1
|
Xu Y, Leng D, Li X, Wang D, Chai X, Schroyen M, Zhang D, Hou C. Effects of different electrostatic field intensities assisted controlled freezing point storage on water holding capacity of fresh meat during the early postmortem period. Food Chem 2024; 439:138096. [PMID: 38039609 DOI: 10.1016/j.foodchem.2023.138096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
In this study, the effect of different intensity electrostatic fields on the water holding capacity (WHC) of fresh meat during the early postmortem period in controlled freezing point storage (CFPS) were investigated. Significantly lower cooking loss were found in low voltage electrostatic field (LVEF) and high voltage electrostatic field (HVEF) compared to the control group (CK) (p < 0.05). The myofibril fragmentation index and microstructure results suggested that the sample under HVEF treatment remained relatively intact. It has been revealed that the changes in actomyosin properties under electrostatic field treatment groups were due to the combination and dissociation of actomyosin binding into myofilament concentration, which consequently affects the muscle WHC. The study further demonstrated that the electrostatic field, especially HVEF, might increase the WHC of fresh meat by affecting the distribution of water molecules and physiochemical properties of actomyosin during the early postmortem period.
Collapse
Affiliation(s)
- Yuqian Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium.
| | - Dongmei Leng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Debao Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xiaoyu Chai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
2
|
Romaniuk E, Vera B, Peraza P, Ciappesoni G, Damián JP, Van Lier E. Identification of Candidate Genes and Pathways Linked to the Temperament Trait in Sheep. Genes (Basel) 2024; 15:229. [PMID: 38397218 PMCID: PMC10887918 DOI: 10.3390/genes15020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/25/2024] Open
Abstract
Temperament can be defined as the emotional variability among animals of the same species in response to the same stimulus, grouping animals by their reactivity as nervous, intermediate, or calm. Our goal was to identify genomic regions with the temperament phenotype measured by the Isolation Box Test (IBT) by single-step genome-wide association studies (ssGWAS). The database consisted of 4317 animals with temperament records, and 1697 genotyped animals with 38,268 effective Single Nucleotide Polymorphism (SNP) after quality control. We identified three genomic regions that explained the greatest percentage of the genetic variance, resulting in 25 SNP associated with candidate genes on chromosomes 6, 10, and 21. A total of nine candidate genes are reported for the temperament trait, which is: PYGM, SYVN1, CAPN1, FADS1, SYT7, GRID2, GPRIN3, EEF1A1 and FRY, linked to the energetic activity of the organism, synaptic transmission, meat tenderness, and calcium associated activities. This is the first study to identify these genetic variants associated with temperament in sheep, which could be used as molecular markers in future behavioral research.
Collapse
Affiliation(s)
- Estefanía Romaniuk
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Avda. Garzón 780, Montevideo 12900, Uruguay;
- Estación Experimental Facultad de Agronomía Salto, Ruta 31, km 21, Salto 50000, Uruguay
| | - Brenda Vera
- Sistema Ganadero Extensivo, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48, km 10, Canelones 90200, Uruguay; (B.V.); (P.P.); (G.C.)
| | - Pablo Peraza
- Sistema Ganadero Extensivo, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48, km 10, Canelones 90200, Uruguay; (B.V.); (P.P.); (G.C.)
| | - Gabriel Ciappesoni
- Sistema Ganadero Extensivo, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48, km 10, Canelones 90200, Uruguay; (B.V.); (P.P.); (G.C.)
| | - Juan Pablo Damián
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Ruta 8, km 18, Montevideo 13000, Uruguay;
- Núcleo de Bienestar Animal, Facultad de Veterinaria, Universidad de la República, Ruta 8, km 18, Montevideo 13000, Uruguay
| | - Elize Van Lier
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Avda. Garzón 780, Montevideo 12900, Uruguay;
- Estación Experimental Facultad de Agronomía Salto, Ruta 31, km 21, Salto 50000, Uruguay
| |
Collapse
|
3
|
Ren C, Song X, Dong Y, Hou C, Chen L, Wang Z, Li X, Schroyen M, Zhang D. Protein Phosphorylation Induced by Pyruvate Kinase M2 Inhibited Myofibrillar Protein Degradation in Post-Mortem Muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15280-15286. [PMID: 37776280 DOI: 10.1021/acs.jafc.3c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
Myofibrillar protein degradation is primarily related to meat tenderness through protein phosphorylation regulation. Pyruvate kinase M2 (PKM2), a glycolytic rate-limiting enzyme, is also regarded as a protein kinase to catalyze phosphorylation. The objective of this study was to investigate the relationship between myofibrillar protein degradation and phosphorylation induced by PKM2. Myofibrillar proteins were incubated with PKM2 at 4, 25, and 37 °C. The global phosphorylation level of myofibrillar proteins in the PKM2 group was significantly increased, but it was sensitive to temperature (P < 0.05). Compared with 4 and 25 °C, PKM2 significantly increased the myofibrillar protein phosphorylation level from 0.5 to 6 h at 37 °C (P < 0.05). In addition, the degradation of desmin and actin was inhibited after they were phosphorylated by PKM2 when incubated at 37 °C. These results demonstrate that phosphorylation of myofibrillar proteins catalyzed by PKM2 inhibited protein degradation and provided a possible pathway for meat tenderization through glycolytic enzyme regulation.
Collapse
Affiliation(s)
- Chi Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
- Precision Livestock and Nutrition Unit, Gembloux Agra-Bio Tech, University of LièGe, Passage des Déport́s 2, Gembloux 5030, Belgium
| | - Xubo Song
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Yu Dong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agra-Bio Tech, University of LièGe, Passage des Déport́s 2, Gembloux 5030, Belgium
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agra-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| |
Collapse
|
4
|
Ren C, Li X, Bai Y, Schroyen M, Zhang D. Phosphorylation and acetylation of glycolytic enzymes cooperatively regulate their activity and lamb meat quality. Food Chem 2022; 397:133739. [DOI: 10.1016/j.foodchem.2022.133739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/26/2022] [Accepted: 07/16/2022] [Indexed: 11/04/2022]
|
5
|
Identification and characterization of phosphoproteins in the striated and smooth adductor muscles of Yesso scallop Patinopecten yessoensis. Food Chem 2022; 372:131242. [PMID: 34818726 DOI: 10.1016/j.foodchem.2021.131242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022]
Abstract
Many proteins are known to be phosphorylated, affecting important regulatory factors of muscle quality in the aquatic animals. The striated and smooth adductor muscles of Yesso scallop Patinopecten yessoensis were used to investigate muscle texture and identify phosphoproteins by histological methods and phosphoproteomic analysis. Our present study reveals that muscle fiber density is in relation to meat texture of the striated and smooth adductor muscles. The phosphoproteomic analysis has identified 764 down-regulated and 569 up-regulated phosphosites on 743 phosphoproteins in the smooth muscle compared to the striated part. The identification of unique phosphorylation sites in glycolytic enzymes may increase the activity of glycolytic enzymes and the rate of glycolysis in the striated adductor muscle. The present findings will provide new evidences on the role of muscle structure and protein phosphorylation in scallop muscle quality and thus help to develop strategies for improving meat quality of scallop products.
Collapse
|
6
|
Du M, Li X, Zhang D, Li Z, Hou C, Ren C, Bai Y. Phosphorylation plays positive roles in regulating the inhibitory ability of calpastatin to calpain. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manting Du
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
- College of Food and Biological Engineering Zhengzhou University of Light Industry Zhengzhou Henan China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan China
| | - Xin Li
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Dequan Zhang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Zheng Li
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Chengli Hou
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Chi Ren
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Yanhong Bai
- College of Food and Biological Engineering Zhengzhou University of Light Industry Zhengzhou Henan China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan China
| |
Collapse
|