1
|
Li J, Kang W, Zhang J, Ge Y, Yu N, Chen Y. Selection of signature peptide biomarkers for the sesame allergens in commercial food based on LC-MS/MS. Food Chem 2025; 463:141392. [PMID: 39340922 DOI: 10.1016/j.foodchem.2024.141392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Sesame is a commonly used food ingredient, yet it is one of the eight major allergens. As sesame is often consumed in various processed forms, it is important to establish methods for detecting sesame allergens in processed foods. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), using characteristic peptides as biomarkers, detects multiple allergenic proteins simultaneously with high sensitivity and accuracy. Choosing robust biomarkers is beneficial for developing a specific, universal, and sensitive method. To obtain excellent peptides of sesame allergens, sixteen commercial products were used as test materials. Proteins from these materials were extracted, digested, and analyzed. Peptides were screened based on several criteria, including specificity and amino acid composition. Only peptides showing process robustness were retained. Ultimately, nine peptides were selected as the best biomarkers. Based on the above peptides, it is possible to achieve precise and high-sensitivity detection of sesame allergens in processed products.
Collapse
Affiliation(s)
- Jing Li
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Wenhan Kang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; Key Laboratory of Food Authenticity Identification, State Administration for Market Regulation, Beijing 100176, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; Key Laboratory of Food Authenticity Identification, State Administration for Market Regulation, Beijing 100176, People's Republic of China
| | - Yiqiang Ge
- China Rural Technology Development Center, Beijing 100045, People's Republic of China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; Key Laboratory of Food Authenticity Identification, State Administration for Market Regulation, Beijing 100176, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; Key Laboratory of Food Authenticity Identification, State Administration for Market Regulation, Beijing 100176, People's Republic of China.
| |
Collapse
|
2
|
Lu Y, Zhang H, Gao H, Zhang X, Ji H, Gao C, Chen Y, Xiao J, Li Z. Quantification of Allergic Crustacean Tropomyosin Using Shared Signature Peptides in Processed Foods with a Mass Spectrometry-Based Proteomic Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11672-11681. [PMID: 38713521 DOI: 10.1021/acs.jafc.3c09064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Crustacean shellfish are major allergens in East Asia. In the present study, a major allergic protein in crustaceans, tropomyosin, was detected accurately using multiple reaction monitoring mode-based mass spectrometry, with shared signature peptides identified through proteomic analysis. The peptides were deliberately screened through thermal stability and enzymatic digestion efficiency to improve the suitability and accuracy of the developed method. Finally, the proposed method demonstrated a linear range of 0.15 to 30 mgTM/kgfood (R2 > 0.99), with a limit of detection of 0.15 mgTM/kg food and a limit of quantification of 0.5mgTM/kgfood and successfully applied to commercially processed foods, such as potato chips, biscuits, surimi, and hot pot seasonings, which evidenced the applicability of proteomics-based methodology for food allergen analysis.
Collapse
Affiliation(s)
- Yingjun Lu
- College of Food Science and Technology, Shhezi University, Shihezi City 832003, Xinjiang Uygur Autonomous Region, P. R. China
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P.R. China
| | - Hongwei Zhang
- Technology Center of Qingdao Customs District, 83 Xinye Road, Qingdao, Shandong Province 266114, China
| | - Hongyan Gao
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P.R. China
| | - Xiaomei Zhang
- Technology Center of Qingdao Customs District, 83 Xinye Road, Qingdao, Shandong Province 266114, China
| | - Hua Ji
- College of Food Science and Technology, Shhezi University, Shihezi City 832003, Xinjiang Uygur Autonomous Region, P. R. China
| | - Chunyu Gao
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P.R. China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Jing Xiao
- China National Center for Food Safety Risk Assessment, No.2 Building, No.37 Guangqu Road, Chaoyang District, Beijing 100022, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P.R. China
| |
Collapse
|
3
|
Lu Y, Ji H, Chen Y, Li Z, Timira V. A systematic review on the recent advances of wheat allergen detection by mass spectrometry: future prospects. Crit Rev Food Sci Nutr 2023; 63:12324-12340. [PMID: 35852160 DOI: 10.1080/10408398.2022.2101091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wheat is one of the three major staple foods in the world. Although wheat is highly nutritional, it has a variety of allergenic components that are potentially fatal to humans and pose a significant hazard to the growth and consumption of wheat. Wheat allergy is a serious health problem, which is becoming more and more prevalent all over the world. To address and prevent related health risks, it is crucial to establish precise and sensitive detection and analytical methods as well as an understanding of the structure and sensitization mechanism of wheat allergens. Among various analytical tools, mass spectrometry (MS) is known to have high specificity and sensitivity. It is a promising non immune method to evaluate and quantify wheat allergens. In this article, the current research on the detection of wheat allergens based on mass spectrometry is reviewed. This review provides guidance for the further research on wheat allergen detection using mass spectrometry, and speeds up the development of wheat allergen research in China.
Collapse
Affiliation(s)
- Yingjun Lu
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Hua Ji
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), Beijing, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
4
|
Luan H, Lu J, Li Y, Xu C, Shi W, Lu Y. Simultaneous Identification and Species Differentiation of Major Allergen Tropomyosin in Crustacean and Shellfish by Infrared Spectroscopic Chemometrics. Food Chem 2023; 414:135686. [PMID: 36827779 DOI: 10.1016/j.foodchem.2023.135686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023]
Abstract
To solve the lack of rapid and accurate methods for allergen identification and traceability, an infrared spectroscopic chemometric analytical model (IR-CAM) was established by combining infrared spectroscopy with principal component and cluster analysis. By comparing the second derivative infrared (SD-IR) spectra of 5 proteins and 14 crustaceans and shellfish tropomyosin (TM), 8 shared peaks and unique fingerprint peaks in the amide III region were found for crabs, shrimps, and shellfish. Based on the unique fingerprint peaks coexisting with shared peaks, allergen TM in crustaceans and shellfish could be identified within 10 min (cf. ELISA ∼ 4 h). Concurrently, the species differentiation of TM at the Class/Family level was achieved based on IR-CAM. Validation by fermented aquatic products TM (n = 60) demonstrated that the developed IR-CAM could simultaneously identify and differentiate TM in crustaceans and shellfish accurately. It could be applied for allergen detection and traceability of aquatic products on an antibody-free basis.
Collapse
Affiliation(s)
- Hongwei Luan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China.
| | - Jiada Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Yaru Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| | - Ying Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| |
Collapse
|
5
|
Agregán R, Pateiro M, Kumar M, Franco D, Capanoglu E, Dhama K, Lorenzo JM. The potential of proteomics in the study of processed meat products. J Proteomics 2023; 270:104744. [PMID: 36220542 DOI: 10.1016/j.jprot.2022.104744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Proteomics is a field that has grown rapidly since its emergence in the mid-1990s, reaching many disciplines such as food technology. The application of proteomic techniques in the study of complex biological samples such as foods, specifically meat products, allows scientists to decipher the underlying cellular mechanisms behind different quality traits. Lately, much emphasis has been placed on the discovery of biomarkers that facilitate the prediction of biochemical transformations of the product and provide key information on parameters associated with traceability and food safety. This review study focuses on the contribution of proteomics in the improvement of processed meat products. Different techniques and strategies have recently been successfully carried out in the study of the proteome of these products that can help the development of foods with a higher sensory quality, while ensuring consumer safety through early detection of microbiological contamination and fraud. SIGNIFICANCE: The food industry and the academic world work together with the aim of responding to market demands, always seeking excellence. In particular, the meat industry has to face a series of challenges such as, achieving sensory attributes in accordance with the standards required by the consumer and maintaining a high level of safety and transparency, avoiding deliver adulterated and/or contaminated products. This review work exposes how the aforementioned challenges are attempted to be solved through proteomic technology, discussing the latest and most outstanding research in this regard, which undoubtedly contribute to improving the quality, in all the extension of the word, of meat products, providing relevant knowledge in the field of proteomic research.
Collapse
Affiliation(s)
- Rubén Agregán
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Department of Chemical Engineering, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain.
| |
Collapse
|
6
|
Recent advance in the investigation of aquatic “blue foods” at a molecular level: A proteomics strategy. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Determination of porcine derived components in gelatin and gelatin-containing foods by high performance liquid chromatography-tandem mass spectrometry. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Dong X, Raghavan V. A comprehensive overview of emerging processing techniques and detection methods for seafood allergens. Compr Rev Food Sci Food Saf 2022; 21:3540-3557. [PMID: 35676763 DOI: 10.1111/1541-4337.12987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
Abstract
Seafood is rich in nutrients and plays a significant role in human health. However, seafood allergy is a worldwide health issue by inducing adverse reactions ranging from mild to life-threatening in seafood-allergic individuals. Seafood consists of fish and shellfish, with the major allergens such as parvalbumin and tropomyosin, respectively. In the food industry, effective processing techniques are applied to seafood allergens to lower the allergenicity of seafood products. Also, sensitive and rapid allergen-detection methods are developed to identify and assess allergenic ingredients at varying times. This review paper provides an overview of recent advances in processing techniques (thermal, nonthermal, combined [hybrid] treatments) and main allergen-detection methods for seafood products. The article starts with the seafood consumption and classification, proceeding with the prevalence and symptoms of seafood allergy, followed by a description of biochemical characteristics of the major seafood allergens. As the topic is multidisciplinary in scope, it is intended to provide information for further research essential for food security and safety.
Collapse
Affiliation(s)
- Xin Dong
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
9
|
Zhang H, Abdallah MF, Zhang J, Yu Y, Zhao Q, Tang C, Qin Y, Zhang J. Comprehensive quantitation of multi-signature peptides originating from casein for the discrimination of milk from eight different animal species using LC-HRMS with stable isotope labeled peptides. Food Chem 2022; 390:133126. [PMID: 35567972 DOI: 10.1016/j.foodchem.2022.133126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/04/2022]
Abstract
Milk species adulteration has become an altering issue worldwide. In this study, a robust quantification method based on LC-HRMS for the simultaneous detection and differentiation of milk type from eight different animal species (namely: cow, water buffalo, wild yak, goat, sheep, donkey, horse, and camel) was established by detecting nine signature peptides originating from casein. The developed method was in-house validated in terms of sensitivity, accuracy, and precision. As a result, limits of quantification (LOQ) were ranging from 5 to 30 µg/L, recoveries ranged from 95.2% to 104.5%, and intra-day and inter-day variability were lower than 11.4% and 12.6%, respectively, for all the targeted peptides. Furthermore, this method was successfully applied to 46 commercial minor species' milk, in which 15 samples were false labeling. The obtained results indicate the necessity to monitor milk species adulteration in order to protect consumers from consuming misleading labeled minor species animal's milk.
Collapse
Affiliation(s)
- Huiyan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mohamed F Abdallah
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Jingjing Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Valdemiro Alves de Oliveira L, Rafael Kleemann C, Molognoni L, Daguer H, Barcellos Hoff R, Schwinden Prudencio E. A reference method to detect fresh cheeses adulteration with whey by LC-MS/MS. Food Res Int 2022; 156:111140. [DOI: 10.1016/j.foodres.2022.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 12/01/2022]
|
11
|
Quantification of major milk proteins using ultra-performance liquid chromatography tandem triple quadrupole mass spectrometry and its application in milk authenticity analysis. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Bianco M, Calvano CD, Ventura G, Losito I, Cataldi TR. Determination of hidden milk allergens in meat-based foodstuffs by liquid chromatography coupled to electrospray ionization and high-resolution tandem mass spectrometry. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Wang Y, Zhou J, Peng H, Ma J, Li H, Li L, Li T, Fang Z, Ma A, Fu L. High-Throughput Identification of Allergens in a Food System via Hybridization Probe Cluster-Targeted Next-Generation Sequencing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11992-12001. [PMID: 34498855 DOI: 10.1021/acs.jafc.1c03595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Food allergies (FAs) are a crucial public health problem and a severe food safety issue, resulting in an urgent need for an accurate method to detect all of the hidden allergens that exist in food systems. Current methods for detecting allergens typically utilize ELISA, PCR, or LC-MS, which are suitable for the confirmatory analysis of allergens from ingredients rather than unintended contaminants. In this study, we demonstrate a hybridization probe cluster-targeted next-generation sequencing (HPC-NGS) platform for high-throughput screening of potential allergens in food systems. The HPC-NGS successfully captured target DNA fragments and identified 19 allergenic ingredients in a complex food system. Additionally, the HPC-NGS provided expected allergenic species matching rates of 94.24-100% in single food materials and 99.87-99.98% in processed food products. Thus, HPC-NGS enables the accurate characterization of allergenic ingredients and unintended allergenic contaminants in foods. Our results provide new perspectives on the use of HPC-NGS in the accuracy of high-throughput detection technologies for allergens imposed by the complex matrix effect.
Collapse
Affiliation(s)
- Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou 310018, Zhejiang, P. R. China
| | - Jinru Zhou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou 310018, Zhejiang, P. R. China
| | - Hai Peng
- Institute for Systems Biology, Jianghan University, Wuhan 430056, Hubei, P. R. China
| | - Junjie Ma
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou 310018, Zhejiang, P. R. China
| | - Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou 310018, Zhejiang, P. R. China
| | - Lun Li
- Institute for Systems Biology, Jianghan University, Wuhan 430056, Hubei, P. R. China
| | - Tiantian Li
- Institute for Systems Biology, Jianghan University, Wuhan 430056, Hubei, P. R. China
| | - Zhiwei Fang
- Institute for Systems Biology, Jianghan University, Wuhan 430056, Hubei, P. R. China
| | - Aijin Ma
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou 310018, Zhejiang, P. R. China
| |
Collapse
|
14
|
Yang T, Li C, Xue W, Huang L, Wang Z. Natural immunomodulating substances used for alleviating food allergy. Crit Rev Food Sci Nutr 2021; 63:2407-2425. [PMID: 34494479 DOI: 10.1080/10408398.2021.1975257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Food allergy is a serious health problem affecting more than 10% of the human population worldwide. Medical treatments for food allergy remain limited because immune therapy is risky and costly, and anti-allergic drugs have many harmful side effects and can cause drug dependence. In this paper, we review natural bioactive substances capable of alleviating food allergy. The sources of the anti-allergic substances reviewed include plants, animals, and microbes, and the types of substances include polysaccharides, oligosaccharides, polyphenols, phycocyanin, polyunsaturated fatty acids, flavonoids, terpenoids, quinones, alkaloids, phenylpropanoids, and probiotics. We describe five mechanisms involved in anti-allergic activities, including binding with epitopes located in allergens, affecting the gut microbiota, influencing intestinal epithelial cells, altering antigen presentation and T cell differentiation, and inhibiting the degranulation of effector cells. In the discussion, we present the limitations of existing researches as well as promising advances in the development of anti-allergic foods and/or immunomodulating food ingredients that can effectively prevent or alleviate food allergy. This review provides a reference for further research on anti-allergic materials and their hyposensitizing mechanisms.
Collapse
Affiliation(s)
- Tian Yang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Cheng Li
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Linjuan Huang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Zhongfu Wang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
15
|
Yao K, Yang Y, Liu J, Zhang J, Shao B, Zhang Y. Labeled Peptide-Free UHPLC-MS/MS Method Used for Simultaneous Determination of Shrimp and Soybean in Sauce Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7149-7157. [PMID: 34152133 DOI: 10.1021/acs.jafc.1c02008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Unintentional missing of shrimp and soybean allergen information on precautionary food allergen labeling often occurs in sauce products. To avoid food allergies, sensitive and time-saving analytical methods are urgently needed. However, the currently reported methods usually employed labeled peptides for isotope internal standard quantitation, and the matrix effect caused by protein extraction or digestion can not be corrected. In this study, a labeled peptide-free standard addition method was developed for simultaneous determination of shrimp and soybean in sauce products using ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Through the rational selection of stable peptides, satisfying mean recoveries and relative standard deviations of the chosen peptides are achieved. The limit of quantifications of each peptide ranged from 0.25 to 5 μg tropomyosin/g sauce and from 1 to 10 μg Gly m 6/g sauce, respectively. Using the labeled peptide-free UHPLC-MS/MS method, not only ideal experimental results were obtained surpassing those obtained with labeled peptides, but also the reagents were economized and shortening of the sample preparation time was achieved.
Collapse
Affiliation(s)
- Kai Yao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
- Beijing Research Center for Preventive Medicine, Beijing 100020, People's Republic of China
| | - Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
- Beijing Research Center for Preventive Medicine, Beijing 100020, People's Republic of China
| | - Jinyuan Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
- Beijing Research Center for Preventive Medicine, Beijing 100020, People's Republic of China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
- Beijing Research Center for Preventive Medicine, Beijing 100020, People's Republic of China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
- Beijing Research Center for Preventive Medicine, Beijing 100020, People's Republic of China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
16
|
Xu W, Hu Y, Wu M, Miao E, Zhou H, Zhang X, Zhan J. Determination of phenolic compounds in estuary water and sediment by solid-phase isotope dansylation coupled with liquid chromatography-high resolution mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1404-1411. [PMID: 33666211 DOI: 10.1039/d1ay00079a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A method consisting of solid-phase isotope dansylation (derivatization with dansyl chloride) and liquid chromatography-high resolution mass spectrometry (LC-HRMS) was developed for the quantitative analysis of phenolic compounds (phenols) in environmental samples. A magnetic-HLB (hydrophilic lipophilic balanced) material was synthesized and applied as an adsorbent in magnetic solid-phase extraction (MSPE) for the enrichment of the analytical targets. Furthermore, with the solid-phase isotope labeling, the desalting and removal of labeling residuals could be simplified over conventional in-solution labeling. In addition to overcoming the matrix effect by isotope dansylation, the sensitivity for the analysis of phenols by LC-HRMS was remarkably improved by over 100-fold. The method was systematically verified, and good accuracy (86.5-104.9%) and precision (<8.6% and <11.4% for intra- and inter-day, respectively) were achieved for the tested 15 phenols. The limits of detection (LODs) of this method were estimated to be 0.2-5 ng L-1 and 5-100 ng kg-1 in estuary water and sediment samples, respectively. With this method, samples collected from the Daliao River estuary (Panjin, China) were analyzed. It was found that all of the targeted phenols were detected at concentrations ranging from unquantifiable to 485 ng L-1 (the total concentration of analytes found in each sample were in the range 822-957 ng L-1) and unquantifiable to 1368 ng kg-1 (the total concentration of analytes found in each sample were in the range 2251-2992 ng kg-1) in water and sediment, respectively.
Collapse
Affiliation(s)
- Wenxue Xu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kotecka-Majchrzak K, Kasałka-Czarna N, Sumara A, Fornal E, Montowska M. Multispecies Identification of Oilseed- and Meat-Specific Proteins and Heat-Stable Peptide Markers in Food Products. Molecules 2021; 26:molecules26061577. [PMID: 33809348 PMCID: PMC7998630 DOI: 10.3390/molecules26061577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/31/2023] Open
Abstract
Consumer demand for both plant products and meat products enriched with plant raw materials is constantly increasing. Therefore, new versatile and reliable methods are needed to find and combat fraudulent practices in processed foods. The objective of this study was to identify oilseed species-specific peptide markers and meat-specific markers that were resistant to processing, for multispecies authentication of different meat and vegan food products using the proteomic LC-MS/MS method. To assess the limit of detection (LOD) for hemp proteins, cooked meatballs consisting of three meat species and hemp cake at a final concentration of up to 7.4% were examined. Hemp addition at a low concentration of below 1% was detected. The LOD for edestin subunits and albumin was 0.9% (w/w), whereas for 7S vicilin-like protein it was 4.2% (w/w). Specific heat-stable peptides unique to hemp seeds, flaxseed, nigella, pumpkin, sesame, and sunflower seeds, as well as guinea fowl, rabbit, pork, and chicken meat, were detected in different meat and vegan foods. Most of the oilseed-specific peptides were identified as processing-resistant markers belonging to 11S globulin subunits, namely conlinin, edestin, helianthinin, pumpkin vicilin-like or late embryogenesis proteins, and sesame legumin-like as well as 2S albumins and oleosin isoforms or selected enzymic proteins.
Collapse
Affiliation(s)
- Klaudia Kotecka-Majchrzak
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (K.K.-M.); (N.K.-C.)
| | - Natalia Kasałka-Czarna
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (K.K.-M.); (N.K.-C.)
| | - Agata Sumara
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.S.); (E.F.)
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.S.); (E.F.)
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (K.K.-M.); (N.K.-C.)
- Correspondence: ; Tel.: +48-61-848-7257
| |
Collapse
|
18
|
Sena-Torralba A, Pallás-Tamarit Y, Morais S, Maquieira Á. Recent advances and challenges in food-borne allergen detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116050] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Carrera M, Pazos M, Gasset M. Proteomics-Based Methodologies for the Detection and Quantification of Seafood Allergens. Foods 2020; 9:E1134. [PMID: 32824679 PMCID: PMC7465946 DOI: 10.3390/foods9081134] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
Seafood is considered one of the main food allergen sources by the European Food Safety Authority (EFSA). It comprises several distinct groups of edible aquatic animals, including fish and shellfish, such as crustacean and mollusks. Recently, the EFSA recognized the high risk of food allergy over the world and established the necessity of developing new methodologies for its control. Consequently, accurate, sensitive, and fast detection methods for seafood allergy control and detection in food products are highly recommended. In this work, we present a comprehensive review of the applications of the proteomics methodologies for the detection and quantification of seafood allergens. For this purpose, two consecutive proteomics strategies (discovery and targeted proteomics) that are applied to the study and control of seafood allergies are reviewed in detail. In addition, future directions and new perspectives are also provided.
Collapse
Affiliation(s)
- Mónica Carrera
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Spain; (M.C.); (M.P.)
| | - Manuel Pazos
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Spain; (M.C.); (M.P.)
| | - María Gasset
- Institute of Physical Chemistry Rocasolano (IQFR), Spanish National Research Council (CSIC), 28006 Madrid, Spain
| |
Collapse
|