | | | - Anizio Marcio de Faria
- Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlândia, Ituiutaba, Brazil
| |
Collapse
|
14
|
Tu X, Chen W. Miniaturized Salting-Out Assisted Liquid-Liquid Extraction Combined with Disposable Pipette Extraction for Fast Sample Preparation of Neonicotinoid Pesticides in Bee Pollen. Molecules 2020; 25:molecules25235703. [PMID: 33287211 PMCID: PMC7729831 DOI: 10.3390/molecules25235703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022] Open
Abstract
As the main source of nutrients for the important pollinator honeybee, bee pollen is crucial for the health of the honeybee and the agro-ecosystem. In the present study, a new sample preparation procedure has been developed for the determination of neonicotinoid pesticides in bee pollen. The neonicotinoid pesticides were extracted using miniaturized salting-out assisted liquid-liquid extraction (mini-SALLE), followed by disposable pipette extraction (DPX) for the clean-up of analytes. Effects of DPX parameters on the clean-up performance were systematically investigated, including sorbent types (PSA, C18, and silica gel), mass of sorbent, loading modes, and elution conditions. In addition, the clean-up effect of classical dispersive solid-phase extraction (d-SPE) was compared with that of the DPX method. Results indicated that PSA-based DPX showed excellent clean-up ability for the high performance liquid chromatography (HPLC) analysis of neonicotinoid pesticides in bee pollen. The proposed DPX method was fully validated and demonstrated to provide the advantage of simple and rapid clean-up with low consumption of solvent. This is the first report of DPX method applied in bee pollen matrix, and would be valuable for the development of a fast sample preparation method for this challenging and important matrix.
Collapse
Affiliation(s)
- Xijuan Tu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbin Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
15
|
Wang SY, Shi XC, Liu FQ, Laborda P. Chromatographic Methods for Detection and Quantification of Carbendazim in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11880-11894. [PMID: 33059442 DOI: 10.1021/acs.jafc.0c04225] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbendazim (CBZ), which is a fungicide widely used for the management of plant diseases, has been detected in a number of food products. The negative effects of CBZ to human health have stimulated the reduction of the maximum residue limits (MRLs), and subsequently the development of reliable and sensitive detection methods. Here, we are reviewing for the first time all reported chromatographic methods for the detection and quantification of CBZ in food. Several techniques, including liquid chromatography (LC), thin layer chromatography (TLC), micellar electrokinetic chromatography (MEKC), and supercritical fluid chromatography (SFC), were used for the separation and detection of CBZ, showing diverse characteristics and sensitivity. Some methods allowed the specific determination of CBZ, whereas other methods were successfully applied for the simultaneous quantification of a huge number of pesticides. Most reported methods showed limits of detection (LOD) and quantification (LOQ) lower than the MRLs. Relevant efforts in the field have been directed toward the simplification and optimization of the extraction steps prior to the chromatographic separation to increase the recovery and reduce the matrix effects. In this Review, the matrices, extraction procedures, and separation and detection parameters are detailed and compared in order to provide new insights on the development of new reliable methods for the detection of CBZ in food.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Feng-Quan Liu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 226019, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|