1
|
Modica G, Legua P, La Malfa S, Gentile A, Continella A. Qualitative Traits and Antioxidant Properties of Blood Oranges Are Affected by the Genotype and the Climatic Conditions. Foods 2024; 13:3137. [PMID: 39410173 PMCID: PMC11482589 DOI: 10.3390/foods13193137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
Blood oranges are increasingly cultivated worldwide as consumers become more aware of the health benefits of their nutraceutical properties and natural antioxidants, specifically polyphenols and anthocyanins. The amounts of these compounds in the fruit mostly depend on the cultivar, rootstock, maturity stage, and environmental conditions. This work focused on the study of the qualitative features of numerous blood orange cultivars grown in three different environments in Spain and Italy. The aim of the work was to investigate the accumulation of primary and secondary metabolites, including bioactive compounds, and to characterize fruit qualitative traits at the time of harvest. Simple sugars were identified and quantified by liquid chromatography and organic acids, polyphenols, and flavonoids by spectrophotometric analysis. The antioxidant potential of the juice was assessed by ABTS, DPPH, and FRAP assays. Cultivation area affected juice color, with Moro and T. Ippolito being the varieties with the highest pigmentation. The cultivation area also determined the pattern of primary and secondary metabolite accumulation in the Tarocco lines. Furthermore, the antioxidant potential was influenced by the diverse environments. Principal Component Analysis highlighted three clusters, two overlapping clusters for the varieties grown in the two Spanish plots and a third clearly separated cluster for the genotypes grown in Italy. This study provides novel knowledge on primary and secondary metabolite accumulation in blood oranges, elucidating the role of genotype and environmental conditions on fruit quality.
Collapse
Affiliation(s)
- Giulia Modica
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (G.M.); (S.L.M.); (A.G.)
| | - Pilar Legua
- Plant Science and Microbiology Department, Miguel Hernández University, 03202 Alicante, Spain
| | - Stefano La Malfa
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (G.M.); (S.L.M.); (A.G.)
| | - Alessandra Gentile
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (G.M.); (S.L.M.); (A.G.)
| | - Alberto Continella
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (G.M.); (S.L.M.); (A.G.)
| |
Collapse
|
2
|
Yang L, Li S, Chen Y, Wang M, Yu J, Bai W, Hong L. Combined Metabolomics and Network Pharmacology Analysis Reveal the Effect of Rootstocks on Anthocyanins, Lipids, and Potential Pharmacological Ingredients of Tarroco Blood Orange ( Citrus sinensis L. Osbeck). PLANTS (BASEL, SWITZERLAND) 2024; 13:2259. [PMID: 39204695 PMCID: PMC11358934 DOI: 10.3390/plants13162259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The benefits of citrus fruits are strongly associated with their secondary metabolites. In this study, we conducted widely targeted metabolomics analyses to compare the variability of the ingredients in four scion-rootstock combinations. A total of 376 differential metabolites were obtained by a multivariate statistical analysis, and a KEGG pathway analysis showed that the enriched metabolic pathways were mainly related to the biosynthesis of flavonoids as well as lipid metabolism. The anthocyanin-targeted metabolomic features showed that cyanidin 3-O-glucoside, cyanidin 3-O-(6-O-malonyl-beta-D-glucoside), cyanidin 3-O-sophoroside, and cyanidin 3-O-xyloside were the pigments responsible for the red color of Tarocco. A lipid metabolomics analysis revealed that when Tarocco was hetero-grafted with rootstock H, there was an increase in the content of each lipid subclass, accompanied by an increase in the levels of unsaturated fatty acids, including polyunsaturated linoleic and linolenic acids, thus impacting the ratio of unsaturated fatty acids to saturated fatty acids. Additionally, we determined their antioxidant capacity ('Trifoliate orange' (Z) > 'Citrange' (ZC) > 'Hongju' (H) > 'Ziyang Xiangcheng' (X)) using in vitro assays. Finally, we utilized a network pharmacology analysis to explore the antioxidant mechanisms and potential pharmacological ingredients; we obtained 26 core targets proteins and 42 core metabolites associated with oxidative damage, providing a basis for future preventive and therapeutic applications of these metabolites.
Collapse
Affiliation(s)
- Lei Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (L.Y.); (S.L.); (M.W.); (J.Y.)
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
| | - Shuang Li
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (L.Y.); (S.L.); (M.W.); (J.Y.)
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
| | - Yang Chen
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Min Wang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (L.Y.); (S.L.); (M.W.); (J.Y.)
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
| | - Jianjun Yu
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (L.Y.); (S.L.); (M.W.); (J.Y.)
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
| | - Wenqin Bai
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Lin Hong
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (L.Y.); (S.L.); (M.W.); (J.Y.)
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
| |
Collapse
|
3
|
Sanches VL, de Souza Mesquita LM, Viganó J, Contieri LS, Pizani R, Chaves J, da Silva LC, de Souza MC, Breitkreitz MC, Rostagno MA. Insights on the Extraction and Analysis of Phenolic Compounds from Citrus Fruits: Green Perspectives and Current Status. Crit Rev Anal Chem 2024; 54:1173-1199. [PMID: 35993795 DOI: 10.1080/10408347.2022.2107871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Citrus fruits (CF) are highly consumed worldwide, fresh, processed, or prepared as juices and pies. To illustrate the high economic importance of CF, the global production of these commodities in 2021 was around 98 million tons. CF's composition is considered an excellent source of phenolic compounds (PC) as they have a large amount and variety. Since ancient times, PC has been highlighted to promote several benefits related to oxidative stress disorders, such as chronic diseases and cancer. Recent studies suggest that consuming citrus fruits can prevent some of these diseases. However, due to the complexity of citrus matrices, extracting compounds of interest from these types of samples, and identifying and quantifying them effectively, is not a simple task. In this context, several extractive and analytical proposals have been used. This review discusses current research involving CF, focusing mainly on PC extraction and analysis methods, regarding advantages and disadvantages from the perspective of Green Chemistry.
Collapse
Affiliation(s)
- Vitor L Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Juliane Viganó
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Buri, São Paulo, Brazil
| | - Letícia S Contieri
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo Pizani
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Jaísa Chaves
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Laíse Capelasso da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | | | | | - Maurício A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
4
|
He W, Chai J, Xie R, Wu Y, Wang H, Wang Y, Chen Q, Wu Z, Li M, Lin Y, Zhang Y, Luo Y, Zhang Y, Tang H, Wang X. The Effects of a New Citrus Rootstock Citrus junos cv. Shuzhen No. 1 on Performances of Ten Hybrid Citrus Cultivars. PLANTS (BASEL, SWITZERLAND) 2024; 13:794. [PMID: 38592823 PMCID: PMC10976021 DOI: 10.3390/plants13060794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
The importance of rootstock in citrus production lies in its crucial role in determining tree growth, environmental stress tolerance, and fruit quality. Citrus junos Siebold ex Tanaka cv. Shuzhen No. 1, a recently developed rootstock, demonstrates excellent graft compatibility and abiotic stress tolerance. The objective of this study was to assess ten hybrid citrus cultivars grafted onto two C. junos rootstock selections, with the aim of determining the potential for industrial utilization of the new citrus rootstock. All graft junctions are mature and well established. Vigorous growth characterized all ten citrus cultivars on Shuzhen No. 1, with the largest tree's height reaching 280.33 cm (Wogan scion) and the widest scion's diameter being 67.52 cm (Chunjian scion). However, the scion-to-rootstock diameter ratio was the lowest at 0.62 (Chunxiang scion). C. junos rootstock selections significantly affected fruit weight (five of ten scions) and fruit color (seven of ten scions) but had negligible impact on peel thickness (nine of ten scions). Furthermore, rootstock type had a significant influence on fruit quality. In conclusion, our findings indicate strong graft compatibility between all scions and C. junos rootstocks, which can impact overall size and fruit quality. Based on these results, Shuzhen No. 1 is recommended as a valuable citrus rootstock.
Collapse
Affiliation(s)
- Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Jiufeng Chai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Rui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Yang Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Zhiwei Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| |
Collapse
|
5
|
Yang L, Chen Y, Wang M, Hou H, Li S, Guan L, Yang H, Wang W, Hong L. Metabolomic and transcriptomic analyses reveal the effects of grafting on blood orange quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1169220. [PMID: 37360739 PMCID: PMC10286243 DOI: 10.3389/fpls.2023.1169220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Introduction Blood orange (Citrus sinensis L.) is a valuable source of nutrition because it is enriched in anthocyanins and has high organoleptic properties. Grafting is commonly used in citriculture and has crucial effects on various phenotypes of the blood orange, including its coloration, phenology, and biotic and abiotic resistance. Still, the underlying genetics and regulatory mechanisms are largely unexplored. Methods In this study, we investigated the phenotypic, metabolomic, and transcriptomic profiles at eight developmental stages of the lido blood orange cultivar (Citrus sinensis L. Osbeck cv. Lido) grafted onto two rootstocks. Results and discussion The Trifoliate orange rootstock provided the best fruit quality and flesh color for Lido blood orange. Comparative metabolomics suggested significant differences in accumulation patterns of metabolites and we identified 295 differentially accumulated metabolites. The major contributors were flavonoids, phenolic acids, lignans and coumarins, and terpenoids. Moreover, transcriptome profiling resulted in the identification of 4179 differentially expressed genes (DEGs), and 54 DEGs were associated with flavonoids and anthocyanins. Weighted gene co-expression network analysis identified major genes associated to 16 anthocyanins. Furthermore, seven transcription factors (C2H2, GANT, MYB-related, AP2/ERF, NAC, bZIP, and MYB) and five genes associated with anthocyanin synthesis pathway (CHS, F3H, UFGT, and ANS) were identified as key modulators of the anthocyanin content in lido blood orange. Overall, our results revealed the impact of rootstock on the global transcriptome and metabolome in relation to fruit quality in lido blood orange. The identified key genes and metabolites can be further utilized for the quality improvement of blood orange varieties.
Collapse
Affiliation(s)
- Lei Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yang Chen
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Min Wang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Huifang Hou
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shuang Li
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Ling Guan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Haijian Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Wu Wang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Lin Hong
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
6
|
Forner-Giner MÁ, Ballesta-de Los Santos M, Melgarejo P, Martínez-Nicolás JJ, Núñez-Gómez D, Continella A, Legua P. Influence of Different Rootstocks on Fruit Quality and Primary and Secondary Metabolites Content of Blood Oranges Cultivars. Molecules 2023; 28:molecules28104176. [PMID: 37241916 DOI: 10.3390/molecules28104176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Blood oranges have high concentrations of bioactive compounds that are beneficial to health. In Europe, the cultivation of blood oranges is increasing due to their excellent nutritional properties. In Citrus crops, rootstocks play an important role in juice and can increase the content of bioactive compounds. The morphological, qualitative and nutritional parameters were analyzed in cultivars 'Tarocco Ippolito', 'Tarocco Lempso', 'Tarocco Tapi' and 'Tarocco Fondaconuovo' grafted onto Citrus macrophylla and Citrus reshni. 'Tarocco Lempso' grafted onto Citrus macrophylla obtained the highest values of weight (275.78 g), caliber (81.37 mm and 76.79 mm) and juice content (162.11 g). 'Tarocco Tapi' grafted onto Citrus reshni obtained the most interesting qualitative parameters (15.40 °Brix; 12.0 MI). 'Tarocco Lempso' grafted onto Citrus reshni obtained the most intense red juice (a* = 9.61). Overall, the highest concentrations of primary metabolites were in proline, aspartate, citric acid, and sucrose. The results showed that 'Tarocco Ippolito' juice grafted onto Citrus reshni had the highest levels of total hydroxycinnamic acids (263.33 mg L-1), total flavones (449.74 mg L-1) and total anthocyanins (650.42 mg L-1). To conclude, 'Tarocco Lempso' grafted onto Citrus macrophylla obtained the best values of agronomic parameters, and the cultivars grafted onto Citrus reshni obtained significantly higher concentrations in primary and secondary metabolites.
Collapse
Affiliation(s)
| | - Manuel Ballesta-de Los Santos
- Research Group in Plant Production and Technology, Plant Sciences and Microbiology Department, Miguel Hernández University (UMH), Carretera de Beniel, km 3.2, 03312 Orihuela, Spain
| | - Pablo Melgarejo
- Research Group in Plant Production and Technology, Plant Sciences and Microbiology Department, Miguel Hernández University (UMH), Carretera de Beniel, km 3.2, 03312 Orihuela, Spain
| | - Juan José Martínez-Nicolás
- Research Group in Plant Production and Technology, Plant Sciences and Microbiology Department, Miguel Hernández University (UMH), Carretera de Beniel, km 3.2, 03312 Orihuela, Spain
| | - Dámaris Núñez-Gómez
- Research Group in Plant Production and Technology, Plant Sciences and Microbiology Department, Miguel Hernández University (UMH), Carretera de Beniel, km 3.2, 03312 Orihuela, Spain
| | - Alberto Continella
- Department of Agriculture, Food and Environment, University of Catania, 95124 Catania, Italy
| | - Pilar Legua
- Research Group in Plant Production and Technology, Plant Sciences and Microbiology Department, Miguel Hernández University (UMH), Carretera de Beniel, km 3.2, 03312 Orihuela, Spain
| |
Collapse
|
7
|
Wang C, Zhou J, Zhang S, Gao X, Yang Y, Hou J, Chen G, Tang X, Wu J, Yuan L. Combined Metabolome and Transcriptome Analysis Elucidates Sugar Accumulation in Wucai ( Brassica campestris L.). Int J Mol Sci 2023; 24:ijms24054816. [PMID: 36902245 PMCID: PMC10003340 DOI: 10.3390/ijms24054816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Wucai (Brassica campestris L.) is a leafy vegetable that originated in China, its soluble sugars accumulate significantly to improve taste quality during maturation, and it is widely accepted by consumers. In this study, we investigated the soluble sugar content at different developmental stages. Two periods including 34 days after planting (DAP) and 46 DAP, which represent the period prior to and after sugar accumulation, respectively, were selected for metabolomic and transcriptomic profiling. Differentially accumulated metabolites (DAMs) were mainly enriched in the pentose phosphate pathway, galactose metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, and fructose and mannose metabolism. By orthogonal projection to latent structures-discriminant s-plot (OPLS-DA S-plot) and MetaboAnalyst analyses, D-galactose and β-D-glucose were identified as the major components of sugar accumulation in wucai. Combined with the transcriptome, the pathway of sugar accumulation and the interact network between 26 DEGs and the two sugars were mapped. CWINV4, CEL1, BGLU16, and BraA03g023380.3C had positive correlations with the accumulation of sugar accumulation in wucai. The lower expression of BraA06g003260.3C, BraA08g002960.3C, BraA05g019040.3C, and BraA05g027230.3C promoted sugar accumulation during the ripening of wucai. These findings provide insights into the mechanisms underlying sugar accumulation during commodity maturity, providing a basis for the breeding of sugar-rich wucai cultivars.
Collapse
Affiliation(s)
- Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Jiajie Zhou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shengnan Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Xun Gao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Yitao Yang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Jianqiang Wu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Correspondence: ; Tel./Fax: +86-0551-65786212
| |
Collapse
|
8
|
Tan E, Li F, Lin X, Ma S, Zhang G, Zhou H, Ouyang Y, Tang Z, Cheng Q. Comparative study on comprehensive quality of Xinhui chenpi by two main plant propagation techniques. Food Sci Nutr 2023; 11:1104-1112. [PMID: 36789071 PMCID: PMC9922146 DOI: 10.1002/fsn3.3148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/22/2022] Open
Abstract
Xinhui chenpi (XHCP), the sun-dried peel of the mandarin orange, Citrus reticulata "Chachi," is the most famous crude drug, as well as a traditional seasoning in Chinese cooking. The main cultivation methods of XHCP are cutting and grafting, but it is generally considered that the quality of XHCP after cutting is superior to that obtained from plants propagated by graftings, which had a negative impact on the marketing of the finished product. In our study, a total of 25 samples of XHCP obtained from plants cultivated by either traditional methods (i.e., from cuttings) or by grafting were collected to compare the contents of four types of metabolites (essential oils, flavonoids, synephrine, and total polysaccharides) as well as antioxidant activity. The results revealed that the quality of XHCP did not decline after cutting, and marked individual differences between XHCP samples, even when prepared from plants grown in the same way. In general, grafting had no significant effect on the most essential oils components, total polysaccharides, synephrine, total flavonoids, total polymethoxylated flavones, hesperidin, nobiletin, tangeretin content, and antioxidant activity. Nevertheless, five volatile compounds can be used as potential chemical markers (p < 0.05) to distinguish between cutting XHCP and grafted XHCP, while four volatile compounds showed high content in grafted XHCP. Our study is expected to provide a theoretical basis for XHCP breeding and cultivation, and thereby further standardize the market of XHCP.
Collapse
Affiliation(s)
- E‐yu Tan
- School of Pharmaceutical Science, Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
- Jiangmen Wuyi Hospital of Traditional Chinese MedicineJiangmenPeople's Republic of China
- Guangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese MedicineGuangzhouPeople's Republic of China
| | - Fang Li
- Jiangmen Wuyi Hospital of Traditional Chinese MedicineJiangmenPeople's Republic of China
| | - Xinheng Lin
- Jiangmen Wuyi Hospital of Traditional Chinese MedicineJiangmenPeople's Republic of China
| | - Shaofeng Ma
- Jiangmen Wuyi Hospital of Traditional Chinese MedicineJiangmenPeople's Republic of China
| | - Guanghua Zhang
- Jiangmen Wuyi Hospital of Traditional Chinese MedicineJiangmenPeople's Republic of China
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese MedicineGuangzhouPeople's Republic of China
- Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhouPeople's Republic of China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaPeople's Republic of China
| | - Yue Ouyang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaPeople's Republic of China
| | - Ziyu Tang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaPeople's Republic of China
| | - Qiqing Cheng
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaPeople's Republic of China
| |
Collapse
|
9
|
Genetic Relationship, SPAD Reading, and Soluble Sugar Content as Indices for Evaluating the Graft Compatibility of Citrus Interstocks. BIOLOGY 2022; 11:biology11111639. [PMID: 36358340 PMCID: PMC9687967 DOI: 10.3390/biology11111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Simple Summary Grafting is a critical agricultural practice in citrus growing. The effectiveness of grafting not only depends on the technique but also on the stock–scion combinations. In this study, we investigated the grafting compatibility of five interstock combinations based on physiological and biochemical traits. The results revealed that the grafting compatibility in the early stages of grafting mediated by interstocks was related to the genetic relationship. The leaf chlorophyll content (SPAD reading, soil plant analysis development) and soluble sugar could be employed as preselected indicators to assess compatibility in the late stage of grafting. Our findings lay the foundation for the further research on rootstock–scion interaction mechanism. Abstract The interstock, a stock between the rootstock and scion, has a significant regulatory effect on the stock and scion, and its function is highly dependent on graft compatibility. To assess the graft compatibility of the interstock and scion, ‘Yuanxiaochun’ was top grafted onto ‘Ponkan’, ‘Shiranuhi’, ‘Harumi’, ‘Tarocco’, and ‘Kumquat’. The results showed significant differences in the survival ratio and preservation ratio among different combinations. Grafting compatibility in the early stages of grafting was associated with the genetic relationship. The biomass accumulation revealed that the interstock could influence both the rootstock and the scion. The physiological and biochemical traits analysis suggested that SPAD reading and soluble sugar could be employed as preselected indices to evaluate graft compatibility in the late stage of grafting. These results indicated that the evaluation of graft compatibility was a dynamic process. The findings provided a new approach for studying the stock and scion interaction mechanisms mediated by interstock, and directly provided a theoretical and practical basis for the high-grafting of ‘Yuanxiaochun’ citrus.
Collapse
|
10
|
Fu H, Yang Y, Li J. Optimization of fermentation conditions and volatile substance analysis of wine. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hongbo Fu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences Honghe University Mengzi Yunnan China
| | - Yongchao Yang
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences Honghe University Mengzi Yunnan China
| | - Jie Li
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences Honghe University Mengzi Yunnan China
| |
Collapse
|
11
|
Han X, Wang Y, Lu HC, Yang HY, Li HQ, Gao XT, Pei XX, He F, Duan CQ, Wang J. The combined influence of rootstock and vintage climate on the grape and wine flavonoids of Vitis vinifera L. cv. Cabernet Sauvignon in eastern China. FRONTIERS IN PLANT SCIENCE 2022; 13:978497. [PMID: 36051296 PMCID: PMC9424884 DOI: 10.3389/fpls.2022.978497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Rootstocks are commonly utilized owing to their resistance to abiotic and biotic stress in viticulture. This study evaluated the effects of three rootstocks (1103P, SO4, and 5A) on the Cabernet Sauvignon (CS) vine growth, and their berries and wines flavonoids profiles in four consecutive vintages. The results showed that 1103P increased the pruning weight of CS and decreased the anthocyanin concentration in berries and wines, especially in the vintages with more rainy and cloudy days. 5A tended to decrease the pruning weight of CS and increase the anthocyanin concentration in berries and wines. Orthogonal partial least squares discriminant analysis (OPLS-DA) showed that the concentrations of total anthocyanins, F3'H-anthocyanins, malvidin-3-O-glucoside (Mv-glu), and malvidin-3-O-acetylglucoside (Mv-acglu) were the key substances affected by the rootstocks in CS berries and were significantly decreased by 1103P. Total anthocyanins, pinotins, Mv-glu, epicatechin, and vitisins were the rootstock-sensitive compounds that commonly differed in wines among the three comparison groups in the two vintages. Furthermore, 1103P brought more brightness to the wine and 5A gave the wine more red tones. In conclusion, rootstock 5A was recommended in the rainy and cloudy climate regions with regard to the berry flavonoids accumulation and the wine color.
Collapse
Affiliation(s)
- Xiao Han
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yu Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hao-Cheng Lu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hang-Yu Yang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hui-Qing Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiao-Tong Gao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xuan-Xuan Pei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
12
|
Beneficial Effects of Sodium Nitroprusside on the Aroma, Flavors, and Anthocyanin Accumulation in Blood Orange Fruits. Foods 2022; 11:foods11152218. [PMID: 35892802 PMCID: PMC9329794 DOI: 10.3390/foods11152218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
The quality of Tarocco blood orange (Citrus sinensis (L.) Osbeck), which has been cultivated for many years, has degraded substantially. Decreased sugar content, decreased blood color, and increased sour flavor have developed as a result. To improve fruit quality, we studied the effects of bagging and sodium nitroprusside, as a nitric oxide (NO) donor, on the fruit quality of Tarocco blood orange two months before picking. The results showed that NO treatment effectively improved the content of total soluble solids and limonene in the fruit, as well as the color and hardness of the fruit, but reduced the tannin content. It also increased the contents of soluble sugar, fructose, sucrose, vitamin C, amino acids, and mineral elements. NO treatment inhibited the activities of polygalacturonase and pectin esterase, delayed the degradation of protopectin, and promoted the accumulation of anthocyanins, total flavonoids, and flavonoids synthesis. Thus, NO treatment improved the aroma, flavors, and physical properties of blood orange fruit.
Collapse
|
13
|
Liu S, Lou Y, Li Y, Zhang J, Li P, Yang B, Gu Q. Review of phytochemical and nutritional characteristics and food applications of Citrus L. fruits. Front Nutr 2022; 9:968604. [PMID: 35923210 PMCID: PMC9339955 DOI: 10.3389/fnut.2022.968604] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Since the dietary regimen rich in fruits is being widely recognized and encouraged, Citrus L. fruits have been growing in popularity worldwide due to their high amounts of health-promoting phytonutrients and bioactive compounds, such as flavonoids, phenolic acids, vitamins, carotenoids, pectins, and fatty acids. The diverse physicochemical properties and multiple utilization of citrus fruits in food industry are associated with their unique chemical compositions. Throughout the world, citrus has been used for producing various value-added and nutritionally enhanced products, including juices, wines, jams, canned citrus, and dried citrus. However, the current studies regarding the phytochemical and nutritional characteristics and food applications of citrus are scattered. This review systematically summarizes the existing bibliography on the chemical characteristics, functional and nutraceutical benefits, processing, and potential applications of citrus. A thorough understanding of this information may provide scientific guidance for better utilizing citrus as a functional fruit and benefit the extension of citrus value chain.
Collapse
Affiliation(s)
- Shuxun Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ying Lou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yixian Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Baoru Yang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Food Sciences, Department of Biochemistry, University of Turku, Turku, Finland
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- *Correspondence: Qing Gu
| |
Collapse
|
14
|
Talens C, Rios Y, Alvarez-Sabatel S, Ibargüen M, Rodríguez R. Designing Nutritious and Sustainable Biscuits Using Upcycled Fibre-Rich Ingredients Obtained by Hot Air - Microwave Drying of Orange by-Products. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:271-278. [PMID: 35624194 DOI: 10.1007/s11130-022-00972-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Circular use of resources implies developing mild processes to transform food by-products into value-added products, without using organic solvents or extensive washing and drying steps. Refined ingredients are commonly used in gluten-free bakery resulting in high levels of saturated fatty acids and sugars as well as a lack of essential nutrients like dietary fibres. The objective of this study was (i) to compare the nutritional composition and the water retention capacity (WRC) of an upcycled orange fibre dried by hot air combined with microwave (HAD+MW) and a commercial orange fibre obtained by different methods (COM), and (ii) to compare the nutritional, texture and sensory profile of gluten-free biscuits formulated with HAD+MW and with COM fibres. The total dietary fibre content (72.0 ± 3.0%) and WRC (21.1 ± 2.7 gwater/ g) of HAD+MW fibre did not differ from the nutritional composition of the control orange fibre (COM). However, for HAD+MW fibre, protein (+2.34 fold), fat (-4.75 fold), ash (-2.31 fold), sugars (-1.42 fold) and moisture content (+11.5 fold) was different from COM. Instrumental texture analysis showed that biscuits with HAD+MW fiber resulted in less hardness (26%) than those with COM fiber. However, this difference was not perceived by panellists (p > 0.05). Exterior colour, cereal, vanilla and citrus aroma-flavour, and granularity were slightly more intense in HAD+MW biscuits but still similar to the commercial control fiber. Thus, the HAD+MW drying method can be used for upcycling orange by-products, obtaining less refined and more nutritious and sustainable ingredients for fiber-enrichment of gluten-free biscuits.
Collapse
Affiliation(s)
- Clara Talens
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Astondo Bidea, Edificio 609, 48160, Derio, Bizkaia, Spain.
| | - Yolanda Rios
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Astondo Bidea, Edificio 609, 48160, Derio, Bizkaia, Spain
| | - Saioa Alvarez-Sabatel
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Astondo Bidea, Edificio 609, 48160, Derio, Bizkaia, Spain
| | - Mónica Ibargüen
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Astondo Bidea, Edificio 609, 48160, Derio, Bizkaia, Spain
| | - Raquel Rodríguez
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Astondo Bidea, Edificio 609, 48160, Derio, Bizkaia, Spain
| |
Collapse
|
15
|
Legua P, Modica G, Porras I, Conesa A, Continella A. Bioactive compounds, antioxidant activity and fruit quality evaluation of eleven blood orange cultivars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2960-2971. [PMID: 34766350 PMCID: PMC9299091 DOI: 10.1002/jsfa.11636] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Blood oranges are grown increasingly in Europe for fresh consumption because of their special taste and excellent nutraceutical properties that confer the status of a functional food. The health benefits are associated with the range of additional bioactive compounds that they contain with respect to blonde oranges. RESULTS We analysed the physicochemical properties and the levels of organic acids, sugars and antioxidants in 11 blood orange cultivars representing the most representative cultivars of blood oranges widespread in the Mediterranean basin. In particular, we examined the levels of phenols, flavonoids and anthocyanins present in these cultivars at harvest maturity. The physicochemical, antioxidant and colour properties differ significantly among these cultivars. The deepest red peel and juice was found in Sanguinelli, followed by Tarocco Rosso and Moro. High-performance liquid chromatography with refractive index detector analysis revealed sucrose as the main sugar in all these cultivars, followed by fructose and glucose. Citric acid was the dominant organic acid, followed by malic acid and ascorbic acid. Moro showed the greatest levels of antioxidant activity. Regarding the phenolic composition, we found p-coumaric acid to be the main hydroxycinnamic acid in all cultivars, with maximum amounts in Moro and Sanguinelli. The highest amounts of cyanidin-3-O-glucoside and cyanidin-3-(6''-malonyl)-glucoside were found in Moro, for which the juice was of the deepest red colour. CONCLUSION The phenolic composition and antioxidant activity of the 11 cultivars was assessed. The results showed that Moro was the cultivar with the highest content of polyphenols and levels of antioxidant activity, followed by Sanguinelli. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Pilar Legua
- Plant Science and Microbiology DepartmentMiguel Hernández UniversityAlicanteSpain
| | - Giulia Modica
- Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
| | - Ignacio Porras
- Department of CitricultureInstituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA)MurciaSpain
| | - Agustín Conesa
- Plant Science and Microbiology DepartmentMiguel Hernández UniversityAlicanteSpain
| | - Alberto Continella
- Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
| |
Collapse
|
16
|
Habibi F, Liu T, Folta K, Sarkhosh A. Physiological, biochemical, and molecular aspects of grafting in fruit trees. HORTICULTURE RESEARCH 2022; 9:uhac032. [PMID: 35184166 PMCID: PMC8976691 DOI: 10.1093/hr/uhac032] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 05/27/2023]
Abstract
Grafting is a widely used practice for asexual propagation of fruit trees. Many physiological, biochemical, and molecular changes occur upon grafting that can influence important horticultural traits. This technology has many advantages, including avoidance of juvenility, modifying the scion architecture, improving productivity, adapting scion cultivars to unfavourable environmental conditions, and developing traits in resistance to insect pests, bacterial and fungal diseases. A limitation of grafting is scion-rootstock incompatibility. It may be caused by many factors, including insufficient genetic proximity, physiological or biochemical factors, lignification at the graft union, poor graft architecture, insufficient cell recognition between union tissues, and metabolic differences in the scion and the rootstock. Plant hormones, like auxin, ethylene (ET), cytokinin (CK), gibberellin (GA), abscisic acid (ABA), and jasmonic acid (JA) orchestrate several crucial physiological and biochemical processes happening at the site of the graft union. Additionally, epigenetic changes at the union affect chromatin architecture by DNA methylation, histone modification, and the action of small RNA molecules. The mechanism triggering these effects likely is affected by hormonal crosstalk, protein and small molecules movement, nutrients uptake, and transport in the grafted trees. This review provides an overview of the basis of physiological, biochemical, and molecular aspects of fruit tree grafting between scion and rootstock.
Collapse
Affiliation(s)
- Fariborz Habibi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Tie Liu
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Kevin Folta
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
17
|
He W, Xie R, Wang Y, Chen Q, Wang H, Yang S, Luo Y, Zhang Y, Tang H, Gmitter FG, Wang X. Comparative transcriptomic analysis on compatible/incompatible grafts in citrus. HORTICULTURE RESEARCH 2022; 9:uhab072. [PMID: 35043167 PMCID: PMC8931943 DOI: 10.1093/hr/uhab072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Grafting is a useful cultivation technology to resist abiotic and biotic stresses and is an integral part of citrus production. However, some widely utilized rootstocks may still exhibit graft incompatibility in the orchard. "Hongmian miyou" (Citrus maxima (Burm.) Merrill) is mutated from "Guanxi miyou", but these two scions showed different compatibility with available Poncirus trifoliata rootstock. Foliage etiolation is an observed symptom of graft incompatibility, but its mechanism remains poorly understood. This study is the first to investigate the morphological, physiological, and anatomical differences between the compatible/incompatible grafts, and perform transcriptome profiling at crucial stages of the foliage etiolation process. Based on the comprehensive analyses, hormonal balance was disordered, and two rate-limiting genes, NCED3 (9-cis-epoxycarotenoid dioxygenases 3) and NCED5, being responsible for ABA (abscisic acid) accumulation, were highlighted. Further correlation analysis indicated that IAA (indole-3-acetic acid) and ABA were the most likely inducers of the expression of stresses-related genes. In addition, excessive starch accumulation was observed in lamina and midribs of incompatible grafts leaves. These results provided a new insight into the role of the hormonal balance and abscisic acid biosynthesis genes in regulation and contribution to the graft incompatibility, and will further define and deploy candidate genes to explore the mechanisms underlying citrus rootstock- scion interactions.
Collapse
Affiliation(s)
- Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Rui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shaofeng Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Frederick G Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred 33850, FL, USA
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
18
|
Modica G, Pannitteri C, Di Guardo M, La Malfa S, Gentile A, Ruberto G, Pulvirenti L, Parafati L, Continella A, Siracusa L. Influence of rootstock genotype on individual metabolic responses and antioxidant potential of blood orange cv. Tarocco Scirè. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
19
|
Jones SE, Killiny N. Influence of Rootstock on the Leaf Volatile Organic Compounds of Citrus Scion Is More Pronounced after the Infestation with Diaphorina citri. PLANTS 2021; 10:plants10112422. [PMID: 34834785 PMCID: PMC8623621 DOI: 10.3390/plants10112422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 12/03/2022]
Abstract
Nowadays, citrus greening or Huanglongbing is considered the most destructive disease in the citrus industry worldwide. In the Americas and Asia, the disease is caused by the putative pathogen, ‘Candidatus Liberibacter asiaticus’ and transmitted by the psyllid vector, Diaphorina citri. It has been shown that volatile organic compounds (VOC) that are released from citrus leaves attract the psyllid vector. Herein, we tested whether the rootstock influenced the stored VOC profile in the scion leaves and if these influences were altered after infestation with D. citri. The VOC profiles of the hexane-extracted leaves of the mandarin hybrid ‘Sugar Belle’ that were grafted on three different rootstocks (C-35, sour orange (SO), and US-897) with and without infestation with D. citri were studied. The GC-MS analysis showed that the scion VOC profiles of the non-infested control trees were similar to each other, and rootstock was not a strong influence. However, after one month of infestation with D. citri, clear differences in the scion VOC profiles appeared that were rootstock dependent. Although the total scion leaf VOC content did not differ between the three rootstocks, the infestation increased scion monoterpenes significantly on US-897 and C-35 rootstock, increased terpene alcohols on US-897 and SO rootstock, and increased sesquiterpenes on SO. Infestation with D. citri significantly reduced fatty acids and fatty acid esters across all of the rootstocks. Therefore, our results suggest that rootstock choice could influence scions with an inducible volatile defense by enhancing the amounts of VOCs that are available for repelling vectors or for signaling to their natural enemies or parasitoids. According to this study, US-897 may be the best choice among the three that were studied herein, due to its diverse and robust VOC defense response to infestation with D. citri.
Collapse
|
20
|
Abstract
Rootstock choice has important effects on the horticultural and pathological traits of the citrus cultivars. Thus, the scion/rootstock combination can affect tree vigour, nutrition, and stress resistance; it can also have positive influences on the fruit quality traits. Although the study of rootstock effects has been a relevant research topic in citrus for many years, the main body of such study has been conducted at the biochemical level, while little effort has been directed to the determination of the rootstock influences at the molecular level. A comparative study of three combinations of scion and rootstock shows a positive correlation between the regulation of the fruit quality-related genes and the accumulations of bioactive compounds, as well as with acid degradation. Monitoring the anthocyanin accumulation during ripening shows the scion/rootstock combination can increase anthocyanin synthesis in the fruit, as well as vitamin C accumulation and acid degradation. Our results show that the rootstock genotype can exert important influences on citrus fruit quality by affecting gene expression in the scion. New insights into the molecular interactions between scion and rootstock may help unravel the systems through which rootstocks exert their influences on the regulatory networks in the scion, so as to influence relevant agronomic traits. This information should result in an improved rootstock breeding selection and definition of scion/rootstock combinations to enhance fruit quality traits.
Collapse
|
21
|
Abstract
Due to climate change, we are forced to face new abiotic stress challenges like cold and heat waves that currently result from global warming. Losses due to frost and low temperatures force us to better understand the physiological, hormonal, and molecular mechanisms of response to such stress to face losses, especially in tropical and subtropical crops like citrus fruit, which are well adapted to certain weather conditions. Many of the responses to cold stress that are found are also conserved in citrus. Hence, this review also intends to show the latest work on citrus. In addition to basic research, there is a great need to employ and cultivate new citrus rootstocks to better adapt to environmental conditions.
Collapse
|