1
|
Saini A, Kaur R, Kumar S, Saini RK, Kashyap B, Kumar V. New horizon of rosehip seed oil: Extraction, characterization for its potential applications as a functional ingredient. Food Chem 2024; 437:137568. [PMID: 37918157 DOI: 10.1016/j.foodchem.2023.137568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023]
Abstract
In recent years, rosehip is gaining more attention due to its high nutritional and medicinal value. Rosehip seeds usually discarded as waste, contain oil with high bioactive potential. These nutritional properties recommend the use of rosehip seed oil (RSO) to develop innovative food, pharma, and cosmetic products. In this review, different conventional and novel technologies for the extraction of RSO in terms of optimized conditions for better extraction of oil are discussed. In the lateral section of the manuscript, the detailed composition and biological activities of RSO are reviewed. Finally, a glimpse of the recent applications in the food, pharmaceutical, and cosmetic industry are provided. This review could provide a comprehensive understanding of the value of RSO and promote its nutrition research and commercial product development.
Collapse
Affiliation(s)
- Aadisha Saini
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Ramandeep Kaur
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Satish Kumar
- Department of Food Science and Technology, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan - 173 230 (HP), India
| | - Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Bharati Kashyap
- Department of Floriculture and Landscaping, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan - 173 230 (HP), India
| | - Vikas Kumar
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| |
Collapse
|
2
|
Gębarowski T, Wiatrak B, Jęśkowiak-Kossakowska I, Grajzer M, Prescha A. Oils from Transgenic Flax Lines as Potential Chemopreventive Agents in Colorectal Cancer. Biomedicines 2023; 11:2592. [PMID: 37761033 PMCID: PMC10527327 DOI: 10.3390/biomedicines11092592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer is a major global health concern, and the need for effective chemopreventive agents is paramount. This study aimed to evaluate the potential of oils from transgenically modified flax for the prevention of colorectal cancer, in relation to the oil concertation. Flaxseed oils were obtained from traditional (Nike) and genetically modified flax lines (M and B). Cell viability assays were performed on various cancer cell lines, including colon adenocarcinoma cells. Flaxseed oil B exhibited the strongest anti-proliferative properties compared to the reference drugs and other oils. Additionally, M and B oils showed enhanced accumulation of Rhodamine 123 and increased apoptosis in colorectal cancer cells. M oil exhibited the highest levels of p53 protein. Notably, the tested transgenic oils did not induce metastasis and displayed stronger inhibition of COX-1 compared to COX-2. These data indicate the utility of flaxseed oils, especially from the M line, as adjuvants in colorectal cancer treatment, targeting the colon specifically.
Collapse
Affiliation(s)
- Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, The Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland;
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Izabela Jęśkowiak-Kossakowska
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland;
| | - Magdalena Grajzer
- Department of Dietetics and Bromatology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.G.); (A.P.)
| | - Anna Prescha
- Department of Dietetics and Bromatology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.G.); (A.P.)
| |
Collapse
|
3
|
Grajzer M, Wiatrak B, Jawień P, Marczak Ł, Wojakowska A, Wiejak R, Rój E, Grzebieluch W, Prescha A. Evaluation of Recovery Methods for Fragaria vesca L. Oil: Characteristics, Stability and Bioactive Potential. Foods 2023; 12:foods12091852. [PMID: 37174392 PMCID: PMC10178134 DOI: 10.3390/foods12091852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Wild strawberry (Fragaria vesca L.) seed oil (WSO) recovered by two methods-cold pressing (CP) and extraction with supercritical carbon dioxide (SCO2E)-taking into account the different extraction times, was characterized for its composition and quality. The cytotoxicity assessment of WSOs was also carried out using the normal human dermal fibroblast (NHDF) cell line. Tocopherol and total polyphenol contents were significantly higher in WSO recovered by SCO2E, up to 1901.0 and 58.5 mg/kg, respectively, in comparison with CP oil. In CP oil, the highest content of carotenoids and squalene was determined (123.8 and 31.4 mg/kg, respectively). Phytosterol summed up to 5396 mg/kg in WSO collected in 30 min of SCO2E. Moreover, the highest oxidative stability was found for this oil. All studied WSOs were non-cytotoxic in lactate dehydrogenase (LDH) leaching and sulforhodamine B (SRB) assays; however, oils collected by SCO2E in 15 and 30 min were found to be cytotoxic in the tetrazolium salt (MTT) test, with the CC50 at a concentration of 3.4 and 5.5%, respectively. In conclusion, the composition of WSO indicates that, depending on the method of its recovery, seeds can have different bio-potencies and various applications.
Collapse
Affiliation(s)
- Magdalena Grajzer
- Department of Dietetics and Bromatology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland
| | - Łukasz Marczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-138 Poznanń, Poland
| | - Anna Wojakowska
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-138 Poznanń, Poland
| | - Rafał Wiejak
- Research Group Supercritical Extraction, Łukasiewicz Research Network-New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Edward Rój
- Research Group Supercritical Extraction, Łukasiewicz Research Network-New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
| | - Wojciech Grzebieluch
- Department of Conservative Dentistry with Endodontics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Anna Prescha
- Department of Dietetics and Bromatology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Hasanov J, Salikhov S, Oshchepkova Y. TECHNO-ECONOMIC EVALUATION OF SUPERCRITICAL FLUID EXTRACTION OF FLAXSEED OIL. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
In Silico, In Vitro, and In Vivo Wound Healing Activity of Astragalus microcephalus Willd. Adv Pharmacol Pharm Sci 2022; 2022:2156629. [PMID: 36238201 PMCID: PMC9553362 DOI: 10.1155/2022/2156629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Methods The methanolic root extract was prepared by maceration, and flavonoids were evaluated by LC/MS. In silico examination was performed based on the LC/MS results, and the binding affinity of these compounds to estrogen receptors (ERs) α and β was evaluated. Wound healing evaluation in both in vitro (NHDF cell line, by 500 μg/ml concentration of the extract, 24 h) and in vivo (Wistar rat, topical daily treated with 1.5% of the extract ointment, 21 days) conditions in comparison to control groups was conducted. Rats' control groups included silver sulfadiazine, Vaseline, and the nontreated groups. Results Eleven flavonoids were detected using LC/MS. The in silico study showed that formononetin, kaempferol-based structures, quercetin-3-O-neohesperidoside, and calycosin-7-O-beta-D-glucoside had a high affinity (<-6.3) to ERs α and β. Wound closing measurement showed significant improvement in the group treated with the extract in both in vitro and in vivo assays compared to the control groups. Histopathological results confirmed these findings; inflammation factors decreased, and fibroblast proliferation, fibrosis, and epithelization increased, especially in the extract group. Conclusion This study shows that Astragalus microcephalus has wound healing activity in vitro and in vivo with low toxicity due to the presence of flavonoids, especially isoflavonoids, which show a high affinity to bind to ERs α and β in the skin tissue.
Collapse
|
6
|
Evaluation of Antimicrobial and Chemopreventive Properties and Phytochemical Analysis of Solanum nigrum L. Aerial Parts and Root Extracts. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This study evaluated in vitro antibacterial, antifungal, anticancer and antioxidant activities of methanolic leaf and root extracts from Solanum nigrum L. and determined its chemical composition. The chemical profile of S. nigrum L. extract was tested using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Disc diffusion and microdilution assays were used for the antibacterial activities. Antifungal activity was measured using the poisoned food technique. In vitro activity on the cell culture model was assessed by MTT assay, viability measurement and by determination of cellular ROS by DCFDA assay. The minimal inhibitory concentrations for extracts from aerial parts ranged from 125 to 500 μg/mL for gram-positive cocci and Pectobacterium strains. The growth inhibition coefficient ranged from 17–56%, depending on the dosage. The antifungal effect of S. nigrum extracts on the tested filamentous fungi depended on the dose. An inhibitory effect of 50–56% on fungi was observed against Alternaria alternata and Chaetomium globosum. The study showed a reduction in cellular vitality of THP1, A549, MCF7 and HeLa cancer lines using both extracts. In addition, there was a decrease in the number of viable cells in cultures incubated with the extract of aerial parts and a reduction in oxygen radicals in the cells. The obtained results indicate the possibility of using S. nigrum extracts from the aerial part as antimicrobial factors. Both extracts show chemopreventive properties by inhibiting the growth of cancer cells and reducing the level of free radicals. Both extracts show chemopreventive properties by inhibiting cancer cell growth and lowering free radical levels. The broad biological activity of the studied extracts can be used in agriculture, veterinary usages and medicine.
Collapse
|
7
|
In Vitro and In Vivo Wound Healing Activity of Astragalus floccosus Boiss. (Fabaceae). Adv Pharmacol Pharm Sci 2022; 2022:7865015. [PMID: 35392504 PMCID: PMC8983193 DOI: 10.1155/2022/7865015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Estrogens are a group of sex hormones which have receptors on the skin and lead to increased cells and wound healing. Normally isoflavonoids are present in Astragalus floccosus Boiss. (Leguminosae). Therefore, the present study was conducted to evaluate the presence of isoflavonoids in A. floccosus' rich fraction of flavonoid and evaluate its wound healing effect accordingly. Flavonoids were evaluated by LCMS. Scratch was conducted and the medium culture was treated with the Astragalus' rich fraction of flavonoid (RFF) and was compared with nontreated culture during 48 hours. In addition, in vivo full-thickness wound healing evaluation was performed on rats. The rats were put into four groups and treated on a daily basis for 21 days with a cream containing 1.5% of the RFF (group 1), silver sulfadiazine (group 2), and Vaseline (group 3) separately. The nontreated group (group 4) was created for a better comparison. During the examination, wound size was evaluated and histopathological examination was performed. Herbal analysis detected 11 flavonoids, including 2 isoflavonoids, Calycosin-7-O-beta-D-glucoside and Formononetin, in the RFF. In vitro scratch wound healing showed significant improvement with RFF treatment in comparison to nontreated medium. Furthermore, in vitro drug release of Astragalus ointment showed a stationary line during 24 h and 0.14 mg/ml of flavonoid penetrated the skin. In vivo wound size evaluation showed significant improvement in the group treated with the RFF in comparison to other groups. Histopathological results indicated that congestion, edema, inflammation, necrosis, and angiogenesis decreased during the examination and fibroblast proliferation fibrosis epithelization was increased especially in the RFF group in comparison to the silver sulfadiazine and free groups. In conclusion, A. floccosus showed that wound healing activity in both in vitro and in vivo analyses can be attributed to the presence of isoflavonoids with estrogen-like activity in this plant.
Collapse
|
8
|
Bioactive Compounds of Raspberry Oil Emulsions Induced Oxidative Stress via Stimulating the Accumulation of Reactive Oxygen Species and NO in Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5561672. [PMID: 34211628 PMCID: PMC8205582 DOI: 10.1155/2021/5561672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/08/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022]
Abstract
There are growing interests in the complex combinations of natural compounds that may advance the therapy of cancer. Such combinations already exist in foods, and a good representative is seed oils. Two raspberry oils: cold pressed (ROCOP) and one extracted by supercritical CO2 (ROSCO2) were evaluated for their chemical characteristics and oil emulsions for cell suppression potential against colon adenocarcinoma (LoVo), doxorubicin-resistant colon adenocarcinoma (LoVo/DX), breast cancer (MCF7), doxorubicin-resistant breast cancer (MCF7/DX), and lung cancer (A549) cell lines. The cytotoxicity was also assessed on normal human dermal fibroblasts (NHDFs). With increasing concentration of raspberry oil emulsions (0.5–10%), increasing inhibition of cancer cell viability and proliferation in all of the lines was observed, with different degrees of potency between cancer types and oil tested. ROSCO2 strongly induced free radical production and DNA strand damage in LoVo and MCF7 cells especially doxorubicin-resistant lines. This suggests that ROSCO2 engages and effectively targets the vulnerabilities of the cancer cell. Generally, both ROSCO2 and ROCOP could be a nontoxic support in therapy of selected human cancers.
Collapse
|
9
|
Wiatrak B, Sobierajska P, Szandruk-Bender M, Jawien P, Janeczek M, Dobrzynski M, Pistor P, Szelag A, Wiglusz RJ. Nanohydroxyapatite as a Biomaterial for Peripheral Nerve Regeneration after Mechanical Damage-In Vitro Study. Int J Mol Sci 2021; 22:ijms22094454. [PMID: 33923239 PMCID: PMC8123185 DOI: 10.3390/ijms22094454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Hydroxyapatite has been used in medicine for many years as a biomaterial or a cover for other biomaterials in orthopedics and dentistry. This study characterized the physicochemical properties (structure, particle size and morphology, surface properties) of Li+- and Li+/Eu3+-doped nanohydroxyapatite obtained using the wet chemistry method. The potential regenerative properties against neurite damage in cultures of neuron-like cells (SH-SY5Y and PC12 after differentiation) were also studied. The effect of nanohydroxyapatite (nHAp) on the induction of repair processes in cell cultures was assessed in tests of metabolic activity, the level of free oxygen radicals and nitric oxide, and the average length of neurites. The study showed that nanohydroxyapatite influences the increase in mitochondrial activity, which is correlated with the increase in the length of neurites. It has been shown that the doping of nanohydroxyapatite with Eu3+ ions enhances the antioxidant properties of the tested nanohydroxyapatite. These basic studies indicate its potential application in the treatment of neurite damage. These studies should be continued in primary neuronal cultures and then with in vivo models.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.W.); (M.S.-B.); (P.J.); (A.S.)
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
- Correspondence: (P.S.); (R.J.W.); Tel.: +48-(071)-3954-274 (P.S.); +48-(071)-3954-159 (R.J.W.)
| | - Marta Szandruk-Bender
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.W.); (M.S.-B.); (P.J.); (A.S.)
| | - Paulina Jawien
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.W.); (M.S.-B.); (P.J.); (A.S.)
| | - Maciej Janeczek
- Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wrocław, Poland; (M.J.); (P.P.)
| | - Maciej Dobrzynski
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Patrycja Pistor
- Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wrocław, Poland; (M.J.); (P.P.)
| | - Adam Szelag
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.W.); (M.S.-B.); (P.J.); (A.S.)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
- Correspondence: (P.S.); (R.J.W.); Tel.: +48-(071)-3954-274 (P.S.); +48-(071)-3954-159 (R.J.W.)
| |
Collapse
|
10
|
Fabrication, characterization, and anti‐free radical performance of edible packaging‐chitosan film synthesized from shrimp shell incorporated with ginger essential oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00875-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Grajzer M, Szmalcel K, Kuźmiński Ł, Witkowski M, Kulma A, Prescha A. Characteristics and Antioxidant Potential of Cold-Pressed Oils-Possible Strategies to Improve Oil Stability. Foods 2020; 9:E1630. [PMID: 33171600 PMCID: PMC7695170 DOI: 10.3390/foods9111630] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 01/08/2023] Open
Abstract
The relations of the antiradical capacity to oxidative stability parameters and the contents of fatty acids, sterols, tocopherols, phenols, flavonoids, chlorophyll, Cu, and Fe were assessed in 33 cold-pressed seed oils: Walnut (7 brands of oils), rosehip (3), camelina (6), milk thistle (5), flax (6), and pumpkin (6). The antiradical capacity of oils depended strongly on tocopherol contents with a synergistic effect with polyphenols. The efficacy of tocopherols in cold-pressed oils was accompanied by a negative correlation of their antioxidant capacity with the peroxide value increase after 3 months of shelf life. This study also showed a positive correlation between the content of phytosterols and the antiradical capacity in the lipophilic fraction of cold-pressed oils rich in n-3 polyunsaturated fatty acids (PUFAs). Multiple regression analysis identified groups of antioxidants naturally occurring in cold-pressed oils in relation to their fatty acid composition, which added to the cold-pressed oils could provide possible strategies to improve their stability. Achieving high stability is primarily a result of high phytosterol content exceeding the molar ratio of 1:100 for total phytosterols to α-linolenic acid. However, the molar ratios of tocopherols to linoleic acid below 1:2000 and polyphenols to linoleic acid below 1:3000 does not prevent oxidation in oils with the predominance of linoleic acid.
Collapse
Affiliation(s)
- Magdalena Grajzer
- Department of Food Science and Dietetics, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.W.); (A.P.)
| | - Karolina Szmalcel
- Student Scientific Club at Food Science and Dietetics Department, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Łukasz Kuźmiński
- Department of Process Management, Management Department, Wroclaw University of Economics, 50-556 Wroclaw, Poland;
| | - Mateusz Witkowski
- Department of Food Science and Dietetics, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.W.); (A.P.)
| | - Anna Kulma
- Department of Genetic Biochemistry, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wrocław, Poland;
| | - Anna Prescha
- Department of Food Science and Dietetics, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.W.); (A.P.)
| |
Collapse
|