1
|
Ogbonna JC, Nakajima M, Neves MAD. Characterization and Emulsifying Ability of Cassava Peels Solubilized Using Hydrothermal Treatments. Polymers (Basel) 2025; 17:496. [PMID: 40006157 PMCID: PMC11859936 DOI: 10.3390/polym17040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Cassava peels are rich in polysaccharides but highly unexplored and underutilized, as they could be used to meet the increasing demand for clean-label foods. This study investigated the effect of temperature on the solubilization of cassava peel during hydrothermal treatment to determine the emulsifying ability of solubilized cassava peel (SCP). Subcritical water conditions were employed via hydrothermal (120-200 °C; 2 MPa) or autoclave (127 °C; 0.2 MPa) treatments to solubilize cassava peels. The composition of the SCPs was determined, and their emulsifying ability was assessed using interfacial tension and zeta potential measurements. Under the best treatment conditions (140 °C at 2 MPa [hydrothermal]; 127 °C at 0.2 MPa [autoclave]), SCPs reduced interfacial tension against soybean oil to 12.9 mN/m and 13.4 mN/m, respectively. A strengthened co-emulsifier system was developed by incorporating SCPs with Quillaja saponins (QS) or Tween 20 to enhance the performance. Dynamic interfacial tension and zeta potential measurements revealed synergistic interactions, showing a remarkable reduction in interfacial tension from 12.94 to 5.33 mN/m. This suggests that the SCP has a surfactant-like structure owing to its amphiphilic structure and hydrophobic chains (nonpolar region) attached to the -OH functional group (polar region). Combining a second surface-active compound or co-emulsifier results in an additive effect, reducing the interfacial tension. These findings provide novel insights into carbohydrate-saponin binding and elucidate the impact of peel composition, concentration, and hydrothermal treatment conditions on co-emulsifier system performance, which will assist in the development of emulsifiers, contributing to the advancement of clean-label food technologies, effectively replacing synthetic emulsifiers in food formulations, and offering both sustainability and functionality. A systematic investigation of processing conditions and co-emulsifier interactions provides a practical framework for developing high-performance natural emulsifiers from agricultural waste.
Collapse
Affiliation(s)
- Jane Chizie Ogbonna
- Doctoral Program in Life Science Innovation, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8577, Japan;
| | - Mitsutoshi Nakajima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan;
| | | |
Collapse
|
2
|
Yang Y, Ke Y, Xie W, Li Z, Tao L, Shen W, Chen Y, Cheng H, Chen J, Yan G, Li W, Li M, Li J. Amphiphilic disodium glycyrrhizin as a co-former for ketoconazole co-amorphous systems: Biopharmaceutical properties and underlying molecular mechanisms. Int J Pharm 2024; 665:124673. [PMID: 39245085 DOI: 10.1016/j.ijpharm.2024.124673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Co-amorphous systems (CAMs) have been extensively investigated to improve the dissolution of hydrophobic drugs. However, drug precipitation during the storage or dissolution of CAMs has still been a major challenge. Here, disodium glycyrrhizin (Na2GA) was first used as a co-former in CAMs based on its multiple hydroxyl groups and amphiphilic structure. Ketoconazole (KTZ), a BCS class II drug, was selected as a model drug. KTZ-Na2GA CAMs at mass ratios of 1:1, 1:2.5, 1:5 and 1:10 were prepared by the spray drying method and further characterised by PXRD and DSC. The 1:2.5, 1:5 and 1:10 groups exhibited significantly enhanced Cmax (all approximately 26.67-fold) and stable maintenance of supersaturation compared to the crystalline KTZ and the corresponding physical mixtures in non-sink dissolution tests, while the 1:1 group exhibited an unstable medium Cmax (all approximately 14.67-fold). The permeability tests revealed that the permeation rate of KTZ in KTZ-Na2GA CAMs under the concentration of Na2GA in solution above the critical micelle concentration (CMC) showed a significant downwards trend compared to that below CMC. The underlying molecular mechanisms were involved in molecular miscibility, hydrogen bond interactions, solubilisation and crystallisation inhibition by Na2GA. Pharmacokinetic studies demonstrated that the AUC0-∞ of KTZ in 1:1, 1:2.5, 1:5 and 1:10 groups were significantly higher than those of the crystalline KTZ group with 2.13-, 2.30-, 2.16- and 1.86-fold, respectively (p < 0.01). In conclusion, Na2GA has proven to be a promising co-former in CAMs to enhance hydrophobic drug dissolution and bioavailability. Its effect on intestinal permeation rate of drugs also deserves attention.
Collapse
Affiliation(s)
- Yujie Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China; Beichen Institute for Drug Control, Tianjin Institute for Drug Control, Tianjin 300400, China
| | - Yixin Ke
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Wei Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Zhuoyuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China; Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing 210001, China
| | - Lin Tao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China; Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing 210001, China
| | - Wen Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Yaxi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Hongqing Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Jinfeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Guojun Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Wen Li
- Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing 210001, China
| | - Mengyuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
3
|
Sun Y, Liang J, Zhang Z, Sun D, Li H, Chen L. Extraction, physicochemical properties, bioactivities and application of natural sweeteners: A review. Food Chem 2024; 457:140103. [PMID: 38905824 DOI: 10.1016/j.foodchem.2024.140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Natural sweeteners generally refer to a sweet chemical component directly extracted from nature or obtained through appropriate modifications, mainly secondary metabolites of plants. Compared to the first-generation sweeteners represented by sucrose and the second-generation sweeteners represented by sodium cyclamate, natural sweeteners usually have high sweetness, low-calorie content, good solubility, high stability, and rarely toxic side effects. Historically, researchers mainly focus on the function of natural sweeteners as substitutes for sugars in the food industry. This paper reviews the bioactivities of several typical natural sweeteners, including anti-cancer, anti-inflammatory, antioxidant, anti-bacterial, and anti-hyperglycemic activities. In addition, we have summarized the extraction, physicochemical properties, and application of natural sweeteners. The article aimed to comprehensively collate vital information about natural sweeteners and review the potentiality of tapping bioactive compounds from natural products. Hopefully, this review provides insights into the further development of natural sweeteners as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Yanyu Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
4
|
Li W, Zhu L, Zhang W, Han C, Li P, Jiang J. Foam and fluid properties of purified saponins and non-purified water extracts from Camellia oleifera cake (by-product). Food Chem 2024; 440:138313. [PMID: 38159317 DOI: 10.1016/j.foodchem.2023.138313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The physicochemical and foam properties of non-purified water extracts (WE) and purified tea saponins (TS) from Camellia oleifera cake (byproduct) were compared. WE showed different fluid properties at equal saponin concentrations (1.0 wt%) compared to TS. Particularly, it exhibited limited micelle size (average 434.1 nm), effective viscosity (0.15 Pa·s), and surface tension (43.9 mN/m) independently of pH. Moreover, the foam properties of WE were comparable to TS and better than sodium caseinate, especially foam stability. WE foam was more stable than TS foam under pH (3-7) and heating (40-80 °C). In the presence of NaCl, sucrose, and ethanol (5-20 wt%), WE and TS were effective and had similar foam behavior. Low concentrations of sucrose (<10 wt%)/ethanol (<20 wt%) significantly increased the foam capacity, while ethanol over 30 wt% was unfavorable. WE/TS foam contributes significantly to the desired physicochemical and sensory attributes (taste, texture, and appearance) of foods.
Collapse
Affiliation(s)
- Weixin Li
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Liwei Zhu
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Chunrui Han
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Jianxin Jiang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Meng Q, Xu M, Chen L, Xu S, Li J, Li Y, Fan L, Shi G, Ding Z. Emulsion for stabilizing β-carotene and curcumin prepared directly using a continuous phase of polysaccharide-rich Schizophyllum commune fermentation broth. Int J Biol Macromol 2024; 254:127730. [PMID: 38287588 DOI: 10.1016/j.ijbiomac.2023.127730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
In this study, we examined the effect of Schizophyllum commune fermentation broth (SCFB) rich in polysaccharides (SCFP) on the stability and bioaccessibility of β-carotene and curcumin. An SCFB-stabilized oil-in-water (o/w) emulsion (SCFBe) was prepared using SCFB as the continuous phase, and then evaluated for storage stability using an SCFP-based emulsion (SCFPe) as the control. The findings revealed that SCFBe is more stable at 60 °C than SCFPe, and stratification or droplet size varied at differing pH levels (3-9) and concentrations of Na+ (0.1-0.5 M) and Ca2+ (0.01-0.05 M). Since the absolute value of the zeta potential of SCFBe is much lower at 60 °C than that at 4 °C and 25 °C, a higher temperature (60 °C) may enhance the reactivity of polysaccharides and proteins in SCFB to improve the stability of SCFBe. Both the protective impact of SCFB on functional food molecules and their capacity to block lipid oxidation increased as polysaccharide content improved. The bioaccessibility of β-carotene after in vitro simulated gastrointestinal digestion is 11.18 %-12.28 %, whereas that of curcumin is 31.64 %-33.00 %. By fermenting edible and medicinal fungi in liquid, we created a unique and environmentally friendly approach for getting food-grade emulsifiers without extraction.
Collapse
Affiliation(s)
- Qi Meng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Taarji N, Bouhoute M, Felipe LDO, Sobeh M, Kobayashi I, Neves MA, Tominaga K, Isoda H, Nakajima M. Self-stabilizing performance of γ-oryzanol in oil-in-water emulsions and solid dispersions. Heliyon 2023; 9:e19677. [PMID: 37809870 PMCID: PMC10558946 DOI: 10.1016/j.heliyon.2023.e19677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
The surface activity of γ-oryzanol was evaluated by the pendant drop method (PDM), and its self-stabilizing properties were investigated by high-pressure homogenization (HPH) and solvent displacement method (SDM). Emulsions prepared by HPH were highly unstable due to the poor surface-active character of γ-oryzanol as identified by the PDM. In contrast, solid dispersions fabricated by SDM had comparable particle size to those prepared using Tween 80 (T80) as surfactant, and were stable up to 30 days of storage at 4 °C. The self-stabilizing properties of γ-oryzanol were attributed to the mechanism of spontaneous particle formation in SDM and to the ability of γ-oryzanol molecules to prevent particles aggregation by electrostatic repulsion. The outcome of this study indicates the potential of encapsulating selected bioactive compounds, such as γ-oryzanol, in stable colloidal systems by SDM without adding emulsifier(s), regardless of their surface-active character.
Collapse
Affiliation(s)
- Noamane Taarji
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
- Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki, 305-8565, Japan
- College of Sustainable Agriculture & Environmental Sciences, AgroBioSciences Program, Mohammed 6 Polytechnic University (UM6P), Benguerir, 43150, Morocco
| | - Meryem Bouhoute
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
| | - Lorena de Oliveira Felipe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
| | - Mansour Sobeh
- College of Sustainable Agriculture & Environmental Sciences, AgroBioSciences Program, Mohammed 6 Polytechnic University (UM6P), Benguerir, 43150, Morocco
| | - Isao Kobayashi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
- Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, 305-8642, Japan
| | - Marcos A. Neves
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kenichi Tominaga
- Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki, 305-8565, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
- Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki, 305-8565, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Mitsutoshi Nakajima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
- Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki, 305-8565, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
7
|
Cao X, Liu Q, Shi W, Liu K, Deng T, Weng X, Pan S, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Microfluidic fabricated bisdemethoxycurcumin thermosensitive liposome with enhanced antitumor effect. Int J Pharm 2023; 641:123039. [PMID: 37225026 DOI: 10.1016/j.ijpharm.2023.123039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Bisdemethoxycurcumin (BDMC) is the main active ingredient that is isolated from Zingiberaceae plants, wherein it has excellent anti-tumor effects. However, insolubility in water limits its clinical application. Herein, we reported a microfluidic chip device that can load BDMC into the lipid bilayer to form BDMC thermosensitive liposome (BDMC TSL). The natural active ingredient glycyrrhizin was selected as the surfactant to improve solubility of BDMC. Particles of BDMC TSL had small size, homogenous size distribution, and enhanced cultimulative release in vitro. The anti-tumor effect of BDMC TSL on human hepatocellular carcinomas was investigated via 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, live/dead staining, and flowcytometry. These results showed that the formulated liposome had a strong cancer cell inhibitory, and presented a dose-dependent inhibitory effect on migration. Further mechanistic studies showed that BDMC TSL combined with mild local hyperthermia could significantly upregulate B cell lymphoma 2 associated X protein levels and decrease B cell lymphoma 2 protein levels, thereby inducing cell apoptosis. The BDMC TSL that was fabricated via microfluidic device were decomposed under mild local hyperthermia, which could beneficially enhance the anti-tumor effect of raw insoluble materials and promote translation of liposome.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Xuedi Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Siting Pan
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Liu H, Dai Y, Li J, Liu P, Zhou W, Yu DG, Ge R. Fast and convenient delivery of fluidextracts liquorice through electrospun core-shell nanohybrids. Front Bioeng Biotechnol 2023; 11:1172133. [PMID: 37091339 PMCID: PMC10117974 DOI: 10.3389/fbioe.2023.1172133] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Introduction: As an interdisciplinary field, drug delivery relies on the developments of modern science and technology. Correspondingly, how to upgrade the traditional dosage forms for a more efficacious, safer, and convenient drug delivery poses a continuous challenge to researchers. Methods, results and discussion: In this study, a proof-of-concept demonstration was conducted to convert a popular traditional liquid dosage form (a commercial oral compound solution prepared from an intermediate licorice fluidextract) into a solid dosage form. The oral commercial solution was successfully encapsulated into the core-shell nanohybrids, and the ethanol in the oral solution was removed. The SEM and TEM evaluations showed that the prepared nanofibers had linear morphologies without any discerned spindles or beads and an obvious core-shell nanostructure. The FTIR and XRD results verified that the active ingredients in the commercial solution were compatible with the polymeric matrices and were presented in the core section in an amorphous state. Three different types of methods were developed, and the fast dissolution of the electrospun core-shell nanofibers was verified. Conclusion: Coaxial electrospinning can act as a nano pharmaceutical technique to upgrade the traditional oral solution into fast-dissolving solid drug delivery films to retain the advantages of the liquid dosage forms and the solid dosage forms.
Collapse
Affiliation(s)
- Hang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yelin Dai
- Wenqi Middle School, Shanghai, China
- Qingpu Campus, High School Affiliated to Fudan University, Shanghai, China
| | - Jia Li
- Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, The Third Affiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
9
|
Haghighi TM, Saharkhiz MJ, Kavoosi G, Zarei M. Adaptation of Glycyrrhiza glabra L. to water deficiency based on carbohydrate and fatty acid quantity and quality. Sci Rep 2023; 13:1766. [PMID: 36721012 PMCID: PMC9889331 DOI: 10.1038/s41598-023-28807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/24/2023] [Indexed: 02/02/2023] Open
Abstract
Water deficit affects agricultural systems negatively globally. This research objective was to mitigate drought's detrimental effects on plants metabolite profiling by utilizing biofertilizers and mineral nutrition. The carbohydrate content and fatty acid profile of Licorice (Glycyrrhiza glabra) were assessed under Silicon (Si) nutrition, Claroiedoglomus etunicatum inoculation (F), and drought stress (100, 80, 60, 40, and 20% of field capacity (FC)). Results showed that Si application increased total sugar content under severe drought levels (20 and 40% FC) and made it reach 12.41 and 12.63 g/100 g DW, respectively. Sucrose, as the predominant sugar of licorice, was at its highest level (13.1 g/100 g DW) in response to integrated values of F and Si (60% FC). Gas chromatography-mass spectrometry showed that the majority of fatty acid components in plants were 9-Octadecenoic acid (8.72-71.27%), 9,12-Octadecadienoic acid (0.1-56.43%), Hexadecanoic acid (12.84-30.59%), Octadecanoic acid (6.9-15.3%), Docosanoic acid (0.57-2.77%), Eicosanoic acid (1.07-2.64%), and 7-Hexadecenoic acid (0.26-2.62%). Since a lower omega6/omega3 ratio represents a healthier product, the lowest ratio (0.25%) was observed in well-watered inoculated plants. Also, severe drought-treated plants under integrated Si and F applications showed a low omega6/omega3 ratio (1.88%). In conclusion, Si and F improved synergistically the carbohydrate content and fatty acid profile in plants, despite the drought stress.
Collapse
Affiliation(s)
- Tahereh Movahhed Haghighi
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran
| | - Mohammad Jamal Saharkhiz
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran. .,Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholamreza Kavoosi
- Institute of Biotechnology, Shiraz University, Shiraz, 71441-65186, Iran
| | - Mehdi Zarei
- Department of Soil Science, College of Agriculture, University of Shiraz, Shiraz, Iran.,Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid, 73819-43885, Iran
| |
Collapse
|
10
|
Bouhoute M, Amen Y, Bejaoui M, Mizushima AKO, Shimizu K, Isoda H. New Butyroside D from Argan Press Cake Possess Anti-Melanogenesis Effect via MITF Downregulation in B16F10 and HEM Cells. Int J Mol Sci 2022; 23:ijms232416021. [PMID: 36555664 PMCID: PMC9785346 DOI: 10.3390/ijms232416021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperpigmentation is a skin condition where patches of skin become darker in color due to excess melanin production upon UV exposure leading to melasma, which are lentigines or post inflammatory hyperpigmentation that psychologically affecting a great number of people. The present study investigates the anti-melanogenic effect of Butyroside D and the underling mechanism. After the confirmation of the non-cytotoxic effect of Butyroside D on B16F10 cells, we proceeded with analyzing the impact of the treatment at low and high concentration (i.e., 0.2 μM and 2 μM) using gene profiling analysis and examined the differentiation in gene expression. Our results identify cyclic adenosine monophosphate (cAMP), Wnt/β-catenin and Mitogen-Activated Protein Kinase (MAPK) signaling pathways to be downregulated upon treatment with Butyroside D. These pathways were targeted to further validate the effect of Butyroside D on membrane receptors melanocortin 1 receptor (MC1R) and receptor tyrosine kinase (c-Kit), related microphthalmia-associated transcription factor (MITF) and consequently tyrosinase (TYR), and tyrosine-related protein-1 (TYRP-1) that were all shown to be downregulated and, therefore, leading to the repression of melanin biosynthesis. Finally, the anti-melanogenic effect of Butyroside D was confirmed on human epidermal melanocytes (HEM) cells by inhibiting the activation of cAMP pathway generally mediated through α-melanocyte-stimulating hormone (α-MSH) and MC1R. Overall, this study suggests the potential applicability of this purified compound for the prevention of hyperpigmentation conditions.
Collapse
Affiliation(s)
- Meryem Bouhoute
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan
| | - Yhiya Amen
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan
- Research and Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba 305-8550, Japan
| | - Aprill Kee Oliva Mizushima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan
- Research and Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba 305-8550, Japan
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan
- Research and Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba 305-8550, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
- Correspondence:
| |
Collapse
|
11
|
Schreiner T, Dias MM, Barreiro MF, Pinho SP. Saponins as Natural Emulsifiers for Nanoemulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6573-6590. [PMID: 35621387 PMCID: PMC9776534 DOI: 10.1021/acs.jafc.1c07893] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The awareness of sustainability approaches has focused attention on replacing synthetic emulsifiers with natural alternatives when formulating nanoemulsions. In this context, a comprehensive review of the different types of saponins being successfully used to form and stabilize nanoemulsions is presented, highlighting the most common natural sources and biosynthetic routes. Processes for their extraction and purification are also reviewed altogether with the recent advances for their characterization. Concerning the preparation of the nanoemulsions containing saponins, the focus has been initially given to screening methods, lipid phase used, and production procedures, but their characterization and delivery systems explored are also discussed. Most experimental outcomes showed that the saponins present high performance, but the challenges associated with the saponins' broader application, mainly the standardization for industrial use, are identified. Future perspectives report, among others, the emerging biotechnological processes and the use of byproducts in a circular economy context.
Collapse
Affiliation(s)
- Tatiana
B. Schreiner
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa
Apolónia, 5300-253 Bragança, Portugal
- LSRE-LCM
- Laboratory of Separation and Reaction Engineering – Laboratory
of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Madalena M. Dias
- LSRE-LCM
- Laboratory of Separation and Reaction Engineering – Laboratory
of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Filomena Barreiro
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa
Apolónia, 5300-253 Bragança, Portugal
| | - Simão P. Pinho
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa
Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
12
|
Nooshkam M, Varidi M, Alkobeisi F. Bioactive food foams stabilized by licorice extract/whey protein isolate/sodium alginate ternary complexes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Cheng H, Jia X, Yuan D, Li H, Wang L, Fu T, Qiao H, Chen J, Wang Z, Cui X, Cheng J, Li J. Excipient-free nanodispersions dominated by amphiphilic glycosides for bioavailability enhancement of hydrophobic aglycones, a case of glycyrrhetinic acid with diammonium glycyrrhizinate. Int J Pharm 2022; 620:121770. [PMID: 35483618 DOI: 10.1016/j.ijpharm.2022.121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Natural aglycones, a major ingredient accompanied by glycosides in plants, have played an important role in the treatment of various diseases. However, their bioavailability is limited by their poor water solubility. In contrast to previous efforts that required the use of new exotic materials which may raise concerns about biocompatibility, we report the first case of excipient-free nanodispersions in which an insoluble glycyrrhetinic acid (GA) assembled with its amphiphilic parent drug diammonium glycyrrhizinate (DG) into water-dispersible nanodispersions (130.8 nm for particle size and 91.74% for encapsulation efficiency). This strategy largely increased GA's water apparent solubility by hundreds of times to 549.0 μg/mL with a high cumulative dissolution percentage in vitro greater than 80% in 5 min. The study on the formation mechanism showed that the OH, C-O and C=O group stretching peaks shifted in the FTIR spectra of GA-DG nanodispersions, while the COOH peak (δ COOH 12.19 ppm) disappeared in the 1H NMR spectrum of GA-DG nanodispersions, indicating that carboxyl groups on GA may interact with the hydroxyl groups of DG in solution. Molecular dynamics simulations suggested that both hydrophobic interactions and hydrogen-bond interactions contribute to the coassembly of GA and DG molecules in aqueous solution. Oral pharmacokinetic studies in rats demonstrated that such nanodispersions have a significant increase in Cmax and AUC0-t of 2.45- and 3.45-fold compared with those for GA, respectively. Therefore, this strategy, employing amphiphilic glycosides as excipients to prepare nanodispersions, not using new materials, paves the way for the further application of hydrophobic aglycone drugs.
Collapse
Affiliation(s)
- Hongqing Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Xiaoshun Jia
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Dandan Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Huaning Li
- Medical Department, Weifang Medical College, Weifang 261042, PR China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Tingming Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Jing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zengwu Wang
- Medical Department, Weifang Medical College, Weifang 261042, PR China
| | - Xiaobing Cui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jianming Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, PR China.
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China.
| |
Collapse
|
14
|
Schreiner TB, Colucci G, Santamaria-Echart A, Fernandes IP, Dias MM, Pinho SP, Barreiro MF. Evaluation of saponin-rich extracts as natural alternative emulsifiers: A comparative study with pure Quillaja Bark saponin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Emulsion Formation and Stabilizing Properties of Olive Oil Cake Crude Extracts. Processes (Basel) 2021. [DOI: 10.3390/pr9040633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The surface-active and emulsifying properties of crude aqueous ethanolic extracts from untreated olive oil cake (OOC) were investigated. OOC extracts contained important concentrations of surface-active components including proteins, saponins and polyphenols (1.2–2.8%, 7.8–9.5% and 0.7–4.5% (w/w), respectively) and reduced the interfacial tension by up to 46% (14.0 ± 0.2 mN m−1) at the oil–water interface. The emulsifying ability of OOC extracts was not correlated, however, with their interfacial activity or surface-active composition. Eighty percent aqueous ethanol extract produced the most stable oil-in-water (O/W) emulsions by high-pressure homogenization. The emulsions had average volume mean droplet diameters of approximately 0.4 µm and negative ζ-potentials of about −45 mV, and were stable for up to 1 month of storage at 5, 25 and 50 °C. They were sensitive, however, to acidic pH conditions (<5) and NaCl addition (≥25 mM), indicating that the main stabilization mechanism is electrostatic due to the presence of surface-active compounds with ionizable groups, such as saponins.
Collapse
|
16
|
Taarji N, Bouhoute M, Melanie H, Hafidi A, Kobayashi I, Neves M, Tominaga K, Isoda H, Nakajima M. Stability characteristics of O/W emulsions prepared using purified glycyrrhizin or a non-purified glycyrrhizin-rich extract from liquorice root (Glycyrrhiza glabra). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Nasiri L, Gavahian M, Majzoobi M, Farahnaky A. Rheological Behavior of Glycyrrhiza glabra (Licorice) Extract as a Function of Concentration and Temperature: A Critical Reappraisal. Foods 2020; 9:foods9121872. [PMID: 33334008 PMCID: PMC7765465 DOI: 10.3390/foods9121872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/30/2023] Open
Abstract
In the present study, rheological properties of twelve different licorice root extracts were evaluated using a rotational viscometer as a function of soluble solids content (15–45 °Bx) and temperature (30–70 °C). Response Surface Methodology was used to understand the relationships between the parameters. The experimental data were then fit into mathematical models. The results, for the first time, revealed that the licorice solutions had non-Newtonian shear-thinning behaviors with flow behavior indexes of 0.24 to 0.91, depending on the licorice extract samples, temperature, and °Bx. These observations were different from those reported in the literature and the present study elaborated on reasons for such observations. Further, the shear-thinning behavior generally increased by increasing the °Bx and decreasing the temperature. In addition, the power-law model was found to be suitable for predicting the experimental data. The newly revealed information can be particularly important in designing the unit operations for licorice extract processing.
Collapse
Affiliation(s)
- Laleh Nasiri
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz 71444-65186, Iran;
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: ; Tel.: +886-8-7703202
| | - Mahsa Majzoobi
- Biosciences and Food Technology, School of Science, RMIT University, Bundoora West Campus, Melbourne, VIC 3083, Australia; (M.M.); (A.F.)
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Bundoora West Campus, Melbourne, VIC 3083, Australia; (M.M.); (A.F.)
| |
Collapse
|