1
|
Rodrigues da Silva RE, Pereira-de-Morais L, Alencar Silva AD, Sena Bastos CMD, Kennedy-Feitosa E, Menezes IRAD, Weinreich D, Leal-Cardoso JH, Barbosa R. Biphasic effect of limonene on contraction of isolated rat aorta. Chem Biol Interact 2025; 405:111313. [PMID: 39551421 DOI: 10.1016/j.cbi.2024.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Limonene, a monoterpene found in essential oils, has various activities, such as antifungal, antioxidant, neuroprotective, gastroprotective and vasorelaxant. However, the observation of limonene's biphasic effect in preclinical studies provides crucial information about its dose-dependent actions. Understanding this behavior is essential for optimizing therapeutic doses and anticipating possible side effects prior to clinical trials. The objective of this study is to provide a more detailed characterization and investigation of the mechanisms of action of limonene on the contractile tonus of isolated aorta.The experiments were carried out on aortic rings isolated from rats, subjected to isometric recording of contractions in their circular smooth muscle and exposed to different concentrations of limonene. It was found that limonene blocked the contraction induced by KCl (60 mM), but had a biphasic effect on the contraction induced by phenylephrine (0.1 μM). At lower concentrations, limonene was able to amplify the contraction induced by phenylephrine, while at higher concentrations, it inhibited it. The nitric oxide synthase blockers L-NAME and ruthenium red, a TRP ion channel blocker, did not significantly interfere with the biphasic character of limonene. However, indomethacin, a blocker of arachidonic acid derivatives, completely blocked the amplification of contraction induced by phenylephrine. In addition, limonene promoted relaxation in contractions induced by BAY-K 8644, a calcium channel agonist and by Ba2+. Limonene has complex effects on aortic tone, amplifying or inhibiting contractions, suggesting that the therapeutic window should be carefully studied to optimize clinical results.
Collapse
Affiliation(s)
| | - Luís Pereira-de-Morais
- Department of Biological Chemistry, Regional University of Cariri, 63105-000, Crato, CE, Brazil.
| | - Andressa de Alencar Silva
- PhD in Physiological Sciences, Higher Institute of Biomedical Sciences State University of Ceará-UECE, 60714-903, Fortaleza, CE, Brazil
| | - Carla Mikevely de Sena Bastos
- PhD in Physiological Sciences, Higher Institute of Biomedical Sciences State University of Ceará-UECE, 60714-903, Fortaleza, CE, Brazil
| | - Emanuel Kennedy-Feitosa
- Department of Health Sciences, Federal Rural University of Semi-Arid - UFERSA, 59625-900, Mossoró, RN, Brazil
| | | | - Daniel Weinreich
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - José Henrique Leal-Cardoso
- Higher Institute of Biomedical Sciences, State University of Ceará-UECE, 60.740-000 Fortaleza, CE, Brazil
| | - Roseli Barbosa
- Department of Biological Chemistry, Regional University of Cariri, 63105-000, Crato, CE, Brazil
| |
Collapse
|
2
|
Wang H, Lu Q, Chen X, Qian Y, Qian B, Tan H. Global trends and biological activity hotspots of D-limonene in essential oils: a 30-year bibliometric study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03607-5. [PMID: 39570383 DOI: 10.1007/s00210-024-03607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
This study aims to conduct a comprehensive bibliometric analysis of global research trends and hotspots related to the biological activities of D-limonene, a prominent monoterpene compound found in essential oils, that warrant attention. We performed a bibliometric analysis of 1928 publications sourced from the Web of Science core database, covering the period from 1994 to 2024. Utilizing CiteSpace and VOSviewer software, we analyzed publication trends, collaboration networks among countries, institutions, and authors, and explored the evolution of research themes and current hotspots through keyword analysis. Our findings indicate a rapid increase in research on D-limonene activities since 2017, with China and Brazil leading in publication output. Italy and the USA play central roles within the collaboration network. Notably, a core group of authors has yet to emerge in this field. The biological activities of D-limonene, particularly its antibacterial, antioxidant, anti-inflammatory, and antitumor properties, are widely studied. Recent research hotspots focus on its neuroprotective effects and its potential role in inhibiting antibiotic resistance. The study highlights the growing interest in D-limonene and suggests that its use as an adjuvant to enhance therapeutic efficacy through synergistic interactions with other drugs may represent a significant research direction for the future. This analysis provides valuable insights for researchers and practitioners in pharmacology and related fields, emphasizing the importance of D-limonene in advancing health-related applications.
Collapse
Affiliation(s)
- Haibin Wang
- Clinical Research Institute & School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaochen Chen
- Clinical Research Institute & School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and school of public health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Biyun Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and school of public health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hongsheng Tan
- Clinical Research Institute & School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Xia S, Fang D, Guo Y, Shi C, Wang J, Lyu L, Wu Y, Deng Z, Su E, Cao F, Li W. Temperature-sensitive poly(N-isopropylacrylamide)/polylactic acid/lemon essential oil nanofiber films prepared via different electrospinning processes: Controlled release and preservation effect. Int J Biol Macromol 2024; 281:136217. [PMID: 39362443 DOI: 10.1016/j.ijbiomac.2024.136217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
To develop an optimized controlled-release system based on temperature-sensitive poly(N-isopropylacrylamide) (PNIPAAm) nanofibers, we prepared three types of temperature-controlled preservative films. These films were composed of PNIPAAm, polyvinyl alcohol (PVA), polylactic acid (PLA), and lemon essential oil (LEO), and were fabricated using uniaxial, coaxial, and layered spinning techniques. The nanofiber films obtained by layered spinning exhibited a sandwich structure, demonstrating superior physical barrier properties, mechanical strength, and thermal resistance. Fourier-transform infrared spectroscopy confirmed the hydrogen bonding interaction between the polylactic acid/lemon essential oil and PNIPAAm layers. LEO release tests showed that PNIPAAm functions as a temperature-responsive switch, suppressing LEO release below and promoting it above the critical solution temperature. After a sustained release at 40 °C for 5 days, the layered film maintained significant antibacterial activity, effectively extending the shelf life of blackberries to 4 days. Considering its physical barrier, mechanical, and sustained-release properties, the layered film derived from PNIPAAm shows great potential as an intelligent temperature-controlled cling film to effectively extend the freshness of perishable products.
Collapse
Affiliation(s)
- Shuqiong Xia
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Donglu Fang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| | - Yalong Guo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Chong Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Junying Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Fuliang Cao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Weilin Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Qiu CL, Li W, Wang LN, Wang SC, Falert S, Wang C, Yu SY, Abdelkhalek ST, Lu J, Lin YJ, Wang MQ. Limonene enhances rice plant resistance to a piercing-sucking herbivore and rice pathogens. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39340817 DOI: 10.1111/pbi.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Terpene synthases (TPSs) are key enzymes in terpenoids synthesis of plants and play crucial roles in regulating plant defence against pests and diseases. Here, we report the functional characterization of OsTPS19 and OsTPS20, which were upregulated by the attack of brown planthopper (BPH). BPH female adults performed concentration-dependent behavioural responses to (S)-limonene showing preference behaviour at low concentrations and avoidance behaviour at high concentrations. Overexpression lines of OsTPS19 and OsTPS20, which emitted higher amounts of the monoterpene (S)-limonene, decreased the hatching rate of BPH eggs, reduced the lesion length of sheath blight caused by Rhizoctonia solani and bacterial blight caused by Xanthomonas oryzae. While knockout lines of OsTPS19 and OsTPS20, which emitted lower amounts of (S)-limonene, were more susceptible to these pathogens. Overexpression of OsTPS19 and OsTPS20 in rice plants had adverse effects on the incidence of BPH, rice blast, and sheath blight in the field and had no significant impacts on rice yield traits. OsTPS19 and OsTPS20 were found to be involved in fine-tuning the emission of (S)-limonene in rice plants and play an important role in defence against both BPH and rice pathogens.
Collapse
Affiliation(s)
- Chang-Lai Qiu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Ling-Nan Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Shi-Cheng Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Supaporn Falert
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shi-Yu Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sara Taha Abdelkhalek
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Jing Lu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong-Jun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
He WS, Wang Q, Li Z, Li J, Zhao L, Li J, Tan C, Gong F. Enhancing the Stability and Bioaccessibility of Tree Peony Seed Oil Using Layer-by-Layer Self-Assembling Bilayer Emulsions. Antioxidants (Basel) 2023; 12:antiox12051128. [PMID: 37237994 DOI: 10.3390/antiox12051128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Tree peony seed oil (TPSO) is an important plant source of n-3 polyunsaturated fatty acid (α-linolenic acid, ALA > 40%) that is receiving increasing attention for its excellent antioxidant and other activities. However, it has poor stability and bioavailability. In this study, a bilayer emulsion of TPSO was successfully prepared using a layer-by-layer self-assembly technique. Among the proteins and polysaccharides examined, whey protein isolate (WPI) and sodium alginate (SA) were found to be the most suitable wall materials. The prepared bilayer emulsion contained 5% TPSO, 0.45% whey protein isolate (WPI) and 0.5% sodium alginate (SA) under selected conditions and its zeta potential, droplet size, and polydispersity index were -31 mV, 1291 nm, and 27%, respectively. The loading capacity and encapsulation efficiency for TPSO were up to 84% and 90.2%, respectively. It was noteworthy that the bilayer emulsion showed significantly enhanced oxidative stability (peroxide value, thiobarbituric acid reactive substances content) compared to the monolayer emulsion, which was accompanied by a more ordered spatial structure caused by the electrostatic interaction of the WPI with the SA. This bilayer emulsion also exhibited markedly improved environmental stability (pH, metal ion), rheological properties, and physical stability during storage. Furthermore, the bilayer emulsion was more easily digested and absorbed, and had higher fatty acid release rate and ALA bioaccessibility than TPSO alone and the physical mixtures. These results suggest that bilayer emulsion containing WPI and SA is an effective TPSO encapsulation system and has significant potential for future functional food development.
Collapse
Affiliation(s)
- Wen-Sen He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qingzhi Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhishuo Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jie Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Liying Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Junjie Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Chen Tan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fayong Gong
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615013, China
| |
Collapse
|
6
|
Hui X, Wan Y, Dong H, Peng J, Wu W, Yang X, He Q. A promising insight into the inhibition of lipid oxidation, protein degradation and biogenic amine accumulation in postmortem fish: Functional glazing layers of modified bio-polymer. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
7
|
Li Y, Bai R, Feng L, Kang Z, Xu G, Ma H. Effect of flaxseed oil double emulsion on gel characteristics, water distribution, and water mobility in reduced‐fat pork batter. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan‐ping Li
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 PR China
| | - Rong Bai
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 PR China
| | - Liang Feng
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 PR China
| | - Zhuang‐Li Kang
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 PR China
| | - Gui‐hua Xu
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 PR China
| | - Han‐Jun Ma
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 PR China
| |
Collapse
|
8
|
Zhang Y, Li S, Yang Y, Wang C, Zhang T. Formation and characterization of noncovalent ternary complexes based on whey protein concentrate, high methoxyl pectin, and phenolic acid. J Dairy Sci 2022; 105:2963-2977. [DOI: 10.3168/jds.2021-21088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022]
|
9
|
Li B, Wang X, Gao X, Ma X, Zhang L, Mei J, Xie J. Shelf-Life Extension of Large Yellow Croaker ( Larimichthys crocea) Using Active Coatings Containing Lemon Verbena ( Lippa citriodora Kunth.) Essential Oil. Front Nutr 2021; 8:678643. [PMID: 34355009 PMCID: PMC8329554 DOI: 10.3389/fnut.2021.678643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Active coating could improve the fish quality and extend the shelf life. This study investigates the effect of locust bean gum (LBG) and sodium alginate (SA) active coatings containing lemon verbena (Lippa citriodora Kunth.) essential oil (LVEO) emulsions on microbiological, physicochemical and organoleptic evaluation of large yellow croaker (Larimichthys crocea) samples during refrigerated storage at 4°C. Results showed that LBG-SA coatings incorporated with 0.30 or 0.60% LVEO emulsions significantly inhibited the growth of mesophile bacteria, Pseudomonas spp., H2S-producing bacteria, lactic acid bacteria (LAB) and psychrophilic bacteria, and reduce the productions of trimethylamine (TMA), total volatile basic nitrogen (TVB-N) and ATP-related compounds. Further, the LVEO treatments also retarded the water migration and maintained the organoleptic evaluation results of large yellow croaker during storage at 4°C. In conclusion, the LBG-SA active coatings incorporated with LVEO emulsions maintained the quality and extended the shelf life of large yellow croaker during refrigerated storage.
Collapse
Affiliation(s)
- Bo Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.,School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, China
| | - Xuesong Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Xin Gao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.,School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, China
| | - Xuan Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Leilei Zhang
- Shanghai Guo Qi Testing Services Technology Co., Ltd., Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| |
Collapse
|