1
|
Zhang Q, Liu Q, Xue H, Bi Y, Li X, Xu X, Liu Z, Prusky D. ROS mediated by TrPLD3 of Trichothecium roseum participated cell membrane integrity of apple fruit by influencing phosphatidic acid metabolism. Food Microbiol 2024; 120:104484. [PMID: 38431329 DOI: 10.1016/j.fm.2024.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Trichothecium roseum is a typical necrotrophic fungal pathogen that not only bring about postharvest disease, but contribute to trichothecenes contamination in fruit and vegetables. Phospholipase D (PLD), as an important membrane lipid degrading enzyme, can produce phosphatidic acid (PA) by hydrolyzing phosphatidylcholine (PC) and phosphatidylinositol (PI). PA can promote the production of reactive oxygen species (ROS) by activating the activity of NADPH oxidase (NOX), thereby increasing the pathogenicity to fruit. However, the ROS mediated by TrPLD3 how to influence T. roseum infection to fruit by modulating phosphatidic acid metabolism, which has not been reported. In this study, the knockout mutant and complement strain of TrPLD3 were constructed through homologous recombination, TrPLD3 was tested for its effect on the colony growth and pathogenicity of T. roseum. The experimental results showed that the knockout of TrPLD3 inhibited the colony growth of T. roseum, altered the mycelial morphology, completely inhibited the sporulation, and reduced the accumulation of T-2 toxin. Moreover, the knockout of TrPLD3 significantly decreased pathogenicity of T. roseum on apple fruit. Compared to inoculated apple fruit with the wide type (WT), the production of ROS in apple infected with ΔTrPLD3 was slowed down, the relative expression and enzymatic activity of NOX, and PA content decreased, and the enzymatic activity and gene expression of superoxide dismutase (SOD) increased. In addition, PLD, lipoxygenase (LOX) and lipase activities were considerably decreased in apple fruit infected with ΔTrPLD3, the changes of membrane lipid components were slowed down, the decrease of unsaturated fatty acid content was alleviated, and the accumulation of saturated fatty acid content was reduced, thereby maintaining the cell membrane integrity of the inoculated apple fruit. We speculated that the decreased PA accumulation in ΔTrPLD3-inoculated apple fruit further weakened the interaction between PA and NOX on fruit, resulting in the reduction of ROS accumulation of fruits, which decreased the damage to the cell membrane and maintained the cell membrane integrity, thus reducing the pathogenicity to apple. Therefore, TrPLD3-mediated ROS plays a critical regulatory role in reducing the pathogenicity of T. roseum on apple fruit by influencing phosphatidic acid metabolism.
Collapse
Affiliation(s)
- Qianqian Zhang
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Qili Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Xiao Li
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Xiaobin Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhiguang Liu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| |
Collapse
|
2
|
Wang H, Xu K, Li X, Blanco-Ulate B, Yang Q, Yao G, Wei Y, Wu J, Sheng B, Chang Y, Jiang CZ, Lin J. A pear S1-bZIP transcription factor PpbZIP44 modulates carbohydrate metabolism, amino acid, and flavonoid accumulation in fruits. HORTICULTURE RESEARCH 2023; 10:uhad140. [PMID: 37575657 PMCID: PMC10421730 DOI: 10.1093/hr/uhad140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/08/2023] [Indexed: 08/15/2023]
Abstract
Fruit quality is defined by attributes that give value to a commodity. Flavor, texture, nutrition, and shelf life are key quality traits that ensure market value and consumer acceptance. In pear fruit, soluble sugars, organic acids, amino acids, and total flavonoids contribute to flavor and overall quality. Transcription factors (TFs) regulate the accumulation of these metabolites during development or in response to the environment. Here, we report a novel TF, PpbZIP44, as a positive regulator of primary and secondary metabolism in pear fruit. Analysis of the transient overexpression or RNAi-transformed pear fruits and stable transgenic tomato fruits under the control of the fruit-specific E8 promoter demonstrated that PpZIP44 substantially affected the contents of soluble sugar, organic acids, amino acids, and flavonoids. In E8::PpbZIP44 tomato fruit, genes involved in carbohydrate metabolism, amino acid, and flavonoids biosynthesis were significantly induced. Furthermore, in PpbZIP44 overexpression or antisense pear fruits, the expression of genes in the related pathways was significantly impacted. PpbZIP44 directly interacted with the promoter of PpSDH9 and PpProDH1 to induce their expression, thereby depleting sorbitol and proline, decreasing citrate and malate, and enhancing fructose contents. PpbZIP44 also directly bound to the PpADT and PpF3H promoters, which led to the carbon flux toward phenylalanine metabolites and enhanced phenylalanine and flavonoid contents. These findings demonstrate that PpbZIP44 mediates multimetabolism reprogramming by regulating the gene expression related to fruit quality compounds.
Collapse
Affiliation(s)
- Hong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Kexin Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xiaogang Li
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Bárbara Blanco-Ulate
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Qingsong Yang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yiduo Wei
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Jun Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China
| | - Baolong Sheng
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Youhong Chang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, California, 95616, USA
| | - Jing Lin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
3
|
Hong K, Yao Q, Golding JB, Pristijiono P, Zhang X, Hou X, Yuan D, Li Y, Chen L, Song K, Chen J. Low temperature storage alleviates internal browning of ‘Comte de Paris’ winter pineapple fruit by reducing phospholipid degradation, phosphatidic acid accumulation and membrane lipid peroxidation processes. Food Chem 2023; 404:134656. [DOI: 10.1016/j.foodchem.2022.134656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/14/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
4
|
Wang T, Yan T, Shi J, Sun Y, Wang Q, Li Q. The stability of cell structure and antioxidant enzymes are essential for fresh-cut potato browning. Food Res Int 2023; 164:112449. [PMID: 36738009 DOI: 10.1016/j.foodres.2022.112449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
In this study, the browning degrees of fresh-cut potatoes of different cultivars were investigated. Fresh-cut potatoes of the 'Huangjin' cultivar exhibited a higher browning index and sensory quality deterioration over time compared with 'Minshu' potatoes. 'Huangjin' exhibited a higher activity of browning-related enzymes such as polyphenol oxidase, tyrosinase, peroxidase, phenylalanine ammonia-lyase, phospholipase D (PLD), and lipoxygenase (LOX) than 'Minshu'. Furthermore, 'Minshu' exhibited lower H2O2 and malonaldehyde (MDA) contents, lower membrane lipid degradation and peroxidation, and delayed browning, attributable to its low PLD and LOX activities. The ultrastructure of 'Minshu' cells remained intact 7 h after cutting, while that of 'Huangjin' cells was severely damaged, and 'Minshu' cells exhibited more Golgi complexes and black particles than 'Huangjin' cells. Moreover, 'Huangjin' cells exhibited numerous multivesicular bodies, which were nonexistent in 'Minshu' cells. The results show that 'Minshu' potatoes feature a lower browning-related enzyme activity than 'Huangjin', and a tough cell structure to resist post-cut browning.
Collapse
Affiliation(s)
- Tingting Wang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Ting Yan
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Jingkun Shi
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Yanmei Sun
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Qingguo Wang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China
| | - Qingqing Li
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, China.
| |
Collapse
|
5
|
Sun Y, Luo M, Ge W, Zhou X, Zhou Q, Wei B, Cheng S, Ji S. Phenylpropanoid metabolism in relation to peel browning development of cold-stored 'Nanguo' pears. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111363. [PMID: 35750293 DOI: 10.1016/j.plantsci.2022.111363] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Cold-stored 'Nanguo' pears are susceptible to peel browning during subsequent shelf life. In this study, 'Nanguo' pears were cold-stored for different periods to elucidate the metabolism of phenylpropanoid accompanying browning. Changes in phenolics and flavonoids and the crucial enzyme activity and related gene expression involved in the phenylpropanoid pathway were monitored. It was found that the fruit that underwent long-term storage showed peel browning symptoms prior to softening, and the symptom got worse with increasing shelf life. Meanwhile, the accumulation of reactive oxygen species (ROS) and the decrease of ROS scavenging ability were noted. The content of phenolics and flavonoids and the activity and expression of shikimate dehydrogenase (SKDH), phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) involved in the phenylpropanoid pathway decreased with prolonged storage. Correlation analysis revealed that browning was positively correlated with ROS accumulation, and the content of phenolics and flavonoids directly affected ROS scavenging ability. In addition, the decrease in phenolics and flavonoids might be owing to the reduced activity of SKDH, PAL, and 4CL and the down-regulated expression of PuPAL and Pu4CL. Collectively, this study indicated that the metabolism of phenylpropanoid is associated with the browning response induced by low-temperature stress.
Collapse
Affiliation(s)
- Yangyang Sun
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Manli Luo
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Wanying Ge
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Xin Zhou
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Qian Zhou
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Baodong Wei
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Shunchang Cheng
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| | - Shujuan Ji
- College of Food, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang City 110866, People's Republic of China.
| |
Collapse
|
6
|
Physiological Characteristics of Sunburn Peel after Apple Debagged. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123775. [PMID: 35744900 PMCID: PMC9229340 DOI: 10.3390/molecules27123775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
The bagging of fruits provides efficient protection from high-intensity sunlight and improves fruit color and quality. However, bagged fruit suddenly exposed to bright light can cause sunburn and destroys the peel cell structure. In this study, fruits from ten-year-old apple trees of 'Gala' variety were debagged, and the effect of sunburn on fruits was divided into: (1) normal peels (BFN), (2) peels with albefaction (BFA), and (3) browning (BFB). The non-bagging fruits (NBF) were set as a control to study the physiological characteristics of apple fruits with different levels of sunburn. Our results showed that in the early stages of debagged fruits' sunburn, the cell structure of the peel was partially destroyed, the color of the injured fruit surface turned white, and the peroxidation in the cell membrane of the peel increased. Initially, the fruit improved its photosynthetic protection ability, and the activity of antioxidants and phenolics was enhanced, to cope with external injury. However, with the increase in duration of high-intensity sunlight, the cell structure of the peel was severely damaged, and the increase in membrane peroxidation resulted in brown coloration of fruits. Under the same conditions, the photoprotection ability and antioxidant enzyme activity of non-bagged fruits showed higher levels. In conclusion, the non-bagged fruits were more adaptable to high-intensity sunlight as compared to debagged fruits.
Collapse
|
7
|
Liu X, Xiao K, Zhang A, Zhu W, Zhang H, Tan F, Huang Q, Wu X, Zha D. Metabolomic Analysis, Combined with Enzymatic and Transcriptome Assays, to Reveal the Browning Resistance Mechanism of Fresh-Cut Eggplant. Foods 2022; 11:foods11081174. [PMID: 35454761 PMCID: PMC9031582 DOI: 10.3390/foods11081174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Browning has been the primary limitation in eggplant processing. This study investigates the molecular mechanism underlying fresh-cut eggplant fruit browning by observing the physicochemical characteristics of browning-resistant (‘F’) and browning-sensitive (‘36′) eggplant cultivars. Browning-related enzyme activity and gene expression (PPO, LOX, and PLD) were significantly higher in the ‘36′ eggplant, thereby enhancing the degree of browning, compared to the ‘F’ eggplant. The MDA content and O2− production rate progressively increased as browning increased, while the antioxidant capacity of the fruit decreased. The cutting injury significantly activated the expression of PAL, thereby inducing the accumulation of phenolic acids, while the PPO gene was significantly upregulated, which activated the activity of polyphenol oxidase. Our results showed that the oxidation of chlorogenic acids to chlorogenic quinones resulted in the occurrence of browning, which suggests chlorogenic acid as the main browning substrate in fresh-cut eggplant.
Collapse
Affiliation(s)
- Xiaohui Liu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
- College of Food Science, Shanghai Ocean University, Shanghai 201306, China
| | - Kai Xiao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
| | - Aidong Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
| | - Hui Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
| | - Feng Tan
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
| | - Qianru Huang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
| | - Xuexia Wu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
- Correspondence: ; Tel.: +86-21-37195817
| | - Dingshi Zha
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.L.); (K.X.); (A.Z.); (W.Z.); (H.Z.); (F.T.); (Q.H.); (D.Z.)
| |
Collapse
|
8
|
Liu F, Huang W, Fan Y, He W, Tao Y, Wang C. Effects of dehydration speed on the metabolism of membrane lipids and its relation to the browning of the Thompson seedless grape. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Xinjiang is the main producing area of raisins and the largest green raisins production base in China. The browning of Thompson seedless grape raisin is extremely serious during drying process, which has become the key issue in the development of Xinjiang raisin industry. Previous studies have shown that the dehydration speed has a great impact on the browning of Thompson seedless grape, but few relevant mechanisms have been studied. Here, we demonstrate the effect of dehydration speed on the lipid metabolism and its relation to the browning of the Thompson seedless grape during drying. Compared to slow dehydration treatment, the rapid dehydration treatment of the Thompson seedless grape exhibited a lower degree of browning and activities of lipoxygenase (LOX), a higher index of unsaturated fatty acids and degree of unsaturated fatty acid. Moreover, the Thompson seedless grape treated with rapid dehydration resulted in a lower rate of superoxide anion production, hydrogen peroxide content, membrane permeability, and malondialdehyde content. These findings demonstrate that rapid dehydration inhibiting the browning of Thompson seedless grapes might be due to the inhibiting activities of LOX and the lower accumulation of reactive oxygen species. These activities can inhibit lipid peroxidation and slow the decomposition of unsaturated fatty acid in the membrane in Thompson seedless grapes, protecting the cellular membrane structural integrity which may result in less contact of polyphenol oxidase with phenolic substrates and less enzymatic browning during drying. The results provide a theoretical basis for the application of rapid dehydration in drying Thompson seedless grapes.
Collapse
|
9
|
Xie J, Qin Z, Pan J, Li J, Li X, Khoo HE, Dong X. Melatonin treatment improves postharvest quality and regulates reactive oxygen species metabolism in "Feizixiao" litchi based on principal component analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:965345. [PMID: 36035718 PMCID: PMC9403734 DOI: 10.3389/fpls.2022.965345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/20/2022] [Indexed: 05/11/2023]
Abstract
Postharvest quality of litchi reduces rapidly during storage at room temperature. This study aimed to investigate the effect of melatonin treatment on postharvest quality and oxidative stress markers of litchi fruit during cold storage. The "Feizixiao" litchi was treated with melatonin solution concentrations of 0.2 and 0.6 mmol·L-1 and then stored at 4°C for 12 days. The results confirmed that the melatonin treatment effectively maintained the appearance and color of the litchi fruit, suppressed the peel browning, and improved the litchi quality. The treatment also significantly enhanced the levels of endogenous melatonin, antioxidant components (total phenolics, flavonoids, and anthocyanin), and antioxidant enzyme activities of the fruit. It also inhibited the other oxidative stress markers, such as O 2 - , H2O2, MDA, and protein carbonyl content, and upregulated the expressions of antioxidant and Msr-related genes. Correlation and principal component analyses further confirmed that the melatonin treatment effectively delayed the fruit senescence by enhancing the antioxidant enzyme activities and modulating peel browning and reactive oxygen species metabolism of the litchi fruit via regulating gene expression of the related enzymes (SOD and PPO). These findings suggested that the exogenous application of melatonin to litchi during the postharvest is an ideal way to preserve the fruit quality and delay fruit senescence.
Collapse
Affiliation(s)
- Jing Xie
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin, China
| | - Ziyi Qin
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin, China
| | - Jiali Pan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin, China
| | - Jing Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin, China
| | - Xia Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin, China
| | - Hock Eng Khoo
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin, China
- *Correspondence: Hock Eng Khoo,
| | - Xinhong Dong
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin, China
- Xinhong Dong,
| |
Collapse
|
10
|
Wei D, Yang J, Xiang Y, Meng L, Pan Y, Zhang Z. Attenuation of Postharvest Browning in Rambutan Fruit by Melatonin Is Associated With Inhibition of Phenolics Oxidation and Reinforcement of Antioxidative Process. Front Nutr 2022; 9:905006. [PMID: 35795584 PMCID: PMC9251426 DOI: 10.3389/fnut.2022.905006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Rambutan is a famous tropical fruit with a unique flavor and considerable economic value. However, the high vulnerability to postharvest browning leads to a short shelf life of rambutan fruit. Melatonin (MT) is an excellent bioactive molecule that possesses the potential to improve the storability of the harvested crops. In this study, the physiological mechanism of exogenous MT in affecting pericarp browning and senescence of postharvest rambutan fruit was investigated. Experimental results showed that the application of MT at 0.125 mmol L-1 appreciably retarded the advancement of pericarp browning and color parameters (L*, a*, and b*). MT treatment inhibited the increase in membrane relative electrolytes leakage (REL) while lowering the accumulation of reactive oxygen species (ROS) (■O2 - and H2O2) and malonaldehyde (MDA). Reduced phenolics oxidation, as indicated by higher contents of total phenolics, flavonoids, and anthocyanins along with fewer activities of peroxidase (POD) and polyphenol oxidase (PPO), was detected in MT fruit compared with control fruit. MT treatment maintained the cellular redox state by inducing antioxidant enzyme activity and reinforcing the ascorbate-glutathione (AsA-GSH) cycle. Furthermore, the ultrastructural observation revealed that the spoilage of cellular and subcellular structures was milder in MT fruit than that in control fruit. The results suggest that MT could ameliorate the browning and senescence of rambutan fruit by inhibiting phenolic oxidation and enhancing the antioxidative process.
Collapse
Affiliation(s)
- Dongling Wei
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Jiali Yang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yue Xiang
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yonggui Pan
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhengke Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
- *Correspondence: Zhengke Zhang,
| |
Collapse
|
11
|
Transcriptomic and Metabolic Analyses Reveal the Mechanism of Ethylene Production in Stony Hard Peach Fruit during Cold Storage. Int J Mol Sci 2021; 22:ijms222111308. [PMID: 34768737 PMCID: PMC8583708 DOI: 10.3390/ijms222111308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Stony hard (SH) peach (Prunus persica L. Batsch) fruit does not release ethylene and has very firm and crisp flesh at ripening, both on- and off-tree. Long-term cold storage can induce ethylene production and a serious risk of chilling injury in SH peach fruit; however, the regulatory mechanism underlying ethylene production in stony hard peach is relatively unclear. In this study, we analyzed the phytohormone levels, fruit firmness, transcriptome, and lipidome changes in SH peach ‘Zhongtao 9’ (CP9) during cold storage (4 °C). The expression level of the ethylene biosynthesis gene PpACS1 and the content of ethylene in SH peach fruit were found to be upregulated during cold storage. A peak in ABA release was observed before the release of ethylene and the genes involved in ABA biosynthesis and degradation, such as zeaxanthin epoxidase (ZEP) and 8’-hydroxylase (CYP707A) genes, were specifically induced in response to low temperatures. Fruit firmness decreased fairly slowly during the first 20 d of refrigeration, followed by a sharp decline. Furthermore, the expression level of genes encoding cell wall metabolic enzymes, such as polygalacturonase, pectin methylesterase, expansin, galactosidase, and β-galactosidase, were upregulated only upon refrigeration, as correlated with the decrease in fruit firmness. Lipids belonging to 23 sub-classes underwent differential rearrangement during cold storage, especially ceramide (Cer), monoglycosylceramide (CerG1), phosphatidic acid (PA), and diacyglyceride (DG), which may eventually lead to ethylene production. Exogenous PC treatment provoked a higher rate of ethylene production. We suspected that the abnormal metabolism of ABA and cell membrane lipids promotes the production of ethylene under low temperature conditions, causing the fruit to soften. In addition, ERF transcription factors also play an important role in regulating lipid, hormone, and cell wall metabolism during long-term cold storage. Overall, the results of this study give us a deeper understanding of the molecular mechanism of ethylene biosynthesis during the postharvest storage of SH peach fruit under low-temperature conditions.
Collapse
|
12
|
Zhou X, Wang Z, Zhu C, Yue J, Yang H, Li J, Gao J, Xu R, Deng X, Cheng Y. Variations of membrane fatty acids and epicuticular wax metabolism in response to oleocellosis in lemon fruit. Food Chem 2020; 338:127684. [PMID: 32916584 DOI: 10.1016/j.foodchem.2020.127684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 10/23/2022]
Abstract
Oleocellosis is a physiological disorder causing blemishes on fruit surface. This study investigated the influence of oleocellosis on the membrane fatty acids and wax in lemon fruit rinds at the morphological, physiological, metabolic and molecular levels by using a variety with a high incidence rate of oleocellosis (green lemon). Oleocellosis-damaged rinds showed loose and flaky wax layers with more fissures on the surface, as well as higher contents of C16 and C18 fatty acids and very long chain (VLC) fatty alkanes while lower contents of VLC fatty aldehydes. The main differentially expressed genes, including FabZ, FAD2 and SAD6 involved in the accumulation of C16 and C18 fatty acids and CER1 involved in the transformation of VLC fatty aldehydes to VLC fatty alkanes, were up-regulated by oleocellosis. These results indicate that oleocellosis accelerates the accumulation of membrane free fatty acids and transformation of VLC fatty aldehydes to VLC fatty alkanes.
Collapse
Affiliation(s)
- Xianyan Zhou
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; National R&D Center for Citrus Preservation, Wuhan 430070, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China
| | - Zhiquan Wang
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China
| | - Chunhua Zhu
- National R&D Center for Citrus Preservation, Wuhan 430070, PR China
| | - Jianqiang Yue
- National R&D Center for Citrus Preservation, Wuhan 430070, PR China
| | - Hongbin Yang
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China
| | - Jinxue Li
- National R&D Center for Citrus Preservation, Wuhan 430070, PR China
| | - Junyan Gao
- National R&D Center for Citrus Preservation, Wuhan 430070, PR China
| | - Rangwei Xu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China
| | - Xiuxin Deng
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China
| | - Yunjiang Cheng
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China.
| |
Collapse
|