1
|
Savić A, Mutić J, Lučić M, Onjia A. Dietary Intake of Minerals and Potential Human Exposure to Toxic Elements via Coffee Consumption. Biol Trace Elem Res 2024:10.1007/s12011-024-04315-0. [PMID: 39028479 DOI: 10.1007/s12011-024-04315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
In this study, we investigated the levels of macro, minor, and trace elements in roasted ground and instant coffees (n = 56). We assessed dietary mineral intake and health risks associated with potentially toxic elements (PTEs) using deterministic and probabilistic approaches. The limits of detection (LOD) ranged from 0.13 µg/kg for Be to 3.7 mg/kg for K, with corresponding limits of quantification (LOQ) at 0.43 µg/kg and 12.2 mg/kg. The recovery values (R%) ranged from 89 to 107%. The most abundant element was K, followed by Mg, Ca, and Na. Other elements followed this order: Fe > Mn > B > Cu > Sr > Zn > Al > Ba > Ni > Cr > Co > Se > Sn > Pb > Li > Ag > V > As > Cd > Hg > Be. Instant coffees generally exhibited higher K, Mg, and Na levels than ground-roasted coffees. Notably, Hg, Li, and Se were not detected in 34, 2, and 1 samples, respectively. Coffee samples were generally a good source of dietary elements such as Cu, Mn, Cr, and Se. The PTEs found in coffee products posed negligible risks to human health. The total target hazard quotient (TTHQ) remained below 1, and the incremental lifetime cancer risk (ILCR) did not exceed the threshold of 1 × 10-6. Nevertheless, coffee consumption contributed to Pb and As levels below 15% of the benchmark dose lower confidence limit (BMDL) values, and Sn, Hg, and Cd levels below 0.90% of the provisional tolerable weekly intake (PTWI).
Collapse
Affiliation(s)
| | - Jelena Mutić
- Faculty of Chemistry, Department of Analytical Chemistry, University of Belgrade, 11158, Belgrade, Serbia
| | - Milica Lučić
- Innovation Center of the Faculty of Technology and Metallurgy, 11120, Belgrade, Serbia
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, Department of Analytical Chemistry and Quality Control, University of Belgrade, 11120, Belgrade, Serbia.
| |
Collapse
|
2
|
Song Y, Gao L, He H, Lu J. Analysis of Geoecological Restoration in Mountainous Cities Affected by Geological Hazards with Interval Intuitive Fuzzy Information. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6555005. [PMID: 36285277 PMCID: PMC9588368 DOI: 10.1155/2022/6555005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
With the progress of the industrial revolution and the development of modern science and technology, China's urbanization process has been promoted. Urban and rural economic and social construction has greatly improved the local appearance and social structure. Human activities and natural ecology have affected the whole geological-ecological process, further aggravated the geological-ecological damage, and caused more serious geological disasters, especially in some places (especially in mountainous areas). In recent years, strong geological disasters have occurred in Wenchuan, Yushu, and Lushan regions of China, which not only seriously endanger the life safety and social life of the affected people, but also damage the geological-ecological structure and social functions of the region, especially in the geographically sensitive Alpine urban areas. It also produced many secondary disasters, such as landslides and land collapses. Mountainous cities and towns have special requirements for construction land, which is difficult to construct. Industrial land resources are in short supply, urban and rural comprehensive construction land is not active, and cultivated land area resources are tight. Compared with plain towns with superior geological conditions, mountain towns are more vulnerable to adverse geological environment such as geological ecology, landform, ecological vegetation, and hydrology. The geographical natural environment, as an organic whole that combines and interacts with the geomorphic natural environment, the biological-ecological environment, and the human social management environment, is the main reason that affects the development of mountain towns. Once the mountain geological ecology is destroyed, a series of geological disasters will often be induced, which will seriously restrict the healthy development of mountain towns. Scientific management of the geological environment plays an important role in the assessment of the geological environment restoration of mountain towns after disasters. Therefore, taking the most beautiful counties in China, Baoxing City, and Tianquan County as examples, on the basis of studying the complex geological-ecological theory of geological disasters, this paper further improves the traditional ecological footprint model in China, and using the interval direct fuzzy information constructs the metric index of ecological restoration scheme of mountain towns, and determines the evaluation index and optimal scheme of ecological restoration. From the aspects of landscape layout construction, disaster prevention and mitigation planning and improvement, and environmental restoration project, the future geoecological restoration and response strategy of Lushan County are pointed out, which provide guidance for the postdisaster geoecological safety layout construction.
Collapse
Affiliation(s)
- Yuanwen Song
- Department of Geology and Jewelry, Lanzhou Resources and Environment Voc-Tech University, Lanzhou 730021, China
| | - Lei Gao
- Department of Geology and Jewelry, Lanzhou Resources and Environment Voc-Tech University, Lanzhou 730021, China
| | - Haipin He
- Department of Geology and Jewelry, Lanzhou Resources and Environment Voc-Tech University, Lanzhou 730021, China
| | - Juan Lu
- Department of Geology and Jewelry, Lanzhou Resources and Environment Voc-Tech University, Lanzhou 730021, China
| |
Collapse
|
3
|
Pohl P, Welna M, Szymczycha-Madeja A, Greda K, Jamroz P, Dzimitrowicz A. Response surface methodology assisted development of a simplified sample preparation procedure for the multielement (Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Sr and Zn) analysis of different coffee brews by means of inductively coupled plasma optical emission spectrometry. Talanta 2022; 241:123215. [DOI: 10.1016/j.talanta.2022.123215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
|
4
|
Li J, Li QH, Zhang XY, Zhang LY, Zhao PL, Wen T, Zhang JQ, Xu WL, Guo F, Zhao H, Wang Y, Wang P, Ni DJ, Wang ML. Exploring the Effects of Magnesium Deficiency on the Quality Constituents of Hydroponic-Cultivated Tea ( Camellia sinensis L.) Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14278-14286. [PMID: 34797979 DOI: 10.1021/acs.jafc.1c05141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnesium (Mg) plays important roles in photosynthesis, sucrose partitioning, and biomass allocation in plants. However, the specific mechanisms of tea plant response to Mg deficiency remain unclear. In this study, we investigated the effects of Mg deficiency on the quality constituents of tea leaves. Our results showed that the short-term (7 days) Mg deficiency partially elevated the concentrations of polyphenols, free amino acids, and caffeine but decreased the contents of chlorophyll and Mg. However, long-term (30 days) Mg-deficient tea displayed decreased contents of these constituents. Particularly, Mg deficiency increased the index of catechins' bitter taste and the ratio of total polyphenols to total free amino acids. Moreover, the transcription of key genes involved in the biosynthesis of flavonoid, caffeine, and theanine was differentially affected by Mg deficiency. Additionally, short-term Mg deficiency induced global transcriptome change in tea leaves, in which a total of 2522 differentially expressed genes were identified involved in secondary metabolism, amino acid metabolism, and chlorophyll metabolism. These results may help to elucidate why short-term Mg deficiency partially improves the quality constituents of tea, while long-term Mg-deficient tea may taste more bitter, more astringent, and less umami.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qing-Hui Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xu-Yang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lu-Yu Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Pei-Ling Zhao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ting Wen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jia-Qi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Wen-Luan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Fei Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Hua Zhao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yu Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Pu Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - De-Jiang Ni
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ming-Le Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China (Ministry of Agriculture), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
5
|
Iscuissati IP, Galazzi RM, Miró M, Arruda MAZ. Evaluation of the aluminum migration from metallic seals to coffee beverage after using a high-pressure coffee pod machine. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Olechno E, Puścion-Jakubik A, Socha K, Zujko ME. Coffee Infusions: Can They Be a Source of Microelements with Antioxidant Properties? Antioxidants (Basel) 2021; 10:antiox10111709. [PMID: 34829580 PMCID: PMC8614647 DOI: 10.3390/antiox10111709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023] Open
Abstract
Coffee is a beverage that is very popular all over the world. Its pro-health effect has been demonstrated in many publications. This drink can counteract the effects of oxidative stress thanks to its antioxidant properties. The aim of this study was to collect data on the content of microelements with antioxidant activity (manganese, zinc, copper, iron) in coffee infusions, taking into account various factors. The study considered publications from the years 2000–2020 found in Google Scholar and PubMed databases. It was noted that coffee can provide up to 13.7% of manganese requirements per serving, up to 4.0% and 3.1% of zinc requirements for women and men, up to 2.7% and 2.1% of copper requirements for women and men, and up to 0.4% and 0.6% of iron requirements for women and men. Coffee infusions can also be a source of fluoride (up to 2.5%), chromium (up to 0.4% of daily intake for women and 0.2% for men), and cobalt (up to 0.1%). There are no data in the literature regarding the content of selenium in coffee infusions. The origin of coffee beans and the type of water used (especially regarding fluoride) may have an impact on the content of minerals in infusions. The brewing method does not seem to play an important role. As it is a very popular beverage, coffee can additionally enrich the diet with such micronutrients as manganese, zinc, and copper. This seems beneficial due to their antioxidant properties, however the bioavailability of these elements of coffee should be taken into account. It seems necessary to carry out more research in this area.
Collapse
Affiliation(s)
- Ewa Olechno
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland; (E.O.); (M.E.Z.)
| | - Anna Puścion-Jakubik
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland;
- Correspondence: ; Tel.: +48-8574-854-69
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland;
| | - Małgorzata Elżbieta Zujko
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland; (E.O.); (M.E.Z.)
| |
Collapse
|
7
|
Coffee Brews: Are They a Source of Macroelements in Human Nutrition? Foods 2021; 10:foods10061328. [PMID: 34207680 PMCID: PMC8227654 DOI: 10.3390/foods10061328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Coffee brews, made by pouring water on coffee grounds or brewing in an espresso machine, are among the most popular beverages. The aim of this study was to summarize data on the content of macroelements (sodium, potassium, calcium, magnesium, and phosphorus) in coffee brews prepared with different methods, as well as to review the factors influencing the content of the elements. Studies from 2000 to 2020, published in the PubMed and Google Scholar databases, were reviewed. Taking into account the results presented by the authors, we calculated that one portion of coffee brew can cover 7.5% or 6.4% (for women and men) and 6.6% of the daily requirement for magnesium and potassium, respectively. Coffee provides slightly lower amounts of phosphorus (up to 2.2%), sodium (up to 2.2%), and calcium (up to 0.7% of the daily requirement for women and 0.6% for men). If coffee is drunk in the quantity of three to four cups, it can be an important source of magnesium, considering the risk of magnesium deficiency in modern societies.
Collapse
|