1
|
Zhang J, Wang Z, Wu X, Piao S, Zhang Q, Zhou D. Covalent modulation of zein surface potential by gallic acid to enhance the formation of electrostatic-driven ternary antioxidant complex coacervates with chitosan. Food Chem 2025; 475:143233. [PMID: 39938273 DOI: 10.1016/j.foodchem.2025.143233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Despite existing research on the interaction between zein (Z) and chitosan (CS), the formation and mechanisms of ternary electrostatic coacervates incorporating polyphenols remain unclear. Herein, we covalently and non-covalently modified zein with gallic acid (GA). Comparisons revealed that the covalent coupling of Z with GA (forming Z(GA)) reduced zein's surface potential, enabling them to form tightly bound coacervates with cationic polysaccharide chitosan through electrostatic attraction. Turbidity, ζ-potential, and appearance experiments indicated that the maximum yield of insoluble coacervates was achieved at a Z(GA)/CS mass ratio of 7:1 and pH 6.5. Furthermore, the coacervate properties were evaluated using Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and microscopic structure analysis. Electrostatic attraction between the -COO- groups of Z(GA) and the -NH3+ groups of CS triggered complex coacervation, which induced structural modifications and enhanced thermal stability. This study fosters the efficient encapsulation and controlled release of nutraceuticals, enhancing human absorption.
Collapse
Affiliation(s)
- Jinsong Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Zhiheng Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Xinling Wu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Shengyi Piao
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Qiang Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Deyi Zhou
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| |
Collapse
|
2
|
Zhang X, Wang X, Wu F, Liang W, Wang S, Liang J, Zhao X, Wu F. Machine learning models to predict the bioaccessibility of parent and substituted polycyclic aromatic hydrocarbons (PAHs) in food: Impact on accurate health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136102. [PMID: 39423650 DOI: 10.1016/j.jhazmat.2024.136102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Food intake is the primary pathway for polycyclic aromatic hydrocarbons (PAHs) to enter the human body. Once ingested, PAHs tend to accumulate, posing health risks. To accurately assess the risk of PAHs from food, concentrations of 10 parent PAHs (PPAHs) and 15 substituted PAHs (SPAHs) were detected across 34 commonly consumed foods. Results indicated that SPAHs concentrations (3.89-11.6 ng/g dw) were higher than PPAH concentrations (1.66-3.43 ng/g dw) in shrimp and shellfish and freshwater fish. Four machine learning algorithms were used to predict the bioaccessibility of PAHs in foods, with the random forest model performing the best (R2 =0.987, RMSE=5.99). Feature variable importance analysis revealed that lipid and protein contents in food are critical variables influencing PAH bioaccessibility. Subsequently, the bioaccessibility of 25 PAHs in various foods was predicted to explore its impact on health risk assessment. Consequently, the carcinogenic risks considering bioaccessibility (5.62 ×10-5-7.12 ×10-5) was about an order of magnitude lower than that ignoring bioaccessibility (1.52 ×10-4-1.69 ×10-4), yet it still exceeded 10⁻6, indicating potential carcinogenic risks. Although PPAHs and alkylated PAHs were predominant in foods, 6-nitrochrysene was the main compound inducing both non-carcinogenic and carcinogenic risks owing to its high toxicity. This study developed a novel method for assessing pollutant bioaccessibility and evaluating its impact on health risk assessment, which provides a valuable model for managing massive hazardous pollutants and is essential for improving the accuracy of health risk assessment.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaolei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fei Wu
- College of Artificial Intelligence and Automation, Hohai University, Nanjing 211100, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sixian Wang
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jinglin Liang
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
3
|
Zhu C, Wu W, Soladoye OP, Zhang N, Zhang Y, Fu Y. Towards food-derived self-assembling peptide-based hydrogels: Insights into preparation, characterization and mechanism. Food Chem 2024; 459:140397. [PMID: 39018622 DOI: 10.1016/j.foodchem.2024.140397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
Food proteins represent a vital source of self-assembling peptides, with hydrogels constructed through peptide self-assembly exhibiting widespread utility in the food sector. This review aims to provide a recent research progress in preparation and characterization of hydrogels from food-derived peptides. Also, the self-assembly mechanisms and the impact of factors are discussed. Presently, food-derived self-assembling peptide-based hydrogels can be synthesized using either physical or chemical methodologies and evaluated through methodologies such as microscopic, spectroscopic, and rheological assessment. The self-assembly of food-derived peptides is hierarchically formed by non-covalent interactions, including hydrogen bond and hydrophobic interactions, where variables such as temperature and pH intricately modulate the assembly mechanism. The association between peptide sequence and hydrogel structure in the self-assembly mechanism is also discussed, which remains to be further explored. The present review contributes to application of food-derived peptide-based hydrogels in the fields of food, nutrition and material sciences.
Collapse
Affiliation(s)
- Chenxiao Zhu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Westa College, Southwest University, Chongqing, 400715, China
| | - Wei Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Olugbenga P Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
4
|
Huang S, Yao X, Cao B, Zhang N, Soladoye OP, Zhang Y, Fu Y. Encapsulation of zingerone by self-assembling peptides derived from fish viscera: Characterization, interaction and effects on colon epithelial cells. Food Chem X 2024; 22:101506. [PMID: 38855095 PMCID: PMC11157225 DOI: 10.1016/j.fochx.2024.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
The purpose of the present work was to encapsulate zingerone (a bioactive compound from ginger) by self-assembling peptides derived from fish viscera. The encapsulation conditions were investigated and the structure of fish peptides-zingerone complex was characterized. The interaction between zingerone and fish peptides was investigated using fluorescence spectroscopy. Further research was performed on the in vitro release of zingerone and fish peptide-zingerone as well as their antiproliferative effects on colon epithelial Caco-2 cells. The results demonstrated that zingerone can be successfully encapsulated by self-assembling peptides derived from fish viscera with high encapsulation efficiency and loading capacity. Furthermore, transmission electron microscope and confocal laser scanning microscope observations revealed the successful encapsulation of zingerone by fish viscera peptides. In addition, in vitro release and antiproliferative activity against Caco-2 cells can be significantly increased by encapsulating zingerone via peptide self-assembly. The current study advances knowledge of encapsulation of bioactive compounds through peptide self-assembly.
Collapse
Affiliation(s)
- Sirong Huang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Xintong Yao
- Department of Hematology, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Boya Cao
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Olugbenga P. Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
5
|
Mishra AK, Singh R, Rawat H, Kumar V, Jagtap C, Jain A. The influence of food matrix on the stability and bioavailability of phytochemicals: A comprehensive review. FOOD AND HUMANITY 2024; 2:100202. [DOI: 10.1016/j.foohum.2023.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
6
|
Chen H, Liu Z, Li L, Cai X, Xiang L, Wang S. Peptide Supramolecular Self-Assembly: Regulatory Mechanism, Functional Properties, and Its Application in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5526-5541. [PMID: 38457666 DOI: 10.1021/acs.jafc.3c09237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Peptide self-assembly, due to its diverse supramolecular nanostructures, excellent biocompatibility, and bright application prospects, has received wide interest from researchers in the fields of biomedicine and green life technology and the food industry. Driven by thermodynamics and regulated by dynamics, peptides spontaneously assemble into supramolecular structures with different functional properties. According to the functional properties derived from peptide self-assembly, applications and development directions in foods can be found and explored. Therefore, in this review, the regulatory mechanism is elucidated from the perspective of self-assembly thermodynamics and dynamics, and the functional properties and application progress of peptide self-assembly in foods are summarized, with a view to more adaptive application scenarios of peptide self-assembly in the food industry.
Collapse
Affiliation(s)
- Huimin Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuzhou 350300, P. R. China
| | - Zhiyu Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Liheng Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Leiwen Xiang
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuzhou 350300, P. R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
7
|
Takács D, Adžić M, Omerović N, Vraneš M, Katona J, Pavlović M. Electrolyte-induced aggregation of zein protein nanoparticles in aqueous dispersions. J Colloid Interface Sci 2024; 656:457-465. [PMID: 38006868 DOI: 10.1016/j.jcis.2023.11.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Ion specific effects on the charging and aggregation features of zein nanoparticles (ZNP) were studied in aqueous suspensions by electrophoretic and time-resolved dynamic light scattering techniques. The influence of mono- and multivalent counterions on the colloidal stability was investigated for positively and negatively charged particles at pH values below and above the isoelectric point, respectively. The sequence of the destabilization power of monovalent salts followed the prediction of the indirect Hofmeister series for positively charged particles, while the direct Hofmeister series for negatively charged ones assumed a hydrophobic character for their surface. The multivalent ions destabilized the oppositely charged ZNPs more effectively and the aggregation process followed the Schulze-Hardy rule. For some multivalent ions, strong adsorption led to charge reversal resulting in restabilization of the suspensions. The experimental critical coagulation concentrations (CCCs) could be well-predicted with the theory developed by Derjaguin, Landau, Verwey and Overbeek indicating that the aggregation processes were mainly driven by electrical double layer repulsion and van der Waals attraction. The ion specific dependence of the CCCs is owing to the modification of the surface charge through ion adsorption at different extents. These results are crucial for drug delivery applications, where inorganic electrolytes are present in ZNP samples.
Collapse
Affiliation(s)
- Dóra Takács
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, 6720 Szeged, Hungary
| | - Maja Adžić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nejra Omerović
- BioSense Institute, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Milan Vraneš
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Jaroslav Katona
- Department of Applied and Engineering Chemistry, Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marko Pavlović
- BioSense Institute, University of Novi Sad, 21000 Novi Sad, Serbia; Department of Physics and John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA-02138 Cambridge, USA.
| |
Collapse
|
8
|
Nie C, Zou Y, Liao S, Gao Q, Li Q. Peptides as carriers of active ingredients: A review. Curr Res Food Sci 2023; 7:100592. [PMID: 37766891 PMCID: PMC10519830 DOI: 10.1016/j.crfs.2023.100592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Bioactive compounds are highly valuable in the fields of food and medicine, but their application is limited due to easy deterioration after oral or skin administration. In recent years, the use of peptides as delivery systems for bioactive compounds has been intensively researched because of their special physicochemical characteristics. Peptides can be assembled using various preparation methods and can form several composite materials such as hydrogels, micelles, emulsions and particles. The composite material properties are determined by peptides, bioactive compounds and the construction methods employed. Herein, this paper provides a comprehensive review of the peptides used for active ingredients delivery, fabrication methods for creating delivery systems, structures, targeting characteristics, functional activities and mechanism of delivery systems, as well as their absorption and metabolism, which provided theoretical basis and reference for further research and development of functional composites.
Collapse
Affiliation(s)
- Congyi Nie
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yuxiao Zou
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Sentai Liao
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Qunyu Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| |
Collapse
|
9
|
Frempong KEB, He G, Kuang M, Jun P, Xue M, Wei Y, Zhou J. Improvement of amphipathic properties with molecular structure unfolding and activation of cottonseed protein as ultra stable and safe emulsifier by deamidation. Int J Biol Macromol 2023; 247:125802. [PMID: 37442501 DOI: 10.1016/j.ijbiomac.2023.125802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
By-product cottonseed proteins are excellent options for numerous applications due to their superior properties and lower cost. However, its complex folded structure and large molecular weight lead to lower reactivity and insufficient amphiphilicity. Cottonseed protein isolate (CPI) is less-soluble in water. Therefore, we improved the amphiphilicity of CPI with associated hydrolysis, molecular structure unfolding, and activation by alkaline-induced deamidation (at 24, 36, and 72 h) and produced three cottonseed protein hydrolysates CPH 24, 36, and 72. FTIR/UV-CD measurements confirmed the conformational changes and conversion of the structural content. Particle size decreased 2503.4-771.8 nm, while surface hydrophobicity (133.5-326.7), carboxyl content (1.13 × 10־3-2.09 × 10־3), and flexibility increased, signifying hydrolysis, unfolding, and amphiphilicity improvement. Longer deamidation (CPH 72) exhibited the best properties, its prepared emulsions were long-term stable under all the environmental stresses without visible phase separation after at least 40 days of storage except at pH 4. Compared to CPI, it had smaller droplets (939.3-264.9 nm) and larger absolute ζ-potential (-26.5 to -58.0 mV). From the in-vitro cytotoxicity test, deamidated CPI is extremely safer than commonly used synthetic surfactants. This research provides a new method for producing multifunctional emulsifiers from CPI, which could be utilized in the development of functional foods/non-foods.
Collapse
Affiliation(s)
- Kwame Eduam Baiden Frempong
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Guiqiang He
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Meng Kuang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan 455000, PR China.
| | - Peng Jun
- Sanya National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, PR China
| | - Min Xue
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
| | - Yanxia Wei
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| | - Jian Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
10
|
Li Y, Liu J, Zhang H, Shi X, Li S, Yang M, Zhang T, Xiao H, Du Z. A Comprehensive Review of Self-Assembled Food Protein-Derived Multicomponent Peptides: From Forming Mechanism and Structural Diversity to Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37486612 DOI: 10.1021/acs.jafc.3c02930] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Food protein-derived multicomponent peptides (FPDMPs) are a natural blend of numerous peptides with various bioactivities and multiple active sites that can assume several energetically favorable conformations in solutions. The remarkable structural characteristics and functional attributes of FPDMPs make them promising codelivery carriers that can coassemble with different bioactive ingredients to induce multidimensional structures, such as fibrils, nanotubes, and nanospheres, thereby producing specific health benefits. This review offers a prospective analysis of FPDMPs-based self-assembly nanostructures, focusing on the mechanism of formation of self-assembled FPDMPs, the internal and external stimuli affecting peptide self-assembly, and their potential applications. In particular, we introduce the exciting prospect of constructing functional materials through precursor template-induced self-assembly of FPDMPs, which combine the bioactivity and self-assembly capacity of peptides and could dramatically broaden the functional utility of peptide-based materials.
Collapse
Affiliation(s)
- Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Xiaoxia Shi
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| |
Collapse
|
11
|
Zhao C, Zhu J, Zhang H, Qi Q, Hu N, Han R, Zheng M, Xu X, Wu Y, Liu J. Postharvest ripening of two varieties of corns: Structure, antioxidant activities and physicochemical properties of zein. Food Chem X 2023; 18:100680. [PMID: 37122556 PMCID: PMC10131124 DOI: 10.1016/j.fochx.2023.100680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
The newly harvested Jidan 66 (JD66) and Liangyu 99 (LY99) varieties of corns were stored for 56 days at constant temperature of 15 and 25 °C with relative humidity of 55%. The postharvest ripening resulted in more disordered secondary structure and less compact tertiary conformation of zein. The emulsifying activity and foaming stability reached maximum after storage of corns at 15 and 25 °C for 14 days, while the emulsifying stability and foaming capacity were the highest at two temperatures of storage for 7 days and 28 days, respectively. Furthermore, zein had the highest viscoelasticity as well as the strongest antioxidant activities after the storage of JD66 at two temperatures for 28 days and the storage of LY99 at 15 °C for 42 days and at 25 °C for 28 days. Therefore, appropriate postharvest ripening of corns changed the structure of zein, improving its antioxidant activities and physicochemical properties.
Collapse
Affiliation(s)
- Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
- Corresponding authors at: College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Jinying Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Qi Qi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Nannan Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Runzhi Han
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Xiuying Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Yuzhu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
- Corresponding authors at: College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
12
|
Han X, Ma P, Shen M, Wen H, Xie J. Modified porous starches loading curcumin and improving the free radical scavenging ability and release properties of curcumin. Food Res Int 2023; 168:112770. [PMID: 37120221 DOI: 10.1016/j.foodres.2023.112770] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Maize porous starch-curcumin microspheres were prepared by encapsulating curcumin into cross-linked porous starch and oxidized porous starch to investigate the effect of modified porous starch in embedding and protecting curcumin. The morphology and physicochemical properties of microspheres were analyzed using scanning electron microscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction, Zeta/DLS, Thermal stability, and antioxidant activity; the release of curcumin was evaluated with a simulated gastric-intestine model. The FT-IR results revealed that curcumin was amorphously encapsulated in the composite and hydrogen bond formation between starch and curcumin was one of the major driving forces for encapsulation. Microspheres increased the initial decomposition temperature of curcumin, which has a protective effect on curcumin. Modification improved the encapsulation efficiency and the scavenging free radical ability of porous starch. The release mechanism of curcumin from microspheres fits first-order and Higuchi models well in gastric and intestinal models, respectively, indicating that encapsulation of curcumin within different porous starches microspheres enables controlled release of curcumin. To recapitulate, two different modified porous starch microspheres improved the drug loading, slow release and free radical scavenging effects of curcumin. Among them, the cross-linked porous starch microspheres had higher encapsulation and slow release ability for curcumin than the oxidized porous starch microspheres. It provides theoretical significance and data basis for the encapsulation of active substances by modified porous starch.
Collapse
Affiliation(s)
- Xiuying Han
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ping Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
13
|
Zhu Y, Li Y, Liu X, Yang X, Song X, Jia Y, Zhong W, Zhu L. Bioaccessibility of per- and polyfluoroalkyl substances in food and dust: Implication for more accurate risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161739. [PMID: 36690103 DOI: 10.1016/j.scitotenv.2023.161739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Humans are exposed to per- and polyfluoroalkyl substances (PFASs) mainly through oral exposure route, while little is known about their bioaccessibility (BC) in oral matrices. Here, the BC of 13 PFASs in simulated vegetable (VFs) and animal foods (AFs) as well as indoor dust was investigated using a physiology-based extraction test. The BC of PFASs in the AFs (78.5 ± 13.6 %) was distinctly higher than that in the VFs (60.6 ± 13.4 %), because high-saturated and long-chain fatty acids in the animal fat favored formation of more stable micelles. The BC of most long-chain PFASs was positively correlated with the protein content while negatively correlated with the carbohydrate content in the foods. The BC of polyfluoroalkyl phosphate diesters was negatively correlated with the lipid content. The BC of the very long-chain PFASs in the foods was 2.42-6.02 times higher than that in the dust, which might be attributed to their strong sequestration in dust. With the increase in bile salt concentration, the BC of PFASs in food increased and then remained constant, which was related to the changes in fatty acids and stability of the formed micelles. Comparing with the previous results obtained from animal study, the BC obtained in this study has the potential to predict PFAS bioavailability in food.
Collapse
Affiliation(s)
- Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yuqing Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xiaosong Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xin Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xiaohua Song
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
14
|
Mo H, Chen X, Cui B, Chen Y, Chen M, Xu Z, Wen L, Cheng Y, Jiao Y. Formation and Characterization of Self-Assembled Rice Protein Hydrolysate Nanoparticles as Soy Isoflavone Delivery Systems. Foods 2023; 12:foods12071523. [PMID: 37048344 PMCID: PMC10094372 DOI: 10.3390/foods12071523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
In this study, soy isoflavones-loaded nanoparticles were prepared using rice proteins (RPs) hydrolyzed by four types of enzyme (alcalase, neutrase, trypsin, and flavorzyme). After optimizing the preparation conditions, the encapsulation efficiency (EE) of the nanoparticles ranged from 61.16% ± 0.92% to 90.65% ± 0.19%. The RPs that were hydrolyzed by flavorzyme with a molecular weight of <5 KDa showed better characters on the formation of nanoparticles, and the formed nanoparticles had the highest EE and loading capacity (9.06%), the smallest particle size (64.77 nm), the lowest polymer dispersity index (0.19), and the lowest zeta potential (−25.64 mV).The results of Fourier transform ion cyclotron resonance, X-ray diffraction, and fluorescence spectroscopy showed that the nanoparticles were successfully encapsulated. The study of interaction showed that the formation of nanoparticles may depend mainly on hydrogen bonds, but other interactions, such as hydrophobic interactions and electrostatic interactions, cannot be ignored. After encapsulation, the pH stability, temperature stability, ionic stability, and oxidation resistance of the nanoparticles were enhanced. Moreover, the in vitro release experiment showed that the encapsulated nanoparticles had a certain protective effect on soybean isoflavones. In summary, rice protein hydrolysates are promising carriers for soybean isoflavones.
Collapse
Affiliation(s)
- Haoran Mo
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xiuwen Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yangling Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Maolong Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
15
|
Enhanced oral bioavailability from food protein nanoparticles: A mini review. J Control Release 2023; 354:146-154. [PMID: 36566844 DOI: 10.1016/j.jconrel.2022.12.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The oral route is the most desirable drug administration path. The oral bioavailability is always compromised from the poor physicochemical and/or biopharmaceutical properties of the active pharmaceutical ingredients. Food protein nanoparticles show promise for oral drug delivery, with improved biosafety and cost-effectiveness compared to polymeric nanoparticles. More importantly, diverse food proteins provide "choice and variety" to meet the challenges faced by different drugs in oral delivery resulting from low solubility, poor permeability, and gastrointestinal stability. The abundance of hydroxyl, amino, and carboxyl groups in food proteins allows easy surface modification of the nanoparticles to impart unique functions. Albeit being in its infancy, food protein nanoparticles exhibit high capability to enhance oral bioavailability of a wide range of drugs from small molecules to biomacromolecules. Considering the rapid growth of the field, the achievements and mechanisms of food protein nanoparticles in enhancing oral bioavailability are reviewed. Factors affecting the performance of food protein nanoparticles are discussed with the purpose to inspire the development of food protein nanoparticle-based oral drug delivery systems.
Collapse
|
16
|
He W, Wang P, Tian H, Zhan P. Self-assembled zein hydrolysate glycosylation with dextran for encapsulation and delivery of curcumin. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
The Influence of Solvents and Colloidal Particles on the Efficiency of Molecular Antioxidants. Antioxidants (Basel) 2022; 12:antiox12010099. [PMID: 36670961 PMCID: PMC9855148 DOI: 10.3390/antiox12010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The radical scavenging activity of three molecular antioxidants (trolox, rutin and ellagic acid) was investigated in different solvents with and without added polymer-based colloidal particles (SL-IP-2). Rutin and ellagic acid showed poor solubility in water, preventing the accurate measurement of the effective antioxidant concentration values, which were determined in ethanol/water (EtOH/H2O) mixtures. The presence of trolox and rutin changed neither the surface charge properties nor the size of SL-IP-2 in these solvents, while significant adsorption on SL-IP-2 was observed for ellagic acid leading to overcharging and rapid particle aggregation at appropriately high antioxidant concentrations in EtOH/H2O. The differences in the radical scavenging capacity of trolox and ellagic acid that was observed in homogeneous solutions using water or EtOH/H2O as solvents vanished in the presence of the particles. Rutin lost its activity after addition of SL-IP-2 due to the larger molecular size and lower exposure of the functional groups to the substrate upon interaction with the particles. The obtained results shed light on the importance of the type of solvent and particle-antioxidant interfacial effects on the radical decomposition ability of molecular antioxidants, which is of crucial importance in industrial processes involving heterogeneous systems.
Collapse
|
18
|
Sun Y, Wei Z, Xue C. Development of zein-based nutraceutical delivery systems: A systematic overview based on recent researches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Chen H, Chen X, Chen X, Lin S, Cheng J, You L, Xiong C, Cai X, Wang S. New perspectives on fabrication of peptide-based nanomaterials in food industry: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Yan X, Li M, Xu X, Liu X, Liu F. Zein-based nano-delivery systems for encapsulation and protection of hydrophobic bioactives: A review. Front Nutr 2022; 9:999373. [PMID: 36245539 PMCID: PMC9554640 DOI: 10.3389/fnut.2022.999373] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 12/25/2022] Open
Abstract
Zein is a kind of excellent carrier materials to construct nano-sized delivery systems for hydrophobic bioactives, owing to its unique interfacial behavior, such as self-assembly and packing into nanoparticles. In this article, the chemical basis and preparation methods of zein nanoparticles are firstly reviewed, including chemical crosslinking, emulsification/solvent evaporation, antisolvent, pH-driven method, etc., as well as the pros and cons of different preparation methods. Various strategies to improve their physicochemical properties are then summarized. Lastly, the encapsulation and protection effects of zein-based nano-sized delivery systems (e.g., nanoparticles, nanofibers, nanomicelles and nanogels) are discussed, using curcumin as a model bioactive ingredient. This review will provide guidance for the in-depth development of hydrophobic bioactives formulations and improve the application value of zein in the food industry.
Collapse
Affiliation(s)
- Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Moting Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
- *Correspondence: Fuguo Liu
| |
Collapse
|
21
|
Encapsulation of EGCG by Zein-Gum Arabic Complex Nanoparticles and In Vitro Simulated Digestion of Complex Nanoparticles. Foods 2022; 11:foods11142131. [PMID: 35885374 PMCID: PMC9317346 DOI: 10.3390/foods11142131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Epigallocatechin gallate (EGCG) has many excellent qualities such as its antitumor, antiradiation and anti-oxidation properties, but its application is limited because its oral bioavailability is low and stability is poor. In this paper, zein and gum arabic (GA) were used as wall materials to prepare Zein-GA complex nanoparticles for encapsulating and protecting the EGCG. The particle size of Zein-GA-EGCG complex nanoparticles ranged from 128.03–221.23 nm, and the EGCG encapsulation efficiency reached a maximum of 75.23% when the mass ratio of zein to GA was 1:1. The FTIR and XRD results illustrated that the components of the Zein-GA-EGCG complex nanoparticles interacted by electrostatic, hydrogen bonding, and hydrophobic interactions. The EGCG release rate of Zein-GA-EGCG nanoparticles (16.42%) was lower than that of Zein-EGCG (25.52%) during gastric digestion, and a large amount of EGCG was released during intestinal digestion, suggesting that the Zein-GA-EGCG nanoparticles could achieve the sustained release of EGCG during in vitro digestion. Hence, using Zein-GA complexes to encapsulate EGCG effectively increased the encapsulation efficiency of EGCG and realized the purpose of sustained release during simulated gastrointestinal digestion.
Collapse
|
22
|
Hassan EA, Hathout RM, Gad HA, Sammour OA. A holistic review on zein nanoparticles and their use in phytochemicals delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Encapsulation of quercetin in pea protein-high methoxyl pectin nanocomplexes: Formation, stability, antioxidant capacity and in vitro release profile. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Zhang Y, Liu G, Ren F, Liu N, Tong Y, Li Y, Liu A, Wu L, Wang P. Delivery of Curcumin Using Zein-Gum Arabic-Tannic Acid Composite Particles: Fabrication, Characterization, and in vitro Release Properties. Front Nutr 2022; 9:842850. [PMID: 35369080 PMCID: PMC8969573 DOI: 10.3389/fnut.2022.842850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 01/11/2023] Open
Abstract
The application of curcumin (Cur) in fat-free food is limited due to its poor water solubility, stability, and bioaccessibility. In this study, zein-gum arabic-tannic acid (zein-GA-TA) composite particles with high physical stability were fabricated to deliver Cur (ZGT-Cur). Their stability and in vitro release properties were also evaluated. The results showed that the thermal and photochemical stability of Cur was improved after loading into composite particles. Meanwhile, the retention rate of Cur in ZGT-Cur composite particles was enhanced compared with Z-Cur or ZG-Cur particles. Fourier transform infrared (FTIR) spectroscopy confirmed that the hydrogen bond within the particles was greatly enhanced after the addition of tannic acid (TA). The in vitro antioxidant activity of Cur in ZGT-Cur composite particles was higher in terms of 2,2'-azino-bis (ABTS) (93.64%) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) (50.41%) compared with Z-Cur or ZG-Cur particles. The bioaccessibility of Cur in ZGT-Cur composite particles was 8.97 times higher than that of free Cur. Therefore, the particles designed in this study will broaden the application of Cur in the food industry by improving its stability and bioaccessibility.
Collapse
Affiliation(s)
- Yiquan Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Guiqiao Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yi Tong
- Jilin COFCO Biochemistry Co., Ltd., Changchun, China
- *Correspondence: Yi Tong
| | - Yi Li
- Jilin COFCO Biochemistry Co., Ltd., Changchun, China
| | - Anni Liu
- Jilin COFCO Biochemistry Co., Ltd., Changchun, China
| | - Lida Wu
- Jilin COFCO Biochemistry Co., Ltd., Changchun, China
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, China Agricultural University, Beijing, China
- Pengjie Wang
| |
Collapse
|
25
|
Liu J, Li Y, Zhang H, Liu S, Yang M, Cui M, Zhang T, Yu Y, Xiao H, Du Z. Fabrication, characterization and functional attributes of zein-egg white derived peptides (EWDP)-chitosan ternary nanoparticles for encapsulation of curcumin: Role of EWDP. Food Chem 2022; 372:131266. [PMID: 34628117 DOI: 10.1016/j.foodchem.2021.131266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022]
Abstract
The food-derived peptides hydrolyzed from native food protein matrix exhibited various bioactivities and multimeric structures, which make them the promising well-defined nanoplatforms candidates to co-deliver themselves with other bioactive compounds. In this study, zein-egg white derived peptides-chitosan (Z-EWDP-CS) ternary nanoparticles (NPs) were successfully fabricated by the spontaneous assembly to enhance the stability and bioactivity of curcumin (Cur). The novel ternary NPs exhibited a typical nano-spherical structure (138.63 nm, 40.50 mV), and adorable encapsulation efficiency (EE, 93.87%) for Cur. FTIR, XRD and DSC results verified that Cur changed from a crystalline state to an amorphous state, and was successfully entrapped in the cavity of Z-EWDP-CS NPs. Furthermore, the thermal stability, photochemical stability, salt stability, and antioxidant activity were considerably improved in the NPs after the addition of EWDP. Our results demonstrate that the food-derived peptides could be an ideal affinity agent for the co-delivery of themselves with hydrophobic nutraceuticals.
Collapse
Affiliation(s)
- Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Shitong Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Meiyan Cui
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
26
|
Zhao Y, Han X, Yin H, Li Q, Zhou J, Zhang H, Zhang W, Zhao C, Liu J. Preparation and characterisation of curcumin‐loaded pea protein‐zein nanocomplexes using pH‐driven method. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yilin Zhao
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Xinxin Han
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Huanhuan Yin
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Qi Li
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Jingyi Zhou
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Hao Zhang
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Wenge Zhang
- Particle Laboratory Center for Environmental Metrology National Institute of Metrology Beijing 100022 China
| | - Chengbin Zhao
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Jingsheng Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| |
Collapse
|
27
|
Abuhassira-Cohen Y, Livney YD. Enhancing bioavailability of encapsulated hydrophobic nutraceuticals: Insights from in-vitro, in-vivo and clinical studies. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Ren G, He Y, Liu C, Ni F, Luo X, Shi J, Song Y, Li T, Huang M, Shen Q, Xie H. Encapsulation of curcumin in ZEIN-HTCC complexes: Physicochemical characterization, in vitro sustained release behavior and encapsulation mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112909] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Chen H, Cai X, Cheng J, Wang S. Self-assembling peptides: Molecule-nanostructure-function and application on food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Fu JJ, Zhang GY, Zhang ZH, Shao ZW, Xu XB, Song L. Formation mechanism of nanocomplex of resveratrol and glycated bovine serum albumin and their glycation-enhanced stability showing glycation extent. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Interface template synthesis of zein-based amorphous TiO2 composite microcapsules with enhanced photo-catalysis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Gong S, Wang D, Tao S, Hu X, Wang C, Sun Y, Zhao B, Li Y. Facile encapsulation of thymol within deamidated zein nanoparticles for enhanced stability and antibacterial properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Surface-Tailored Zein Nanoparticles: Strategies and Applications. Pharmaceutics 2021; 13:pharmaceutics13091354. [PMID: 34575430 PMCID: PMC8465254 DOI: 10.3390/pharmaceutics13091354] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Plant-derived proteins have emerged as leading candidates in several drug and food delivery applications in diverse pharmaceutical designs. Zein is considered one of the primary plant proteins obtained from maize, and is well known for its biocompatibility and safety in biomedical fields. The ability of zein to carry various pharmaceutically active substances (PAS) position it as a valuable contender for several in vitro and in vivo applications. The unique structure and possibility of surface covering with distinct coating shells or even surface chemical modifications have enabled zein utilization in active targeted and site-specific drug delivery. This work summarizes up-to-date studies on zein formulation technology based on its structural features. Additionally, the multiple applications of zein, including drug delivery, cellular imaging, and tissue engineering, are discussed with a focus on zein-based active targeted delivery systems and antigenic response to its potential in vivo applicability.
Collapse
|
34
|
Liu K, Chen YY, Zha XQ, Li QM, Pan LH, Luo JP. Research progress on polysaccharide/protein hydrogels: Preparation method, functional property and application as delivery systems for bioactive ingredients. Food Res Int 2021; 147:110542. [PMID: 34399519 DOI: 10.1016/j.foodres.2021.110542] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 06/15/2021] [Indexed: 01/12/2023]
Abstract
Some bioactive ingredients in foods are unstable and easily degraded during processing, storage, transportation and digestion. To enhance the stability and bioavailability, some food hydrogels have been developed to encapsulate these unstable compounds. In this paper, the preparation methods, formation mechanisms, physicochemical and functional properties of some protein hydrogels, polysaccharide hydrogels and protein-polysaccharide composite hydrogels were comprehensively summarized. Since the hydrogels have the ability to control the release and enhance the bioavailability of bioactive ingredients, the encapsulation and release mechanisms of polyphenols, flavonoids, carotenoids, vitamins and probiotics by hydrogels were further discussed. This review will provide a comprehensive reference for the deep application of polysaccharide/protein hydrogels in food industry.
Collapse
Affiliation(s)
- Kang Liu
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
35
|
Fan W, Zhang X, Zhu W, Zhang X, Di L. Preparation of Curcumin-Eudragit ® E PO Solid Dispersions with Gradient Temperature through Hot-Melt Extrusion. Molecules 2021; 26:4964. [PMID: 34443551 PMCID: PMC8400050 DOI: 10.3390/molecules26164964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 01/02/2023] Open
Abstract
Hot-melt extrusion (HME) has great advantages for the preparation of solid dispersion (SD), for instance, it does not require any organic solvents. Nevertheless, its application to high-melting-point and thermosensitive drugs has been rarely reported. In this study, thermally unstable curcumin (Cur) was used as a drug model. The HME process was systematically studied by adjusting the gradient temperature mode and residence time, with the content, crystallinity and dissolution of Cur as the investigated factors. The effects of barrel temperature, screw speed and cooling rate on HME were also examined. Solubility parameters and the Flory-Huggins method were used to evaluate the miscibility between Cur and carriers. Differential scanning calorimetry, X-ray diffraction, Fourier transform infrared spectroscopy, equilibrium solubility and in vitro and in vivo experiments were used to characterize and evaluate the results. An amorphous Cur SD was successfully obtained, increasing the solubility and release of Cur. In the optimal process, the mass ratio of Cur to Eudragit® E PO (EPO) was 1:4 and the barrel temperature was set at a gradient heating mode (130 °C-135 °C-140 °C-145 °C-150 °C-155 °C-160 °C) at 100 rpm. Related pharmacokinetic test results also showed the improved bioavailability of the drug in rats. In a pharmacodynamic analysis of Sprague-Dawley rats, the Cmax and the bioavailability of the Cur-EPO SD were 2.6 and 1.5 times higher than those of Cur, respectively. The preparation of the amorphous SD not only provided more solubility but also improved the bioavailability of Cur, which provides an effective way to improve the bioavailability of BCS II drugs.
Collapse
Affiliation(s)
- Wenling Fan
- Laboratory of Pharmacy Engineering, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.Z.); (W.Z.); (X.Z.)
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaotong Zhang
- Laboratory of Pharmacy Engineering, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.Z.); (W.Z.); (X.Z.)
| | - Wenjing Zhu
- Laboratory of Pharmacy Engineering, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.Z.); (W.Z.); (X.Z.)
| | - Xinyi Zhang
- Laboratory of Pharmacy Engineering, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.Z.); (W.Z.); (X.Z.)
| | - Liuqing Di
- Institute of Jiangsu Engineering Research Center for Efficient Delivery System of Traditional Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| |
Collapse
|
36
|
Fu JJ, Sun C, Tan ZF, Zhang GY, Chen GB, Song L. Nanocomplexes of curcumin and glycated bovine serum albumin: The formation mechanism and effect of glycation on their physicochemical properties. Food Chem 2021; 368:130651. [PMID: 34392117 DOI: 10.1016/j.foodchem.2021.130651] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Abstract
Bovine serum albumin (BSA) and BSA-glucose conjugates (GBSAⅠ and GBSAⅠI) with different extent of glycation were complexed with curcumin (CUR). The formation mechanism of BSA/GBSA-CUR complexes and the effect of glycation on their physicochemical properties were investigated. Fluorescence quenching and FTIR analysis indicated that the BSA/GBSA-CUR nanocomplexes were formed mainly by hydrophobic interactions. XRD analysis demonstrated that CUR was present in an amorphous state in the nanocomplexes. BSA with a greater extent of glycation (BSA < GBSAⅠ<GBSAⅠI) displayed a higher binding affinity for CUR. The highest CUR encapsulation efficiency (86.77%) and loading capacity (7.81 mg/g) were obtained in the GBSAⅠI-CUR nanocomplex. The zeta-potential varied from -17.45 to -27.65 mV, depending on the extent of glycation. Furthermore, the physicochemical stability of BSA/GBSA-CUR nanocomplexes increased with the increasing extent of glycation of BSA. Thus, the obtained GBSAⅠI have the potential to become new delivery carriers for encapsulating hydrophobic food components.
Collapse
Affiliation(s)
- Jing-Jing Fu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Cong Sun
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Zhi-Feng Tan
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Guang-Yao Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Gui-Bing Chen
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, The North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, United States.
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China.
| |
Collapse
|
37
|
Chen X, Fu W, Luo Y, Cui C, Suppavorasatit I, Liang L. Protein deamidation to produce processable ingredients and engineered colloids for emerging food applications. Compr Rev Food Sci Food Saf 2021; 20:3788-3817. [PMID: 34056849 DOI: 10.1111/1541-4337.12759] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022]
Abstract
With the ever-increasing demands for functional and sustainable foods from the general public, there is currently a paradigm shift in the food industry toward the production of novel protein-based diet. Food scientists are therefore motivated to search for natural protein sources and innovative technologies to modify their chemical structure for desirable functionality and thus utilization. Deamidation is a viable, efficient, and attractive approach for modifying proteins owing to its ease of operating, specificity, and cost-effective processes. Over the past three decades, the knowledge of protein deamidation for food applications has evolved drastically, including the development of novel approaches for deamidation, such as protein-glutaminase and ion exchange resin, and their practices in new protein substrate. Thanks to deamidation, enhanced functionalities of food proteins from cereals, legumes, milk, oil seeds and others, and thereby their processabilities as food ingredients have been achieved. Moreover, deamidated proteins have been used to fabricate engineered food colloids, including self-assembled protein particles, protein-metallic complexes, and protein-carbohydrate complexes, which have demonstrated tailored physicochemical properties to modulate oral perception, improve gastrointestinal digestion and bioavailability, and protect and/or deliver bioactive nutrients. Novel bioactivity, altered digestibility, and varied allergenicity of deamidated proteins are increasingly recognized. Therefore, deamidated proteins with novel techno-functional and biological properties hold both promise and challenges for future food applications, and a comprehensive review on this area is critically needed to update our knowledge and provide a better understanding on the protein deamidation and its emerging applications.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenyan Fu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | | | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
38
|
Glusac J, Fishman A. Enzymatic and chemical modification of zein for food application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Yan J, Liang X, Ma C, McClements DJ, Liu X, Liu F. Design and characterization of double-cross-linked emulsion gels using mixed biopolymers: Zein and sodium alginate. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106473] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Lan M, Fu Y, Dai H, Ma L, Yu Y, Zhu H, Wang H, Zhang Y. Encapsulation of β-carotene by self-assembly of rapeseed meal-derived peptides: Factor optimization and structural characterization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Li X, Wang M, Yang Y, Lei B, Ma S, Yu Y. Influence of nutrients on the bioaccessibility and transepithelial transport of polybrominated diphenyl ethers measured using an in vitro method and Caco-2 cell monolayers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111569. [PMID: 33396098 DOI: 10.1016/j.ecoenv.2020.111569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Previous research has shown the absorption of polybrominated diphenyl ethers (PBDEs) in the human gastrointestinal tract, but limited attention has been given to the influence of nutrients on PBDE absorption from food matrices. We investigated the effects of nutrients (oil, starch, protein, and dietary fiber) on the absorption and transport of PBDEs in a Caco-2 cell model and bioaccessibility of PBDEs by an in vitro gastrointestinal digestion method. The results showed that the accumulation ratios of PBDE congeners in Caco-2 cells were higher in the nutrient addition groups (oil: 26.7-50.6%, starch: 27.0-58.7%, protein: 12.1-44.1%, and dietary fiber: 28.2-55.1%) than the control group (7.17-36.1%), whereas the transport ratios were lower (oil: 2.30-7.20%, starch: 1.55-9.15%, protein: 1.04-8.78%, and dietary fiber: 0.85-7.04%) than control group (3.78-11.1%). Additionally, the PBDE bioaccessibility could be increased by adding the nutrients, particularly oil and starch. This study clarified the differences in PBDE absorption in the presence of nutrients using the in vitro digestion and Caco-2 cell model. The findings showed that nutrients were an important factor that promoted PBDE absorption in the gastrointestinal tract. Therefore, it is important to focus on a novel dietary strategy of food consumption with contaminant compounds to protect human health.
Collapse
Affiliation(s)
- Xiaojing Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Mengmeng Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515100, PR China
| | - Bingli Lei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515100, PR China
| | - Yingxin Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
42
|
Feng S, Sun Y, Wang D, Sun P, Shao P. Effect of adjusting pH and chondroitin sulfate on the formation of curcumin-zein nanoparticles: Synthesis, characterization and morphology. Carbohydr Polym 2020; 250:116970. [PMID: 33049899 DOI: 10.1016/j.carbpol.2020.116970] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
This study is aiming to investigate the stabilizing effect of chondroitin sulfate (CS) on the preparation of curcumin nanoparticles (NPs). The results showed that adding CS before the anti-solvent process of zein (Z) at pH7 could fabricate most stable NPs (Cur/CS/Z-pH7) with particle size of 197 ± 5 nm and zeta-potential of -48.4 ± 1.9 mV. The pH had a significant effect on the fabrication of NPs. Cur/CS/Z-pH7 was more stable than Cur/CS/Z-pH3, while Cur/Z-CS-pH3 was more stable than the Cur/Z-CS-pH7. According to the results of XRD, FTIR, DSC and CD, CS can form irreversible macromolecular complexes with zein through non-electrostatic interactions during the anti-solvent process (Cur/CS/Z-pH7, Cur/CS/Z-pH3). However, CS was adsorbed on the surface of Zein NPs by electrostatic interaction (Cur/Z-CS-pH7, Cur/Z-CS-pH3), when CS was added after anti-solvent process of zein. These results illustrated that it is better to add CS before the anti-solvent process of zein at neutral pH.
Collapse
Affiliation(s)
- Simin Feng
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, PR China
| | - Yuxin Sun
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Dan Wang
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, PR China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, PR China.
| |
Collapse
|