1
|
Wang S, Lin S, Liu K, Jia S, Liu Q, Sun N. Investigation into Potential Allergenicity and Digestion-Resistant Linear Epitopes of Fish Skin Gelatin in Cell-Cultured Meat Scaffolds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14922-14940. [PMID: 38885638 DOI: 10.1021/acs.jafc.4c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
As a key component of cell-cultured fish, fish skin gelatin (FSG)-based cell scaffold provides support structures for cell growth, proliferation, and differentiation. However, there are potential allergenicity risks contained in FSG-based scaffolds. In this study, 3D edible scaffolds were prepared by phase separation method and showed a contact angle of less than 90°, which indicated that the scaffolds were favorable for cell adhesion. Besides, the swelling ratio was greater than 200%, implying a great potential to support cell growth. The sequence homology analysis indicated that FSG was prone to cross-reaction with collagen analogues. Additionally, a food allergic model was constructed and represented that mice gavaged with cod FSG exhibited higher levels of specific antibodies, mast cell degranulation, vascular permeability, and intestinal barrier impairment than those gavaged with pangasius and tilapias FSG. Its higher allergenicity might be attributed to a higher number of digestion-resistant linear epitopes. Moreover, the higher hydrolysis degree linked to the exposure of linear epitopes to promote the combination with IgE, which was also responsible for maintaining the higher allergenicity of cod FSG. This study clarifies allergenic risks in cell-cultured fish and further study will focus on the allergenicity reduction of FSG-based cell scaffolds.
Collapse
Affiliation(s)
- Shuya Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Kexin Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Shuqi Jia
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qiaozhen Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
2
|
Yang S, Yang F, Dou W, Chi Y, Chi Y. Testing adulterated liquid-egg: developing rapid detection techniques based on colorimetry, electrochemistry, and interfacial fingerprinting. Food Chem 2024; 444:138674. [PMID: 38335687 DOI: 10.1016/j.foodchem.2024.138674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
To develop rapid detection techniques for liquid eggs' adulteration, three types of adulterations were considered: water dilution, manipulation of yolk ratio in whole egg, and blending different varieties of egg white or yolk. Objective: Establish detection techniques utilizing colorimetry, electrochemistry, and interfacial fingerprinting for these adulterations, respectively. Results: Colorimetry allows for detection (1 min·sample-1) of water dilution through linear (R2 ≥ 0.984) and exponential fitting (R2 ≥ 0.992); Electrochemistry enables detection (6 min·sample-1, R2 ≥ 0.979) of the adulteration of yolk ratio in whole egg; Interfacial fingerprinting technique effectively detects (detection duration: 10 min·sample-1, detection limit: 1.0-10.0 wt%) the adulteration of different varieties of egg white. Subsequently, through 3D-fluorescence microscopy (interface height variation: 22.49-573.45 μm), interfacial tension variation (65.54-35.48 mN·m-1), contact angle variation (89.7°-32.9°), particle size range (free water: 0.94-14.29 μm; protein aggregation: 6.57-10.76 μm), and etc., interfacial fingerprinting mechanism was elucidated. This research contributes novel insights into the detection of adulteration in liquid eggs.
Collapse
Affiliation(s)
- Shuo Yang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Fuming Yang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Wenhao Dou
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Pu J, Hu J, Xiao J, Li S, Wang B, Wang J, Geng F. Integrated landscape of chicken egg chalaza proteomics. Poult Sci 2024; 103:103629. [PMID: 38518664 PMCID: PMC10978523 DOI: 10.1016/j.psj.2024.103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024] Open
Abstract
Chicken egg chalaza (CLZ) is a natural colloidal structure in eggs that exists as an egg yolk stabilizer and is similar in composition to egg white. In this study, the proteome, phosphoproteome, and N-glycoproteome of CLZ were characterized in depth. We hydrolyzed the CLZ proteins and enriched the phosphopeptides and glycopeptides. We identified 45 phosphoproteins and 80 N-glycoproteins, containing 59 phosphosites and 203 N-glycosylation sites, respectively. Typically, the ovalbumin in CLZ was both phosphorylated and N-glycosylated, with 4 phosphosites and 4 N-glycosylation sites. Moreover, we identified 2 N-glycosylated subunits of ovomucin, mucin-5B and mucin-6, with 32 and nine N- glycosylation sites, respectively. Analysis of the phosphorylation and N-glycosylation status of CLZ proteins could provide novel insights into the structural and functional characteristics of CLZ.
Collapse
Affiliation(s)
- Jing Pu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jian Hu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Jing Xiao
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Shugang Li
- Engineering Research Center of Bio-process (Ministry of Education), Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Beibei Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Bio-process (Ministry of Education), Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
4
|
Xiang X, Yu Z, Liu Y, Huang Y, Wang J, Chen L, Ma M. Differential proteomics between unhatched male and female egg yolks reveal the molecular mechanisms of sex-allocation and sex-determination in chicken. Poult Sci 2022; 101:101906. [PMID: 35696754 PMCID: PMC9198474 DOI: 10.1016/j.psj.2022.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/09/2022] Open
Abstract
There is a huge demand to identify the sex of unhatched fertilized eggs for laying industry and to understand the differences between male and female eggs as early as possible. Then the molecular mechanisms of sex determination and sex allocation in chicken were revealed. Therefore, TMT proteomic was applied to characterize the variation of molecular matrix between unhatched male and female egg yolks. A total of 411 proteins were identified and 35 differentially expressed proteins (DEPs), including 375332005, 015809562, 763550308 (upregulated, UPs) and 1337178851, 89000557, 89000581 (downregulated, DPs), etc. were confirmed between them. Gene ontology analyses showed that DEPs were mainly involved in response to stimulus, distributed in the extracellular region and participated in binding; KEGG analyses showed that few DPs were participated in cell growth and death, transport and catabolism, signaling molecules, interaction and were enriched in ubiquitin mediated proteolysis, endocytosis, ferroptosis, etc. metabolic pathways. Moreover, most of the DEPs and related metabolic pathways were associated with sex hormones. More importantly, this study supports maternal sex-allocation theory and extends our understanding of the molecular mechanism of sex determination and differentiation in avian. Which also provides a powerful evidence for ovo sexing of unhatched fertilized domestic chicken eggs by nondestructive approach and will be of great significance to eggs processing and production.
Collapse
Affiliation(s)
- Xiaole Xiang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China; National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhuosi Yu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Jingjing Wang
- Department of Food Science, Foshan University, Foshan, 528000, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Brasil YL, Cruz-Tirado J, Barbin DF. Fast online estimation of quail eggs freshness using portable NIR spectrometer and machine learning. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108418] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of the longissimus thoracis of yaks. Curr Res Food Sci 2022; 5:1494-1507. [PMID: 36132491 PMCID: PMC9483648 DOI: 10.1016/j.crfs.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/27/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Yaks (Bos mutus) live in the Qinghai–Tibet plateau. The quality of yak meat is unique due to its genetic and physiological characteristics. Identification of the proteome of yak muscle could help to reveal its meat-quality properties. The common proteome, phosphoproteome, and N-glycoproteome of yak longissimus thoracis (YLT) were analyzed by liquid chromatography-tandem mass spectrometry-based shotgun analysis. A total of 1812 common proteins, 1303 phosphoproteins (3918 phosphorylation sites), and 204 N-glycoproteins (285 N-glycosylation sites) were identified in YLT. The common proteins in YLT were involved mainly in myofibril structure and energy metabolism; phosphoproteins were associated primarily with myofibril organization, regulation of energy metabolism, and signaling; N-glycoproteins were engaged mainly in extracellular-matrix organization, cellular immunity, and organismal homeostasis. We reported, for the first time, the “panorama” of the YLT proteome, specifically the N-glycoproteome of YLT. Our results provide essential information for understanding post mortem physiology (rigor mortis and aging) and the quality of yak meat. A total of 2650 proteins were identified in yak longissimus thoracis. Common proteins were involved mainly in myofibril structure and energy metabolism. Phosphoproteins were associated with myofibrils, energy metabolism, and signaling. N-glycoproteins were engaged mainly in ECM organization, immunity, and homeostasis.
Collapse
|
7
|
Bao Z, Tian Y, Gao J, Da K, Lin S. Effect of partial substitution of sodium salt on the quality of salted quail eggs. J Food Biochem 2021; 45:e13941. [PMID: 34532863 DOI: 10.1111/jfbc.13941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
To improve the quality of salted quail eggs and solve the problem of excessive sodium content in salted eggs, we selected substitutes (K2 CO3 , CaCl2 , MgCl2 , ZnCl2 , and FeC6 H5 O7 ) to partially replace NaCl and study its effect on water migration, physicochemical properties, and textural characteristics. The low-field nuclear magnetic resonance technology (LF-NMR) was used to qualitatively analyze the moisture and proton content of quail eggs during the pickling process. The results showed that the relaxation curves of ZnCl2 and FeC6 H5 O7 groups were significantly different from those of other groups. The bound water content of the ZnCl2 group increased significantly, and FeC6 H5 O7 made the binding degree of water closer. The Na+ of different substitute groups was determined by atomic absorption spectrometry; it was found that the permeation rate of NaCl in the curing process was in the following order: K2 CO3 > control group > MgCl2 > FeC6 H5 O7 > CaCl2 > ZnCl2 . Through the electronic tongue study and comparing the ripening period of salted quail eggs, it was found that the flavor and ripening time of salted quail eggs cured by ZnCl2 and FeC6 H5 O7 were not suitable for low-sodium pickling preparation. At the same time, CaCl2 and MgCl2 were suitable for low-sodium pickling and could improve the product quality. When using K2 CO3 , the substitution ratio can be reduced and two or more compound-curing agents can be formed with CaCl2 and MgCl2 , thus reducing the content of sodium salt in salted eggs. PRACTICAL APPLICATIONS: We simulated the metallic elements contained in the traditional black ash-salted eggs and salt mud coatings. By partial substitution of sodium chloride (NaCl) with different metal salts (K2 CO3 , CaCl2 , MgCl2 , ZnCl2 , and FeC6 H5 O7 ), we studied the effects of these metal salts on the physical and chemical properties, texture, and microstructure of quail eggs during the pickling process. Several suitable low-sodium substitutes were screened out to provide a theoretical foundation for the process optimization of low-sodium-salted quail eggs.
Collapse
Affiliation(s)
- Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Yang Tian
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Jie Gao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Kang Da
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| |
Collapse
|
8
|
Xiao J, Wang J, Cheng L, Gao S, Li S, Qiu N, Li H, Peng L, Geng F. A puzzle piece of protein N-glycosylation in chicken egg: N-glycoproteome of chicken egg vitelline membrane. Int J Biol Macromol 2020; 164:3125-3132. [PMID: 32860793 PMCID: PMC7448747 DOI: 10.1016/j.ijbiomac.2020.08.193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
The chicken egg vitelline membrane (CEVM) is an important structure for the transmembrane transport of egg yolk components, protection of the blastodisc, and separation of egg white and egg yolk. In this study, the N-glycoproteome of the CEVM was mapped and analyzed in depth. Total protein of the CEVM was digested, and the glycopeptides were enriched by a hydrophilic interaction liquid chromatography microcolumn and identified by nano liquid chromatography/tandem mass spectrometry. A total of 435 N-glycosylation sites on 208 N-glycoproteins were identified in CEVM. Gene Ontology enrichment analysis showed that CEVM N-glycoproteins are mainly involved in the regulation of proteinases/inhibitors and transmembrane transport of lipids. Mucin-5B is the primary N-glycoprotein in the CEVM. Comparison of the main N-glycoproteins between the CEVM and other egg parts revealed the tissue specificity of N-glycosylation of egg proteins. The results provide insights into protein N-glycosylation in the chicken egg, CEVM functions and underlying mechanisms.
Collapse
Affiliation(s)
- Jing Xiao
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lei Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Sihai Gao
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shugang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ning Qiu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
9
|
Effect of salting on the water migration, physicochemical and textural characteristics, and microstructure of quail eggs. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|