1
|
Zhang S, Hou R, Wang Y, Huang Q, Lin L, Li H, Liu S, Jiang Z, Huang X, Xu X. Xenobiotic metabolism activity of gut microbiota from six marine species: Combined taxonomic, metagenomic, and in vitro transformation analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136152. [PMID: 39405686 DOI: 10.1016/j.jhazmat.2024.136152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 12/01/2024]
Abstract
The xenobiotic metabolism driven by the gut microbiota significantly regulates the bioavailability and toxic effects of environmental pollutants such as plasticizers on aquatic organisms. However, it is still unknown whether the gut microbiota can exhibit variable metabolic ability across host species and which functional bacteria and genes are involved in xenobiotic transformation. This study investigated the enriched gut microbiota community composition and diversity of in vitro enrichment cultures from 6 marine species, namely, yellowfin seabream (Acanthopagrus latus), thorn fish (Terapon jarbua), shortnose ponyfish (Leiognathus brevirostris), mussel (Perna viridis), prawn (Parapenaeopsis hungerfordi) and crab (Charybdis riversandersoni). Pseudomonadota, Bacteroidota and Bacillota were the dominant phyla and Enterobacter, Raoultella, Klebsiella, Dysgonomanas and Lactococcus were the dominant genera in the enriched flora according to 16S rRNA sequencing. Furthermore, the metagenomic results revealed that all enriched gut microbiota presented metabolic genes for carbohydrates, amino acids, lipids, and xenobiotics. In particular, the gut microbiota of yellowfin seabream had the highest abundance of glycoside hydrolase family genes and CYP450 enzyme genes. Klebsiella was identified as a common potential degrader of xenobiotic metabolism. In addition, the Biolog plate test system confirmed that the gut microbiota can metabolize various carbon sources and drive the xenobiotic transformation. According to AWCD analysis of community level physiological profiling (CLPP), yellowfin seabream > mussel > prawn > shortnose ponyfish > crab > thorn fish. The gut microbiota of yellowfin seabream presented a stronger metabolic profile of phthalates and bisphenol analogs which reflected by their AWCD results and concentration variations. Overall, our results demonstrated the diverse metabolic abilities of the gut microbiota from six marine organisms and their potential for altering of the fate of xenobiotics in the ecosystem on the basis of combined taxonomic, metagenomic, and in vitro transformation analysis.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yuchen Wang
- College of Life Sciences and Engineering, Jinan University, Guangzhou 510632 China
| | - Qianyi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Ghosh N, Sinha K, Sil PC. Pesticides and the Gut Microbiota: Implications for Parkinson's Disease. Chem Res Toxicol 2024; 37:1071-1085. [PMID: 38958636 DOI: 10.1021/acs.chemrestox.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Parkinson's disease (PD) affects more people worldwide than just aging alone can explain. This is likely due to environmental influences, genetic makeup, and changes in daily habits. The disease develops in a complex way, with movement problems caused by Lewy bodies and the loss of dopamine-producing neurons. Some research suggests Lewy bodies might start in the gut, hinting at a connection between these structures and gut health in PD patients. These patients often have different gut bacteria and metabolites. Pesticides are known to increase the risk of PD, with evidence showing they harm more than just dopamine neurons. Long-term exposure to pesticides in food might affect the gut barrier, gut bacteria, and the blood-brain barrier, but the exact link is still unknown. This review looks at how pesticides and gut bacteria separately influence PD development and progression, highlighting the harmful effects of pesticides and changes in gut bacteria. We have examined the interaction between pesticides and gut bacteria in PD patients, summarizing how pesticides cause imbalances in gut bacteria, the resulting changes, and their overall effects on the PD prognosis.
Collapse
Affiliation(s)
- Nabanita Ghosh
- Assistant Professor in Zoology, Maulana Azad College, Kolkata 700013, India
| | - Krishnendu Sinha
- Assistant Professor in Zoology, Jhargram Raj College, Jhargram 721507 India
| | - Parames C Sil
- Professor, Division of Molecular Medicine, Bose Institute, Kolkata 700054 India
| |
Collapse
|
3
|
Zhu Y, Yang X, Song X, Jia Y, Zhang Y, Zhu L. Insights into the Enhanced Bioavailability of Per- and Polyfluoroalkyl Substances in Food Caused by Chronic Inflammatory Bowel Disease. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11912-11922. [PMID: 38934536 DOI: 10.1021/acs.est.4c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Understanding the bioavailability of per- and polyfluoroalkyl substances (PFAS) in food is essential for accurate human health risk assessment. Given the rising incidence of inflammatory bowel disease (IBD), this study aimed to investigate the impacts of IBD on the bioavailability of PFAS in food using mice models. The relative bioavailability (RBA) of PFAS was the highest in the chronic IBD mice (64.3-144%), followed by the healthy (60.8-133%) and acute IBD mice (41.5-121%), suggesting that chronic IBD enhanced the PFAS exposure risk. In vitro tests showed that the intestinal micelle stability increased as a result of reduced content of short-chain fatty acids, thus promoting the PFAS bioaccessibility in the digestive fluid of chronic IBD. Additionally, increased pathogenic and decreased beneficial bacteria in the gut of IBD groups facilitated the intestinal permeability, thus enhancing PFAS absorption. These together explained the higher RBA of PFAS in the chronic IBD. However, remarkably lower enzymatic activities suggested severely impaired digestive ability in the acute IBD, which facilitated the excretion of PFAS from feces, thus lowering the RBA. Conversely, PFAS exposure might exacerbate IBD by changing the gut microbiota structures. This study hints that individuals with chronic intestinal inflammation might have higher PFAS exposure risk than the healthy population.
Collapse
Affiliation(s)
- Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xin Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xiaohua Song
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
4
|
Ośko J, Nasierowska K, Grembecka M. Application of In Vitro Digestion Models in the Evaluation of Dietary Supplements. Foods 2024; 13:2135. [PMID: 38998641 PMCID: PMC11240933 DOI: 10.3390/foods13132135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Nowadays, dietary supplements are a permanent part of our diet. Using various simulated in vitro digestive models, the bioavailability of dietary supplement ingredients has also been investigated. In most cases, static models are used instead of dynamic ones. This article focuses on the division of applications of in vitro methods, such as assessing the quality of dietary supplements (in chemical and pharmaceutical form), the impact of diet on the assessment of the bioavailability of product ingredients, the impact of supplement ingredients on the state of intestinal microflora, and the development of new products using various encapsulation methods. The review included publications from 2000 to 2024 showing the use of in vitro methods in dietary supplements containing polysaccharides, proteins, elements, vitamins, and bioactive substances, as well as probiotic and prebiotic products. The impact of components in dietary supplements on the human digestive tract and their degree of bioaccessibility were determined through the use of in vitro methods. The application of in vitro methods has also become an effective tool for designing new forms of dietary supplements in order to increase the availability and durability of labile ingredients in these products.
Collapse
Affiliation(s)
- Justyna Ośko
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland
| | - Katarzyna Nasierowska
- Student Scientific Circle, Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland
| |
Collapse
|
5
|
Kiruthika K, Suganthi A, Johnson Thangaraj Edward YS, Anandham R, Renukadevi P, Murugan M, Bimal Kumar Sahoo, Mohammad Ikram, Kavitha PG, Jayakanthan M. Role of Lactic Acid Bacteria in Insecticide Residue Degradation. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10298-0. [PMID: 38819541 DOI: 10.1007/s12602-024-10298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Lactic acid bacteria are gaining global attention, especially due to their role as a probiotic. They are increasingly being used as a flavoring agent and food preservative. Besides their role in food processing, lactic acid bacteria also have a significant role in degrading insecticide residues in the environment. This review paper highlights the importance of lactic acid bacteria in degrading insecticide residues of various types, such as organochlorines, organophosphorus, synthetic pyrethroids, neonicotinoids, and diamides. The paper discusses the mechanisms employed by lactic acid bacteria to degrade these insecticides, as well as their potential applications in bioremediation. The key enzymes produced by lactic acid bacteria, such as phosphatase and esterase, play a vital role in breaking down insecticide molecules. Furthermore, the paper discusses the challenges and future directions in this field. However, more research is needed to optimize the utilization of lactic acid bacteria in insecticide residue degradation and to develop practical strategies for their implementation in real-world scenarios.
Collapse
Affiliation(s)
- K Kiruthika
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - A Suganthi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | | | - R Anandham
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P Renukadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Bimal Kumar Sahoo
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Mohammad Ikram
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P G Kavitha
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Jayakanthan
- Department of Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
6
|
Zhou Q, Chen H, Li L, Wu Y, Yang X, Jiang A, Wu W. The Bioaccessibility and Bioavailability of Pentachlorophenol in Five Animal-Derived Foods Measured by Simulated Gastrointestinal Digestion. Foods 2024; 13:1254. [PMID: 38672926 PMCID: PMC11049475 DOI: 10.3390/foods13081254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Pentachlorophenol (PCP) is a ubiquitous emerging persistent organic pollutant detected in the environment and foodstuffs. Despite the dietary intake of PCP being performed using surveillance data, the assessment does not consider the bioaccessibility and bioavailability of PCP. Pork, beef, pork liver, chicken and freshwater fish Ctenopharyngodon Idella-fortified by three levels of PCP were processed by RIVM and the Caco-2 cell model after steaming, boiling and pan-frying, and PCP in foods and digestive juices were detected using isotope dilution-UPLC-MS/MS. The culinary treatment and food matrix were significantly influenced (p < 0.05) in terms of the bioaccessibility and bioavailability of PCP. Pan-frying was a significant factor (p < 0.05) influencing the digestion and absorption of PCP in foods, with the following bioaccessibility: pork (81.37-90.36%), beef (72.09-83.63%), pork liver (69.11-78.07%), chicken (63.43-75.52%) and freshwater fish (60.27-72.14%). The bioavailability was as follows: pork (49.39-63.41%), beef (40.32-53.43%), pork liver (33.63-47.11%), chicken (30.63-40.83%) and freshwater fish (17.14-27.09%). Pork and beef with higher fat content were a key factor in facilitating the notable PCP bioaccessibility and bioavailability (p < 0.05). Further, the exposure of PCP to the population was significantly reduced by 42.70-98.46% after the consideration of bioaccessibility and bioavailability, with no potential health risk. It can improve the accuracy of risk assessment for PCP.
Collapse
Affiliation(s)
- Quan Zhou
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Huiming Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China; (H.C.); (L.L.); (X.Y.)
| | - Liangliang Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China; (H.C.); (L.L.); (X.Y.)
| | - Yongning Wu
- Key Laboratory of Food Safety Risk Assessment, National Center for Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China;
| | - Xingfen Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China; (H.C.); (L.L.); (X.Y.)
| | - Aimin Jiang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Weiliang Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China; (H.C.); (L.L.); (X.Y.)
| |
Collapse
|
7
|
Xiao J, Li M, Zhang M, Dai K, Ju X, Liu Y, Liu Z, Cao H, Shi Y. Transport and interaction mechanism of four pesticide residues from Chaenomeles speciosa across Caco-2 cells. Food Chem 2024; 431:137156. [PMID: 37591142 DOI: 10.1016/j.foodchem.2023.137156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
The presence of multiple pesticide residues in agricultural production highlights the need for studying mixture interaction during transepithelial transport. This study applied the Caco-2 cell model to investigate the interaction of four pesticide residues (carbendazim, epoxiconazole, phoxim, and chlorpyrifos) in Chaenomeles speciosa during transepithelial transport. Results demonstrated that co-treatment with pesticide mixtures generally increased the cumulative transport amount of carbendazim and epoxiconazole by 0.32-1.60 times and 0.32-0.98 times, respectively, compared to individual treatments. Notably, the combination of carbendazim and epoxiconazole displayed a significant synergistic effect. The use of transporter inhibitors and molecular docking analysis provided insights into the interaction mechanism, suggesting that the competitive inhibition of MRP2 and/or BCRP binding via π-bonds contributed to the inhibition of BL-to-AP efflux and a significant increase in AP-to-BL influx of carbendazim and epoxiconazole. The results are of great theoretical significance and practical value for risk assessment of multiple pesticide residues in agricultural products.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Minkun Li
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Mengya Zhang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Kaijie Dai
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Xiaowei Ju
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Yuying Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Ziqi Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China.
| |
Collapse
|
8
|
Schreiner T, Eggerstorfer NM, Morlock GE. Towards non-target proactive food safety: identification of active compounds in convenience tomato products by ten-dimensional hyphenation with integrated simulated gastrointestinal digestion. Anal Bioanal Chem 2024; 416:715-731. [PMID: 36988684 PMCID: PMC10766732 DOI: 10.1007/s00216-023-04656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Current strategies for non-target food screening focus mainly on known hazardous chemicals (adulterants, residues, contaminants, packaging migrants, etc.) instead of bioactive constituents in general and exclude the biological effect detection. To widen the perspective, a more proactive non-target effect-directed strategy is introduced to complement food safety in order to detect not only known but also unknown bioactive compounds. The developed 10-dimensional hyphenation included on-surface digestion (1D), planar chromatographic separation (2D), visualization using white light (3D), UV light (4D), fluorescence light (5D), effect-directed assay analysis (6D), heart-cut zone elution to an orthogonal reversed phase column chromatography including online desalting (7D) with subsequent diode array detection (8D), high-resolution mass spectrometry (9D), and fragmentation (10D). Metabolism, i.e., intestinal digestion of each sample, was simulated and integrated on the same adsorbent surface to study any changes in the compound profiles. As proof of principle, nine convenience tomato products and a freshly prepared tomato soup were screened via five different planar assays in a non-targeted mode. Non-digested and digested samples were compared side by side. In their effect-directed profiles, 14 bioactive compounds from classes of lipids, plant hormones, spices, and pesticides were identified. In particular, bioactive compounds coming from the lipid class were increased by gastrointestinal digestion, while spices and pesticides remained unaffected. With regard to food safety, the determination of the two dinitrophenol herbicides dinoterb and dinoseb in highly processed tomato products should be given special attention. The hyphenation covered a broad analyte spectrum and showed robust and reliable results.
Collapse
Affiliation(s)
- Tamara Schreiner
- Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Naila M Eggerstorfer
- Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Gertrud E Morlock
- Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
9
|
Liu Y, Jiang S, Xiang Y, Lin F, Yue X, Li M, Xiao J, Cao H, Shi Y. In vivo-in vitro correlations (IVIVC) for the assessment of pyrethroid bioavailability in honey. Food Chem 2023; 429:136873. [PMID: 37459714 DOI: 10.1016/j.foodchem.2023.136873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
Bioaccessibility/bioavailability is an important factor in assessing the potential human health risk via oral exposure. However, methods for accurately predicting the bioaccessibility/bioavailability of pesticide residues are still limited, preventing accurate measurements of actual exposure to pesticide residues. In this study, pyrethroid bioavailability in honey were analysed using a mouse bioassay and bioaccessibility via in vitro methods with Tenax extraction. The results demonstrated that the combined liver plus kidney data served as an appropriate biomarker to estimate the relative bioavailability. Notably, significant in vivo-in vitro correlations (IVIVC) were observed between bioavailability and bioaccessibility (R2 = 0.7898-0.9793). Estimation of the bioavailability of honey from different nectar plants using derived IVIVC confirmed that different contents and physicochemical properties might affect its bioavailability. The findings provide insight into assessing human exposure to pesticides based on bioavailability and can decrease the uncertainty about the assessment of the risk of dietary exposure to pesticides.
Collapse
Affiliation(s)
- Yuying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Siyuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuxin Xiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Fengxiang Lin
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Xingyu Yue
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Minkun Li
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China.
| |
Collapse
|
10
|
Matsuzaki R, Gunnigle E, Geissen V, Clarke G, Nagpal J, Cryan JF. Pesticide exposure and the microbiota-gut-brain axis. THE ISME JOURNAL 2023:10.1038/s41396-023-01450-9. [PMID: 37328570 DOI: 10.1038/s41396-023-01450-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
The gut microbiota exist within a dynamic ecosystem shaped by various factors that includes exposure to xenobiotics such as pesticides. It is widely regarded that the gut microbiota plays an essential role in maintaining host health, including a major influence on the brain and behaviour. Given the widespread use of pesticides in modern agriculture practices, it is important to assess the long-term collateral effects these xenobiotic exposures have on gut microbiota composition and function. Indeed, exposure studies using animal models have shown that pesticides can induce negative impacts on the host gut microbiota, physiology and health. In tandem, there is a growing body of literature showing that the effects of pesticide exposure can be extended to the manifestation of behavioural impairments in the host. With the increasing appreciation of the microbiota-gut-brain axis, in this review we assess whether pesticide-induced changes in gut microbiota composition profiles and functions could be driving these behavioural alterations. Currently, the diversity of pesticide type, exposure dose and variation in experimental designs hinders direct comparisons of studies presented. Although many insights presented, the mechanistic connection between the gut microbiota and behavioural changes remains insufficiently explored. Future experiments should therefore focus on causal mechanisms to examine the gut microbiota as the mediator of the behavioural impairments observed in the host following pesticide exposure.
Collapse
Affiliation(s)
- Rie Matsuzaki
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20, Cork, Ireland
| | - Eoin Gunnigle
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
| | - Violette Geissen
- Department of Environmental Sciences, Wageningen University & Research, 6700AA, Wageningen, The Netherlands
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Sciences, University College Cork, T12 YT20, Cork, Ireland
| | - Jatin Nagpal
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland
- School of Pharmacy and Department of Pharmacology & Therapeutics, University College Cork, T12 YT20, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20, Cork, Ireland.
| |
Collapse
|
11
|
Wen Y, Kong Y, Peng Y, Cui X. Uptake, distribution, and depuration of emerging per- and polyfluoroalkyl substances in mice: Role of gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158372. [PMID: 36041619 DOI: 10.1016/j.scitotenv.2022.158372] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The bioaccumulation and fate in mammals of hexafluoropropylene oxide trimer acid (HFPO-TA) and hexafluoropropylene oxide dimer acid (HFPO-DA), as major alternatives for perfluorooctanoate (PFOA), have rarely been reported. In addition, the role of gut microbiota was greatly understudied. In this study, the uptake, distribution, and depuration of HFPO-TA, HFPO-DA, and PFOA were investigated by exposure to mice for 14 days, followed by a clearance period of 7 days. The patterns of tissue distribution and depuration kinetics of HFPO-TA and PFOA were similar, but different from HFPO-DA. Liver was the main deposition organ for HFPO-TA and PFOA, making contributions of 58.8 % and 59.1 % to the total mass recovered on day 14. Depuration of HFPO-DA was more rapid than HFPO-TA and PFOA. Approximately 95.3 % of HFPO-DA in liver was eliminated on day 21 compared with day 14. While the clearance rates of HPFO-TA and PFOA were only 6.1 % and 13.9 % on day 21. The comparison between normal and pseudo germ-free mice (GM) was also conducted to investigate the effect of gut microbial on in vivo absorption of the three per- and polyfluoroalkyl substances (PFASs). Significantly higher (p < 0.05) concentrations of all the three PFASs were observed in most organs and tissues of GM compared with NC group. An analysis of gut microbiota showed that the higher absorption of PFASs in GM group may be attributed to the increase of intestinal permeability (as indicated by the decrease of tight junction protein expression), which were induced by the change of lachnospiraceae abundance. The result highlighted the importance of gut microbiota in absorption and health risk evaluation of emerging PFASs.
Collapse
Affiliation(s)
- Yong Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ying Peng
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
12
|
Bioaccessibility and Intestinal Transport of Tebuconazole in Table Grape by Using In Vitro Digestion Models. Foods 2022; 11:foods11233926. [PMID: 36496737 PMCID: PMC9740649 DOI: 10.3390/foods11233926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, the effects of various digestive models, influencing factors and dietary supplements on the bioaccessibility of tebuconazole in table grapes were compared. The Caco-2 cell model was employed to reveal the transfer behavior of tebuconazole. The results indicated that digestion time is the main factor affecting bioaccessibility. With an increase in time, the tebuconazole in grapes was almost completely dissolved, with bioaccessibility reaching 98.5%, whereas dietary fiber reduced bioaccessibility. Tebuconazole undergoes carrier-free passive transport in permeable cells in the Caco-2 cell model. These findings have practical application value for correctly evaluating the harmful level of pollutants in the matrix to human body.
Collapse
|
13
|
Xiao J, Shi Y, Deng Y, Liu Y, Feng W, Liao M, Cao H. Incorporating Tenax into the in vitro method to improve the predictive capability of bioaccessibility of triazole fungicides in grape. Food Chem 2022; 396:133740. [PMID: 35878443 DOI: 10.1016/j.foodchem.2022.133740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/09/2022] [Accepted: 07/16/2022] [Indexed: 12/07/2022]
Abstract
In vitro bioaccessibility assays have been developed for high-throughput prediction of relative bioavailability (RBA). However, methods to reliably and efficiently assess pesticide residues remain limited, hindering the precise estimation of pesticide exposure risk. The inclusion of a sorption sink material to simulate intestinal sorption could be a promising approach to optimize in vitro bioaccessibility methods. The current study aimed to explore the feasibility of incorporating Tenax into the Rijksinstituut voor Volksgezondheid en Milieu (RIVM) method for accurate evaluation of the bioaccessibility of triazole fungicides. The use of 1.0 g of Tenax enabled the valid trapping of triazole fungicides released from grape, resulting in a significant increase of 23.59-38.51 % in the value of bioaccessibility. A strong in vivo-in vitro correlation was observed between pesticide RBA and bioaccessibility, suggesting that the Tenax-assisted RIVM method is a suitable replacement for time-consuming and laborious in vivo alternatives. In addition, the exposure assessment indicated that the hazard quotients for triazole fungicides in grape may be overestimated by 5.79-27.34 % without considering bioaccessibility based on the Tenax-assisted RIVM method. These results provide further insights into the assessment of bioaccessibility-based human exposure to pesticides as well as dietary exposure and related risk for human health.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yajing Deng
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Wenzhe Feng
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China.
| |
Collapse
|
14
|
Liu YY, Zhang SD, Xiao JJ, Feng WZ, Wei D, Deng YJ, Cao HQ, Shi YH. Gut microbiota-involved metabolism and intestinal absorption mechanisms in decreasing bioaccessibility of triadimefon in strawberry and grape. Food Chem 2022; 373:131575. [PMID: 34801285 DOI: 10.1016/j.foodchem.2021.131575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022]
Abstract
Gut microbiota-involved metabolism and intestinal absorption affecting bioaccessibility of triadimefon in strawberry and grape were investigated for the first time by coupling the in vitro digestion model with the Caco-2 cell model. Results showed that the gut microbiota decreased the bioaccessibility of triadimefon in strawberry by 31.00% but failed in grape, probably due to a negative modulation of the colon bacterial activity by dietary components in grapes. A strain of triadimefon-degrading bacteria, Stenotrophomonas maltophilia, was isolated from the gut microbiota and its degradation products were profiled. This study also clarified a significant reduction in transepithelial transport (up to 32.81%) of triadimefon as a result of the barrier effect of gut microbiota. These findings provide new insights on the function of the gut microbiota in pesticide bioaccessibility and highlight the importance of including gut microbiota in pesticide residue risk assessments.
Collapse
Affiliation(s)
- Yu-Ying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Si-Dong Zhang
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Jin-Jing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Wen-Zhe Feng
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Dong Wei
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Ya-Jing Deng
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Yan-Hong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China.
| |
Collapse
|
15
|
Nowak A, Szczuka D, Górczyńska A, Motyl I, Kręgiel D. Characterization of Apis mellifera Gastrointestinal Microbiota and Lactic Acid Bacteria for Honeybee Protection-A Review. Cells 2021; 10:cells10030701. [PMID: 33809924 PMCID: PMC8004194 DOI: 10.3390/cells10030701] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Numerous honeybee (Apis mellifera) products, such as honey, propolis, and bee venom, are used in traditional medicine to prevent illness and promote healing. Therefore, this insect has a huge impact on humans’ way of life and the environment. While the population of A. mellifera is large, there is concern that widespread commercialization of beekeeping, combined with environmental pollution and the action of bee pathogens, has caused significant problems for the health of honeybee populations. One of the strategies to preserve the welfare of honeybees is to better understand and protect their natural microbiota. This paper provides a unique overview of the latest research on the features and functioning of A. mellifera. Honeybee microbiome analysis focuses on both the function and numerous factors affecting it. In addition, we present the characteristics of lactic acid bacteria (LAB) as an important part of the gut community and their special beneficial activities for honeybee health. The idea of probiotics for honeybees as a promising tool to improve their health is widely discussed. Knowledge of the natural gut microbiota provides an opportunity to create a broad strategy for honeybee vitality, including the development of modern probiotic preparations to use instead of conventional antibiotics, environmentally friendly biocides, and biological control agents.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
- Correspondence:
| | - Daria Szczuka
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Anna Górczyńska
- Faculty of Law and Administration, University of Lodz, Kopcińskiego 8/12, 90-232 Łódź, Poland;
| | - Ilona Motyl
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| |
Collapse
|