1
|
Zhang X, Li Z, Wang X, Hong L, Yin X, Zhang Y, Hu B, Zheng Q, Cao J. CRISPR/Cas12a integrated electrochemiluminescence biosensor for pufferfish authenticity detection based on NiCo 2O 4 NCs@Au as a coreaction accelerator. Food Chem 2024; 445:138781. [PMID: 38401312 DOI: 10.1016/j.foodchem.2024.138781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Meat adulteration has brought economic losses, health risks, and religious concerns, making it a pressing global issue. Herein, combining the high amplification efficiency of polymerase chain reaction (PCR) and the accurate recognition of CRISPR/Cas12, a sensitive and reliable electrochemiluminescence (ECL) biosensor was developed for the detection of pufferfish authenticity using NiCo2O4 NCs@Au-ABEI as nanoemitters. In the presence of target DNA, the trans-cleavage activity of CRISPR/Cas12a is activated upon specific recognition by crRNA, and then it cleaves dopamine-modified single stranded DNA (ssDNA-DA), triggering the ECL signal from the "off" to "on" state. However, without target DNA, the trans-cleavage activity of CRISPR/Cas12a is silenced. By rationally designing corresponding primers and crRNA, the biosensor was applied to specific identification of four species of pufferfish. Furthermore, as low as 0.1 % (w/w) adulterate pufferfish in mixture samples could be detected. Overall, this work provides a simple, low-cost and sensitive approach to trace pufferfish adulteration.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Zhiru Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Xiuwen Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Lin Hong
- Dalian Inspection and Testing Certification Technical Service Center, Dalian 116021, China
| | - Xinying Yin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yan Zhang
- Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing 100834, China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
2
|
Xun Z, Wang X, Xue H, Zhang Q, Yang W, Zhang H, Li M, Jia S, Qu J, Wang X. Deep machine learning identified fish flesh using multispectral imaging. Curr Res Food Sci 2024; 9:100784. [PMID: 39005497 PMCID: PMC11246001 DOI: 10.1016/j.crfs.2024.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Food fraud is widespread in the aquatic food market, hence fast and non-destructive methods of identification of fish flesh are needed. In this study, multispectral imaging (MSI) was used to screen flesh slices from 20 edible fish species commonly found in the sea around Yantai, China, by combining identification based on the mitochondrial COI gene. We found that nCDA images transformed from MSI data showed significant differences in flesh splices of the 20 fish species. We then employed eight models to compare their prediction performances based on the hold-out method with 70% training and 30% test sets. Convolutional neural network (CNN), quadratic discriminant analysis (QDA), support vector machine (SVM), and linear discriminant analysis (LDA) models perform well on cross-validation and test data. CNN and QDA achieved more than 99% accuracy on the test set. By extracting the CNN features for optimization, a very high degree of separation was obtained for all species. Furthermore, based on the Gini index in RF, 11 bands were selected as key classification features for CNN, and an accuracy of 98% was achieved. Our study developed a successful pipeline for employing machine learning models (especially CNN) on MSI identification of fish flesh, and provided a convenient and non-destructive method to determine the marketing of fish flesh in the future.
Collapse
Affiliation(s)
- Zhuoran Xun
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Xuemeng Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Xue
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Qingzheng Zhang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Wanqi Yang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Hua Zhang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Mingzhu Li
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiangyong Qu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| |
Collapse
|
3
|
Zhong D, Kang L, Liu J, Li X, Zhou L, Huang L, Qiu Z. Development of sequential online extraction electrospray ionization mass spectrometry for accurate authentication of highly-similar Atractylodis Macrocephalae. Food Res Int 2024; 175:113681. [PMID: 38129026 DOI: 10.1016/j.foodres.2023.113681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The accurate and rapid authentication techniques and strategies for highly-similar foods are still lacking. Herein, a novel sequential online extraction electrospray ionization mass spectrometry (S-oEESI-MS) was developed to achieve spatio-temporally resolved ionization and comprehensive characterization of complex foods with multi-components (high, medium, and low polarity substances). Meanwhile, a characteristic marker screening method and an integrated research strategy based on MS fingerprinting, characteristic marker and chemometrics modeling were established, which are especially suitable for the accurate and rapid authentication of highly-similar foods that are difficult to be authenticated by traditional techniques (e.g., LC-MS). Thirty-two batches of highly-similar Atractylodis macrocephalae rhizome from four different origins were used as model samples. As a result, S-oEESI-MS enabled a more comprehensive MS characterization of substance profiles in complex plant samples in 1.0 min. Further, 22 characteristic markers of Atractylodis macrocephalae were ingeniously screened out and combined with multivariate statistical analysis model, the accurate authentication of highly-similar Atractylodis macrocephalae was realized. This study presents a comprehensive strategy for accurate authentication and origin analysis of highly-similar foods, which has potentially significant applications for ensuring food quality and safety.
Collapse
Affiliation(s)
- Dacai Zhong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China; Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Material Sciences, East China Institute of Technology, Nanchang 330013, PR China
| | - Liping Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Juan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Xiang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Li Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Zidong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| |
Collapse
|
4
|
Aparna GM, Tetala KKR. Recent Progress in Development and Application of DNA, Protein, Peptide, Glycan, Antibody, and Aptamer Microarrays. Biomolecules 2023; 13:602. [PMID: 37189350 PMCID: PMC10135839 DOI: 10.3390/biom13040602] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Microarrays are one of the trailblazing technologies of the last two decades and have displayed their importance in all the associated fields of biology. They are widely explored to screen, identify, and gain insights on the characteristics traits of biomolecules (individually or in complex solutions). A wide variety of biomolecule-based microarrays (DNA microarrays, protein microarrays, glycan microarrays, antibody microarrays, peptide microarrays, and aptamer microarrays) are either commercially available or fabricated in-house by researchers to explore diverse substrates, surface coating, immobilization techniques, and detection strategies. The aim of this review is to explore the development of biomolecule-based microarray applications since 2018 onwards. Here, we have covered a different array of printing strategies, substrate surface modification, biomolecule immobilization strategies, detection techniques, and biomolecule-based microarray applications. The period of 2018-2022 focused on using biomolecule-based microarrays for the identification of biomarkers, detection of viruses, differentiation of multiple pathogens, etc. A few potential future applications of microarrays could be for personalized medicine, vaccine candidate screening, toxin screening, pathogen identification, and posttranslational modifications.
Collapse
Affiliation(s)
| | - Kishore K. R. Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamilnadu, India;
| |
Collapse
|
5
|
Antil S, Abraham JS, Sripoorna S, Maurya S, Dagar J, Makhija S, Bhagat P, Gupta R, Sood U, Lal R, Toteja R. DNA barcoding, an effective tool for species identification: a review. Mol Biol Rep 2023; 50:761-775. [PMID: 36308581 DOI: 10.1007/s11033-022-08015-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 02/01/2023]
Abstract
DNA barcoding is a powerful taxonomic tool to identify and discover species. DNA barcoding utilizes one or more standardized short DNA regions for taxon identification. With the emergence of new sequencing techniques, such as Next-generation sequencing (NGS), ONT MinION nanopore sequencing, and Pac Bio sequencing, DNA barcoding has become more accurate, fast, and reliable. Rapid species identification by DNA barcodes has been used in a variety of fields, including forensic science, control of the food supply chain, and disease understanding. The Consortium for Barcode of Life (CBOL) presents various working groups to identify the universal barcode gene, such as COI in metazoans; rbcL, matK, and ITS in plants; ITS in fungi; 16S rRNA gene in bacteria and archaea, and creating a reference DNA barcode library. In this article, an attempt has been made to analyze the various proposed DNA barcode for different organisms, strengths & limitations, recent advancements in DNA barcoding, and methods to speed up the DNA barcode reference library construction. This study concludes that constructing a reference library with high species coverage would be a major step toward identifying species by DNA barcodes. This can be achieved in a short period of time by using advanced sequencing and data analysis methods.
Collapse
Affiliation(s)
- Sandeep Antil
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | | | - S Sripoorna
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | - Swati Maurya
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | - Jyoti Dagar
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | - Seema Makhija
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | - Pooja Bhagat
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | - Renu Gupta
- Maitreyi College, University of Delhi, New Delhi, Delhi, 110 021, India
| | - Utkarsh Sood
- The Energy and Resources Institute, IHC Complex, New Delhi, 110003, India
| | - Rup Lal
- The Energy and Resources Institute, IHC Complex, New Delhi, 110003, India
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India.
| |
Collapse
|
6
|
Yin X, Yang H, Piao Y, Zhu Y, Zheng Q, Khan MR, Zhang Y, Busquets R, Hu B, Deng R, Cao J. CRISPR-Based Colorimetric Nucleic Acid Tests for Visual Readout of DNA Barcode for Food Authenticity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14052-14060. [PMID: 36278890 DOI: 10.1021/acs.jafc.2c05974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Food authenticity is a critical issue associated with the economy, religion, and food safety. Herein, we report a label-free and colorimetric nucleic acid assay for detecting DNA barcodes, enabling the determination of food authenticity with the naked eye. This method, termed the CRISPR-based colorimetric DNA barcoding (Cricba) assay, utilizes CRISPR/Cas12a (CRISPR = clustered regularly interspaced short palindromic repeats; Cas = CRISPR associated protein) to specifically recognize the polymerase chain reaction (PCR) products for further trans-cleavaging the peroxidase-mimicking G-quadruplex DNAzyme. Based on this principle, the presence of the cytochrome oxidase subunit I gene could be directly observed with the naked eye via the color change of 3,3',5,5'-tetramethylbenzidine sulfate (TMB). The whole detection process, including PCR amplification and TMB colorimetric analysis, can be completed within 90 min. The proposed assay can detect pufferfish concentrations diluted to 0.1% (w/w) in a raw pufferfish mixture, making it one of the most sensitive methods for food authenticity. The robustness of the assay was verified by testing four common species of pufferfish, including Lagocephalus inermis, Lagocephalus spadiceus, Takifugu bimaculatus, and Takifugu alboplumbeus. The assay is advantageous in easy signal readout, high sensitivity, and general applicability and thus could be a competitive candidate for food authenticity.
Collapse
Affiliation(s)
- Xinying Yin
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yongzhe Piao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yulin Zhu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, U.K
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
7
|
Popping B, Buck N, Bánáti D, Brereton P, Gendel S, Hristozova N, Chaves SM, Saner S, Spink J, Willis C, Wunderlin D. Food inauthenticity: Authority activities, guidance for food operators, and mitigation tools. Compr Rev Food Sci Food Saf 2022; 21:4776-4811. [PMID: 36254736 DOI: 10.1111/1541-4337.13053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 01/28/2023]
Abstract
Historically, food fraud was a major public health concern which helped drive the development of early food regulations in many markets including the US and EU market. In the past 10 years, the integrity of food chains with respect to food fraud has again been questioned due to high profile food fraud cases. We provide an overview of the resulting numerous authoritative activities underway within different regions to counter food fraud, and we describe the guidance available to the industry to understand how to assess the vulnerability of their businesses and implement appropriate mitigation. We describe how such controls should be an extension of those already in place to manage wider aspects of food authenticity, and we provide an overview of relevant analytical tools available to food operators and authorities to protect supply chains. Practical Application: Practical Application of the provided information by the food industry in selecting resources (guidance document, analytical methods etc.).
Collapse
Affiliation(s)
- Bert Popping
- FOCOS - Food Consulting Strategically, Alzenau, Germany
| | - Neil Buck
- General Mills Inc., Nyon, Switzerland
| | - Diána Bánáti
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Paul Brereton
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland
| | - Steven Gendel
- Gendel Food Safety LLC, Silver Spring, Maryland, USA
| | | | - Sandra Mourinha Chaves
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Samim Saner
- Mérieux NutriSciences, Tassin la Demi-Lune, France
| | - John Spink
- Department of Supply Chain Management, Michigan State University, East Lansing, Michigan, USA
| | | | - Daniel Wunderlin
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Edificio Cs. II, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
8
|
|
9
|
A Practical Approach to Identifying Processed White Meat of Guinea Fowl, Rabbit, and Selected Fish Species Using End-Point PCR. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:7710462. [PMID: 34336994 PMCID: PMC8324373 DOI: 10.1155/2021/7710462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022]
Abstract
Among the foodstuff, most often adulterated are white meat and meat products as well as fish and fish products. For this reason, we evaluated in practice the possibilities of identifying selected species of white meat, i.e., guinea fowl and rabbit as well as four fish species, namely, pollock, hake, sole, and panga, in thermally treated samples. The aim was to check whether the previously published in the scientific literature species-specific primers allows for the identification of processed meat using the end-point PCR technique. To identify the six species, the short sequence fragments (from 130 to 255 bp) of 12S rRNA, COX3, mitochondrial ATP synthase Fo subunit 6 (ATP6) gene, pantophysin (Pan I) gene, 5S rRNA gene, and microsatellite markers (locus: Phy01-KUL) were selected. Stability and specificity of the six pair primers were evaluated on cooked and autoclaved meat, and commercially processed food samples such as rabbit and guinea pâtés, ready-made baby food, and breaded, fried, and deep-frozen fish products. The method proved to be useful for the authentication of severely processed food products against fraudulent species substitution and mislabelling and this approach may be an alternative to more advanced and more expensive PCR techniques.
Collapse
|
10
|
Ayhan K, Coşansu S, Orhan-Yanıkan E, Gülseren G. Advance methods for the qualitative and quantitative determination of microorganisms. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Kappel K, Fafińska J, Fischer M, Fritsche J. A DNA microarray for the authentication of giant tiger prawn (Penaeus monodon) and whiteleg shrimp (Penaeus (Litopenaeus) vannamei): a proof-of-principle. Anal Bioanal Chem 2021; 413:4837-4846. [PMID: 34114084 PMCID: PMC8318932 DOI: 10.1007/s00216-021-03440-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022]
Abstract
This proof-of-principle study describes the development of a rapid and easy-to-use DNA microarray assay for the authentication of giant tiger prawns and whiteleg shrimp. Following DNA extraction and conventional end-point PCR of a 16S rDNA segment, the PCR products are hybridised to species-specific oligonucleotide probes on DNA microarrays located at the bottom of centrifuge tubes (ArrayTubes) and the resulting signal patterns are compared to those of reference specimens. A total of 21 species-specific probes were designed and signal patterns were recorded for 47 crustacean specimens belonging to 16 species of seven families. A hierarchical clustering of the signal patterns demonstrated the specificity of the DNA microarray for the two target species. The DNA microarray can easily be expanded to other important crustaceans. As the complete assay can be performed within half a day and does not require taxonomic expertise, it represents a rapid and simple alternative to tedious DNA barcoding and could be used by crustacean trading companies as well as food control authorities for authentication of crustacean commodities. ![]()
Collapse
Affiliation(s)
- Kristina Kappel
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Hermann-Weigmann-Str. 1, 24103, Kiel, Germany. .,National Reference Centre for Authentic Food, Max Rubner-Institut (MRI), Hermann-Weigmann-Str. 1, 24103, Kiel, Germany.
| | - Joanna Fafińska
- Institute of Food Chemistry - Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Markus Fischer
- Institute of Food Chemistry - Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Jan Fritsche
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Hermann-Weigmann-Str. 1, 24103, Kiel, Germany
| |
Collapse
|
12
|
Consumers of mislabeled tropical fish exhibit increased risks of ciguatera intoxication: A report on substitution patterns in fish imported at Frankfurt Airport, Germany. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107647] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Huan H, Zhang K, He J, Zhang J. A DNA microarray assay for authenticating five important marine mammal species in food and feed. Food Chem 2021; 348:129136. [PMID: 33516996 DOI: 10.1016/j.foodchem.2021.129136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Material identification in processed and unprocessed food and feed is crucial for ensuring the safety and hygiene of food and feed products. Therefore, to identify possible marine mammal components in feed, we study developed a DNA microarray with species-specific oligonucleotide probes that enable the rapid identification of five important marine mammal species (dolphins, seals, sea lions, white whales, and finless porpoises). The assay was tested using five target marine mammal species, and the probe patterns were compared with those of three fish meals (for feed) to see if they contained traces of marine mammals. All five marine mammal species could be distinguished by the microarray, and no marine mammal-derived ingredients were detected in the three fish meals. This study indicates that DNA microarray-based detection is relatively easy and effective for identification of non-compliant marine mammal ingredients in seafood or feed.
Collapse
Affiliation(s)
- Haixia Huan
- Huaiyin Normal University, College of Life Sciences, Huaian, Jiangsu, China
| | | | - Jian He
- Huaian Customs District, China
| | | |
Collapse
|
14
|
Identification of peptide biomarkers for authentication of Atlantic salmon and rainbow trout with untargeted and targeted proteomics approaches and quantitative detection of adulteration. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1155:122194. [PMID: 32771965 DOI: 10.1016/j.jchromb.2020.122194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/25/2020] [Indexed: 01/14/2023]
Abstract
Atlantic salmon is often adulterated or substituted by rainbow trout with much lower price and quality. However, it is extremely difficult to distinguish Atlantic salmon and rainbow trout due to their similar appearance and close relationship in species. In the present work, untargeted and targeted proteomics approaches were both implemented to identify species-specific peptide biomarkers of Atlantic salmon and rainbow trout. Potential peptide biomarkers were obtained through matching HRMS data with UniProt database, screened by BLAST and then verified with real samples. Five peptide biomarkers were identified each for Atlantic salmon and rainbow trout. MRM method was established for quantitative measurement of rainbow trout Adulteration in Atlantic salmon, showing high sensitivity and repeatability. The biomarker peptide GDPGPGGPQGEQGVVGPAGISGDK was used for quantification. The limit of the detection (LOD) of adulteration of rainbow trout is 0.19%, and the limit of quantitation (LOQ) is 0.62%. Furthermore, this method was successfully applied to analyze a number of Atlantic salmon and Rainbow trout samples from different regions and different batches, as well as commercially available processed products.
Collapse
|
15
|
Hassoun A, Måge I, Schmidt WF, Temiz HT, Li L, Kim HY, Nilsen H, Biancolillo A, Aït-Kaddour A, Sikorski M, Sikorska E, Grassi S, Cozzolino D. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020; 9:E1069. [PMID: 32781687 PMCID: PMC7466239 DOI: 10.3390/foods9081069] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022] Open
Abstract
Animal origin food products, including fish and seafood, meat and poultry, milk and dairy foods, and other related products play significant roles in human nutrition. However, fraud in this food sector frequently occurs, leading to negative economic impacts on consumers and potential risks to public health and the environment. Therefore, the development of analytical techniques that can rapidly detect fraud and verify the authenticity of such products is of paramount importance. Traditionally, a wide variety of targeted approaches, such as chemical, chromatographic, molecular, and protein-based techniques, among others, have been frequently used to identify animal species, production methods, provenance, and processing of food products. Although these conventional methods are accurate and reliable, they are destructive, time-consuming, and can only be employed at the laboratory scale. On the contrary, alternative methods based mainly on spectroscopy have emerged in recent years as invaluable tools to overcome most of the limitations associated with traditional measurements. The number of scientific studies reporting on various authenticity issues investigated by vibrational spectroscopy, nuclear magnetic resonance, and fluorescence spectroscopy has increased substantially over the past few years, indicating the tremendous potential of these techniques in the fight against food fraud. It is the aim of the present manuscript to review the state-of-the-art research advances since 2015 regarding the use of analytical methods applied to detect fraud in food products of animal origin, with particular attention paid to spectroscopic measurements coupled with chemometric analysis. The opportunities and challenges surrounding the use of spectroscopic techniques and possible future directions will also be discussed.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Ingrid Måge
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Walter F. Schmidt
- United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705-2325, USA;
| | - Havva Tümay Temiz
- Department of Food Engineering, Bingol University, 12000 Bingol, Turkey;
| | - Li Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Hae-Yeong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Heidi Nilsen
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L’Aquila, 67100 Via Vetoio, Coppito, L’Aquila, Italy;
| | | | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Ewa Sikorska
- Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy;
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia;
| |
Collapse
|