1
|
Li Z, Leeming MG, Hastie M, Frank D, Ha M, Warner RD. Targeted-metabolomic and untargeted-proteomic approaches reveal the effects of muscle fibre type and postmortem ageing on taste-active compounds in beef. Food Chem 2024; 460:140506. [PMID: 39053267 DOI: 10.1016/j.foodchem.2024.140506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The taste of beef is caused by taste-active compounds detected in the mouth during mastication. We hypothesised that the concentration of taste-active compounds in beef is influenced by muscle-fibre-type and postmortem ageing. To test this, and unravel the underlying mechanisms, we investigated the taste-active compounds, and proteomic profiles, in beef masseter [oxidative muscle, all type I fibres) and cutaneous trunci (glycolytic muscle, mostly type II fibres) before and after 14-days postmortem ageing. Our results showed that nucleotides were initially higher and degraded slower in cutaneous trunci (P < 0.05 for both), which could be explained by the profile of nucleotide metabolism enzymes. In contrast, free amino acids were initially higher and increased more in masseter compared to cutaneous trunci (P < 0.05 for all), which might be explained by the profile and activity of proteases in these two muscles. Our results indicate the taste of beef is affected by the muscle-fibre-type and postmortem ageing.
Collapse
Affiliation(s)
- Zhenzhao Li
- Faculty of Science, The University of Melbourne, Australia
| | | | | | | | - Minh Ha
- Faculty of Science, The University of Melbourne, Australia
| | - Robyn D Warner
- Faculty of Science, The University of Melbourne, Australia.
| |
Collapse
|
2
|
Liu J, Li X, Geng F, Li X, Huang Y, Wu Y, Luo Z, Huang Q, Shang P, Liu Z. Ultrasound-assisted improvement of thawing quality of Tibetan pork by inhibiting oxidation. ULTRASONICS SONOCHEMISTRY 2024; 110:107029. [PMID: 39163693 PMCID: PMC11381469 DOI: 10.1016/j.ultsonch.2024.107029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
The challenge of meat quality degradation due to transportation difficulties in high-altitude plateaus underscores the importance of an efficient thawing process for Tibetan pork to ensure its quality. This study compared four thawing methods ultrasound thawing (UT), refrigerator thawing (RT), hydrostatic thawing (HT), and microwave thawing (MT) to assess their impact on the quality of Tibetan pork, focusing on thawing loss, tenderness, color variation, and alterations in protein secondary structure and moisture content. Additionally, the study examined the impact of thawing on the metabolites of Tibetan pork using metabolomics techniques. The results indicated that UT yielded the highest quality samples. UT significantly accelerated the thawing rate and had minimal impact on tenderness compared to traditional thawing methods. Moreover, protein and lipid oxidation levels were reduced by UT treatment. Furthermore, it enhanced the binding capacity of protein and water molecules, reduced drip loss, and maintained meat color stability. What's more, amino acid metabolites such as l-glutamic acid, l-proline, oxidized glutathione, and 1-methylhistidine played a significant role in thawing oxidation in Tibetan pork, exhibiting a positive correlation with protein oxidation. UT resulted in a notable decrease in the levels of hypoxanthine and 2-aminomethylpyrimidine, contributing to the reduction of bitterness in the thawed meat and consequently enhancing the freshness of Tibetan pork. This study offers novel insights into understanding the biological changes occurring during the thawing process, while also furnishing a theoretical framework and technical assistance to improve the quality of Tibetan pork and propel advancements in food processing technology.
Collapse
Affiliation(s)
- Junmei Liu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xin Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Yujie Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Yingmei Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China.
| | - Peng Shang
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China.
| | - Zhendong Liu
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China.
| |
Collapse
|
3
|
Wei J, Wang L, Ma X, Xu Z, Wang Z. Effects of Variable-Temperature Roasting on the Flavor Compounds of Xinjiang Tannur-Roasted Mutton. Foods 2024; 13:3077. [PMID: 39410112 PMCID: PMC11475126 DOI: 10.3390/foods13193077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This study investigates the effect of variable-temperature roasting on the flavor compounds of Xinjiang tannur-roasted mutton. Gas chromatography coupled with ion mobility spectroscopy (GC-IMS) was used to compare and analyze the volatile components and flavor fingerprints of Xinjiang tannur-roasted mutton using variable-temperature electrically heated air roasting (VTR), constant-temperature electrically heated air roasting (EHAR), and constant-burning charcoal roasting (BCR) techniques. The changes in fatty acids and free amino acids in Xinjiang tannur-roasted mutton under different roasting conditions were compared. By using GC-IMS analysis, 11 flavor compounds, including 4-methyl-3-penten-2-one, isoamyl propionate, trans-2-heptenal, trans-2-heptenal, 2-hexanone, n-hexanol, 2-hexenal, 2-ethylfuran, and ethyl 2-methylbutanoate, were identified as characteristic volatile compounds in the temperature-controlled electrothermal roasting of Xinjiang tannur-roasted mutton using the following conditions: 0-4 min, 300 °C; 5-10 min, 220 °C; and 11-17 min, 130 °C (VTR3). Through principal component analysis, it was found that the substances with the highest positive correlation with PC1 and PC2 were n-hexanol and 3-methylbutanol. The sensory evaluation showed that VTR3 had high acceptability (p < 0.05) and a fat flavor (p < 0.05). There was no significant difference in the total fatty acid (TFA) content between the VTR3 and burning charcoal roast for 1-17 min at 300 °C (BCR3) (p > 0.05), but it was lower than that in the other experimental groups (p < 0.05). The lowest proportion of glutamic acid content in VTR3 was 22.44%, and the total free amino acid content in the electric thermostatic roasting for the 1-17 min, 300 °C (EHAR3) group (347.05 mg/100 g) was significantly higher than that in the other experimental groups (p < 0.05). By using Spearman correlation analysis, the roasting loss rate showed a highly significant negative correlation with essential amino acids (EAAs), non-essential amino acids (NEAAs), and total free amino acids (TAAs) (the correlation coefficients (r) were 0.82, 0.87, and 0.87, respectively) with p < 0.01. There was no correlation between changes in the free amino acid content and fatty acid content (p > 0.05). By using Differential scanning calorimetry (DSC) analysis, we also found that there was no significant difference in peak temperature (Tp) between the VTR3 and EHAR experimental groups (p > 0.05). Variable temperature electric heating can affect the flavor of lamb, and there are significant differences in the content of flavor precursors such as fatty acids and amino acids in Xinjiang tannur-roasted mutton.
Collapse
Affiliation(s)
- Jian Wei
- College of Life and Geographic Sciences, Kashi University, Kashi 844006, China; (J.W.); (L.W.)
| | - Li Wang
- College of Life and Geographic Sciences, Kashi University, Kashi 844006, China; (J.W.); (L.W.)
| | - Xin Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (Z.W.)
| | - Zequan Xu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (Z.W.)
| | - Zirong Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (Z.W.)
| |
Collapse
|
4
|
Han S, Jo K, Jeong SKC, Jeon H, Kim S, Woo M, Jung S, Lee S. Comparative Study on the Postmortem Proteolysis and Shear Force during Aging of Pork and Beef Semitendinosus Muscles. Food Sci Anim Resour 2024; 44:1055-1068. [PMID: 39246540 PMCID: PMC11377210 DOI: 10.5851/kosfa.2024.e37] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 09/10/2024] Open
Abstract
The differences in the proteolytic patterns and shear force of pork and beef during aging were evaluated. Pork and beef semitendinosus muscles were obtained at 24 and 48 h postmortem, respectively, and aged at 4°C for 0 (Day 0), 7 (Day 7), and 14 days (Day 14). Changes in the electrical conductivity were observed in pork on Day 7 and beef on Day 14. The calpain activity increased in pork (p<0.05) after 14 days of aging, whereas that of beef decreased on Day 7 (p<0.05). The cathepsin B activity in pork and beef increased between Day 7 and 14 (p<0.05). The content of α-amino group in the 10% trichloroacetic acid-soluble fraction increased between Day 7 and 14 in pork (p<0.05), but increased steadily in beef throughout aging (p<0.05). The electrophoretogram of the myofibrillar proteins revealed a 30 kDa protein band only in the beef lane on Day 14. The cooked pork had no significant changes in the shear force during aging periods (p>0.05), while the gradual decrease in the shear force with the increasing aging periods was shown in the cooked beef (p<0.05). Circular dichroism analysis of myosin extracts from pork and beef revealed thermal denaturation temperatures of 55°C and 58°C, respectively. This study highlights the different post-mortem proteolytic patterns and thermal denaturation temperatures of myosin in pork and beef semitendinosus muscles, which contribute to distinct changes in the shear force during aging between pork and beef.
Collapse
Affiliation(s)
- Seokhee Han
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Hayeon Jeon
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Soeun Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Minkyung Woo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
5
|
Rout S, Srivastav PP. Modification of soy protein isolate and pea protein isolate by high voltage dielectric barrier discharge (DBD) atmospheric cold plasma: Comparative study on structural, rheological and techno-functional characteristics. Food Chem 2024; 447:138914. [PMID: 38460320 DOI: 10.1016/j.foodchem.2024.138914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
The modification in structural, rheological, and techno-functional characteristics of soy and pea protein isolates (SPI and PPI) due to dielectric barrier discharge cold plasma (DBD-CP) were assessed. The increased carbonyl groups in both samples with cold plasma (CP) treatment led to a reduction in free sulfhydryl groups. Moreover, protein solubility of treated proteins exhibited significant improvements, reaching up to 59.07 % and 41.4 % for SPI and PPI, respectively, at 30 kV for 8 min. Rheological analyses indicated that storage modulus (G') was greater than loss modulus (G″) for CP-treated protein gels. Furthermore, in vitro protein digestibility of SPI exhibited a remarkable improvement (4.78 %) at 30 kV for 6 min compared to PPI (3.23 %). Spectroscopic analyses, including circular dichroism and Fourier Transform-Raman, indicated partial breakdown and loss of α-helix structure in both samples, leading to the aggregation of proteins. Thus, DBD-CP induces reactive oxygen species-mediated oxidation, modifying the secondary and tertiary structures of samples.
Collapse
Affiliation(s)
- Srutee Rout
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
6
|
Mao H, Yuan S, Li Q, Zhao X, Zhang X, Liu H, Yu M, Wang M. Influence of germination on the bioactivity, structural, functional and volatile characteristics of different chickpea flours. Food Chem X 2024; 21:101195. [PMID: 38406762 PMCID: PMC10884441 DOI: 10.1016/j.fochx.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Accepted: 02/02/2024] [Indexed: 02/27/2024] Open
Abstract
In this paper, the objective was to evaluated the impact of germination of chickpea cultivars (Muying1, Y2-514 and YZ-364) on the bioactivity, volatiles and functional properties. The results showed that the Vitamin C content of Muying1, Y2-514 and YZ-364 after germination significantly increased (p < 0.05). Moreover, the germination also caused a significant decrease in lower transition temperatures and enthalpy values in chickpea flours (p < 0.05). After germination treatment, β-sheet and random coils in protein secondary structures increased and β-turn decreased in YZ-364; α-helix, β-sheet and random coil in Y2-514 and Muying1 decreased, while β-turn increased. The germination significantly enhanced the functional properties of three chickpea flours (p < 0.05). It was proved that the germination significantly enhanced the total phenolic and flavonoids content, antioxidant activity and in vitro protein digestibility. The GC-IMS revealed that the germination could affect the contents of volatile compounds of chickpea flours.
Collapse
Affiliation(s)
- Hongyan Mao
- Research Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Shuo Yuan
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| | - Qin Li
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| | - Xiaoyan Zhao
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| | - Xiaowei Zhang
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| | - Hongkai Liu
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| | - Ming Yu
- Research Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Meng Wang
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China
| |
Collapse
|
7
|
Bai X, Yin F, Ru A, Li M, Tian W, Zhang G, Chen Q, Chai R, Liu Y, Cui W, Shi H, Zhu C, Zhao G. Myosin heavy chain isoform expression and meat quality characteristics of different muscles in yak (Bos grunniens). Meat Sci 2024; 209:109414. [PMID: 38101288 DOI: 10.1016/j.meatsci.2023.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/23/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Myosin heavy chain (MHC) isoforms and meat quality characteristics of different muscles were investigated to explore their potential relationships in yaks. Results showed that semitendinosus (ST), longissimus thoracis (LT), and infraspinatus (IS) have a greater ratio of MHC IIb (47.84%), MHC IIa (73.27%), and MHC I (24.26%), respectively, than the other two muscles. Compared with LT or ST, IS exhibited more intense color, greater water-holding capacity, and initial tenderness with higher intermuscular fat (IMF) and collagen (of lower cross-linking level), presenting overall better quality. Variations in MHC isoforms accounted for the muscle-specific meat quality. Specifically, MHC I was positively associated with redness, myoglobin, IMF, collagen, pH, and thermal stability and negatively associated with myofibril fragmentation index, fiber thickness, collagen cross-linking, and drip loss. These results provide insights into the relationships between MHC isoforms and meat quality in yaks and the MHC I isoform has an extensive influence on meat quality.
Collapse
Affiliation(s)
- Xueyuan Bai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Feng Yin
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Ang Ru
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Guiyan Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Qingwen Chen
- National Beef Cattle and Yak Industry Technology System Qinghai Yak Breeding and Promotion Service Center, Xining 810016, China
| | - Rong Chai
- National Beef Cattle and Yak Industry Technology System Qinghai Yak Breeding and Promotion Service Center, Xining 810016, China
| | - Yanxia Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenming Cui
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongmei Shi
- National Beef Cattle and Yak Industry Technology System Gannan Comprehensive Test Station, Hezuo 747000, China
| | - Chaozhi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
8
|
Guo Z, Chen C, Ma G, Yu Q, Zhang L. LF-NMR determination of water distribution and its relationship with protein- related properties of yak and cattle during postmortem aging. Food Chem X 2023; 20:100891. [PMID: 38144859 PMCID: PMC10740100 DOI: 10.1016/j.fochx.2023.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 12/26/2023] Open
Abstract
The water distribution have a profound influence on meat quality, and proteins play a critical role in water distribution. The water distribution detected with proton NMR and its relationship with protein related properties were investigated. Three populations of water were detected: bound water (T21, P21), immobilized water (T22, P22), and free water (T23, P23). The decreased T22 and T23 indicated an increase in water-holding capacity in both muscles from 3 days of aging. The P22 in cattle was higher than that in yak and the P23 in cattle was lower than that in yak, suggesting that cattle exhibited a greater water-holding capacity compared to yak. Moreover, postmortem aging affected muscle protein oxidation, denaturation, and degradation. Correlation analysis suggested that protein oxidation and denaturation caused muscle water loss and protein degradation could allow the muscle to retain water. It provides a basis for the optimization of quality of meat and products.
Collapse
Affiliation(s)
- Zhaobin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoyuan Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
9
|
Xu R, Wu J, Zheng L, Zhao M. Undenatured type II collagen and its role in improving osteoarthritis. Ageing Res Rev 2023; 91:102080. [PMID: 37774932 DOI: 10.1016/j.arr.2023.102080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease, affecting 32.5 million US adults or 242 million people worldwide. There is no cure for OA. Many animal and clinical trials showed that oral administration of undenatured type II collagen could significantly reduce the incidence of OA or alleviate the symptoms of articular cartilage. Type II collagen is an important component of cartilage matrix. This article reviewed research progress of undenatured type II collagen including its methods of extraction and preparation, structure and characterization, solubility, thermal stability, gastrointestinal digestive stability, its role in improving OA, and the mechanism of its action in improving OA. Type II collagen has been extensively explored for its potential in improving arthritis. Methods of extraction of type II collagen are inefficient and tedious. The method of limited enzymatic hydrolysis is mainly used to prepare soluble undenatured type II collagen (SC II). The solubility, thermal and gastrointestinal digestive stability of SC II are affected by the sources of raw material, pH, salt ions, and temperature. Oral administration of undenatured type II collagen improves OA, whereas its activity is affected by the sources, degree of denaturalization, intervention methods and doses. However, the influence of the structure of undenatured type II collagen on its activity and the mechanism are unclear. The findings in this review support that undenatured type II collagen can be used in the intervention or auxiliary intervention of patients with OA.
Collapse
Affiliation(s)
- Rong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
10
|
Rezler R, Krzywdzińska-Bartkowiak M, Piątek M. The Influence of the Sous Vide Cooking Time on Selected Characteristics of Pork Lion. Molecules 2023; 28:6102. [PMID: 37630352 PMCID: PMC10459950 DOI: 10.3390/molecules28166102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this study was to determine the effect of sous vide and pressure-cooker cooking of pork muscles (Longissimus lumborum) on the physicochemical and technological characteristics of pork. The study included an analysis of the basic composition, colour, texture, sensory evaluation, nutritional value (vitamin B1 content), and rheological properties of meat cooked at 60 °C for 6-18 h and, for comparison, in an autoclave at 121.1 °C. The heating conditions affected the weight loss, colour, thiamine content, texture, and rheological properties of the meat. As the heating time increased, the texture determinants of firmness and chewiness decreased, which resulted in softer meat. The differences in the rheological properties of the sous-vide- and autoclave-cooked meat resulted from the different organisation of the spatial matrix of proteins and changes in the structure of muscle fibres caused by the high temperature.
Collapse
Affiliation(s)
- Ryszard Rezler
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-624 Poznań, Poland
| | - Mirosława Krzywdzińska-Bartkowiak
- Department of Meat Technology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31/33, 60-624 Poznań, Poland
| | - Michał Piątek
- Department of Meat Technology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31/33, 60-624 Poznań, Poland
| |
Collapse
|
11
|
LeMaster MN, Warner RD, Chauhan SS, D'Souza DN, Dunshea FR. Meta-Regression Analysis of Relationships between Fibre Type and Meat Quality in Beef and Pork-Focus on Pork. Foods 2023; 12:foods12112215. [PMID: 37297460 DOI: 10.3390/foods12112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
This meta-regression analysis was conducted to identify the relationship between fibretype cross-sectional area (CSA) and frequency (%) and meat quality traits, especially tenderness (sensory and Warner-Bratzler Shear Force, WBSF). Literature searches were conducted using specific keywords which resulted in 32 peer-reviewed manuscripts that contained averages and correlation coefficients for fibre type (frequency and CSA) and quality traits of longissimus muscle for beef and pork (7 and 25 studies respectively). Correlations were analysed in meta-regression using R-Studio and linear regression was also conducted. For the combined beef and pork analysis, only pH, WBSF, and drip loss were associated with fibre type frequency and CSA (p < 0.05 for all). Limiting the analysis to pork, the key results were frequency of type I fibres were associated with decreased drip loss, increased cook loss, decreased lightness (L*) and increased sensory tenderness whereas frequency of type IIb fibres were associated with increased drip loss (p < 0.05 for all). In addition, the CSA of type I and IIb fibres was associated with colour traits lightness and redness (p < 0.05 for all). Future research should focus on fibre type across breeds and muscles to further understand the impacts of fibre type frequency and CSA on quality.
Collapse
Affiliation(s)
- Michelle N LeMaster
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robyn D Warner
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Surinder S Chauhan
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Frank R Dunshea
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
12
|
Pu X, Ruan J, Wu Z, Tang Y, Liu P, Zhang D, Li H. Changes in Texture Characteristics and Special Requirements of Sichuan-Style Braised Beef for Industrial Production: Based on the Changes in Protein and Lipid of Beef. Foods 2023; 12:foods12071386. [PMID: 37048204 PMCID: PMC10093410 DOI: 10.3390/foods12071386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
This study aimed to investigate the optimal stewing time (0, 30, 60, 90, 120, and 150 min) for industrialized preparation of Sichuan-style braised beef with different demands. With prolonged stewing time, the hardness and chewiness of the braised beef initially increased and then decreased (p < 0.05), whereas springiness and cohesiveness gradually decreased. The moisture content of braised beef and the endogenous fluorescence intensity of braised beef protein significantly decreased (p < 0.05). However, the thiobarbituric acid reaction substances (TBARS) value and protein carbonyl content of braised beef greatly increased (p < 0.05). During the stewing process, the texture properties of Sichuan-style braised beef were affected by the moisture content, oxidation of proteins and lipids, and integrity of the muscle fibers. Considering texture traits, when Sichuan-style pre-braised beef bought by consumers is stewed with other ingredients for about 30 min, its corresponding stewing time is 60 min in industrialized production processes. This process parameter can not only save energy consumption for practical production, but also improve the hardness value of the as-obtained Sichuan-style pre-braised beef, which is conducive to transportation through refraining from cracking of pre-braised beef pieces. When consumers only use simple heating to eat the Sichuan-style pre-braised beef product, stewing times of 120 or 150 min can be considered in industrialized production processes. This work provided a theoretical reference for the industrialized and standardized production of different types of prepared Sichuan-style braised beef.
Collapse
Affiliation(s)
- Xiaoli Pu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jinggang Ruan
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhicheng Wu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yong Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- Food Industry Collaborative Innovation Center, Xihua University, Chengdu 610039, China
| | - Ping Liu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Dong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- Food Industry Collaborative Innovation Center, Xihua University, Chengdu 610039, China
| | - Hongjun Li
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
13
|
Lee S, Jo K, Jeong HG, Jeong SKC, Park JI, Yong HI, Choi YS, Jung S. Higher Protein Digestibility of Chicken Thigh than Breast Muscle in an In Vitro Elderly Digestion Model. Food Sci Anim Resour 2023; 43:305-318. [PMID: 36909852 PMCID: PMC9998189 DOI: 10.5851/kosfa.2022.e77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This study investigated the protein digestibility of chicken breast and thigh in an in vitro digestion model to determine the better protein sources for the elderly in terms of bioavailability. For this purpose, the biochemical traits of raw muscles and the structural properties of myofibrillar proteins were monitored. The thigh had higher pH, 10% trichloroacetic acid-soluble α-amino groups, and protein carbonyl content than the breast (p<0.05). In the proximate composition, the thigh had higher crude fat and lower crude protein content than the breast (p<0.05). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of myofibrillar proteins showed noticeable differences in the band intensities of tropomyosin α-chain and myosin light chain-3 between the thigh and breast. The intrinsic tryptophan fluorescence intensity of myosin was lower in the thigh than in the breast (p<0.05). Moreover, circular dichroism spectroscopy of myosin revealed that the thigh had higher α-helical and lower β-sheet structures than the breast (p<0.05). The cooked muscles were then chopped and digested in the elderly digestion model. The thigh had more α-amino groups than the breast after both gastric and gastrointestinal digestion (p<0.05). SDS-PAGE analysis of the gastric digesta showed that more bands remained in the digesta of the breast than that of the thigh. The content of proteins less than 3 kDa in the gastrointestinal digesta was also higher in the thigh than in the breast (p<0.05). These results reveal that chicken thigh with higher in vitro protein digestibility is a more appropriate protein source for the elderly than chicken breast.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Jung In Park
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Hae In Yong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
14
|
Determination of Conformational and Functional Stability of Potential Plague Vaccine Candidate in Formulation. Vaccines (Basel) 2022; 11:vaccines11010027. [PMID: 36679872 PMCID: PMC9865242 DOI: 10.3390/vaccines11010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Generally, protein-based vaccines are available in liquid form and are highly susceptible to instability under elevated temperature changes including freezing conditions. There is a need to create a convenient formulation of protein/peptides that can be stored at ambient conditions without loss of activity or production of adverse effects. The efficiency of naturally occurring biocompatible polymer dextran in improving the shelf-life and biological activity of a highly thermally unstable plague vaccine candidate protein called Low Calcium Response V antigen (LcrV), which can be stored at room temperature (30 ± 2 °C), has been evaluated. To determine the preferential interactions with molecular-level insight into solvent-protein interactions, analytical techniques such asspectroscopy, particle size distribution, gel electrophoresis, microscopy, and thermal analysis have been performed along with the evaluation of humoral immune response, invivo. The analytical methods demonstrate the structural stability of the LcrV protein by expressing its interaction with the excipients in the formulation. The invivo studies elicited the biological activity of the formulated antigen with a significantly higher humoral immune response (p-value = 0.047) when compared to the native, adjuvanted antigen. We propose dextran as a potential biopolymer with its co-excipient sodium chloride (NaCl) to provide protein compactness, i.e., prevent protein unfolding by molecular crowding or masking mechanism using preferential hydrophobic interaction for up to three weeks at room temperature (30 ± 2 °C).
Collapse
|
15
|
Hassoun A, Anusha Siddiqui S, Smaoui S, Ucak İ, Arshad RN, Bhat ZF, Bhat HF, Carpena M, Prieto MA, Aït-Kaddour A, Pereira JA, Zacometti C, Tata A, Ibrahim SA, Ozogul F, Camara JS. Emerging Technological Advances in Improving the Safety of Muscle Foods: Framing in the Context of the Food Revolution 4.0. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2149776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdo Hassoun
- Univ. Littoral Côte d’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - İ̇lknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUASTof Jammu, Jammu, Kashmir, India
| | - Hina F. Bhat
- Division of Animal Biotechnology, SKUASTof Kashmir, Kashmir, India
| | - María Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, Bragança, Portugal
| | | | - Jorge A.M. Pereira
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Carmela Zacometti
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Alessandra Tata
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - José S. Camara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
16
|
Physicochemical and quality characteristics of New Zealand goat meat and its ultrastructural features. Food Res Int 2022; 161:111736. [DOI: 10.1016/j.foodres.2022.111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
|
17
|
Wu ZX, Fan YC, Guo C, Liu YX, Li DY, Jiang PF, Qin L, Bai YH, Zhou DY. Effects of Boiling Processing on Texture of Scallop Adductor Muscle and Its Mechanism. Foods 2022; 11:foods11131947. [PMID: 35804764 PMCID: PMC9265745 DOI: 10.3390/foods11131947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to reveal the effects of boiling processing on the texture of scallop adductor muscle (SAM) and its mechanism. Compared to the fresh sample, all the texture indicators, including the hardness, chewiness, springiness, resilience, cohesiveness, and shear force of 30-s- and 3-min-boiled SAMs increased time-dependently (p < 0.05). As the boiling time increased further to 15 min, the shear force and cohesiveness still increased significantly (p < 0.05), and the resilience and hardness were maintained (p > 0.05), but the springiness and chewiness decreased significantly (p < 0.05). The overall increase in the texture indicators of the boiled SAMs was due to the boiling-induced protein denaturation, aggregation, and increased hydrophobicity, resulting in the longitudinal contraction and lateral expansion of myofibrils, the longitudinal contraction and lateral cross-linked aggregation of muscle fibers, and the loss of free water. However, the decreasing springiness and chewiness of the 15-min-boiled SAMs was due to the significant degradation of proteins (especially collagen), resulting in the destruction of the connective tissue between the muscle fiber clusters. Both from a subjective sensory point of view and from the objective point of view of protein denaturation and degradation, 3-min-boiled SAMs are recommended. The quality improvement of thermally processed products by controlled, moderate cooking is of practical value from the perspective of food consumption.
Collapse
Affiliation(s)
- Zi-Xuan Wu
- National Engineering Research Center of Seafood, Dalian 116034, China; (Z.-X.W.); (Y.-C.F.); (C.G.); forever-- (Y.-X.L.); (D.-Y.L.); (P.-F.J.); (L.Q.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ying-Chen Fan
- National Engineering Research Center of Seafood, Dalian 116034, China; (Z.-X.W.); (Y.-C.F.); (C.G.); forever-- (Y.-X.L.); (D.-Y.L.); (P.-F.J.); (L.Q.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chao Guo
- National Engineering Research Center of Seafood, Dalian 116034, China; (Z.-X.W.); (Y.-C.F.); (C.G.); forever-- (Y.-X.L.); (D.-Y.L.); (P.-F.J.); (L.Q.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu-Xin Liu
- National Engineering Research Center of Seafood, Dalian 116034, China; (Z.-X.W.); (Y.-C.F.); (C.G.); forever-- (Y.-X.L.); (D.-Y.L.); (P.-F.J.); (L.Q.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - De-Yang Li
- National Engineering Research Center of Seafood, Dalian 116034, China; (Z.-X.W.); (Y.-C.F.); (C.G.); forever-- (Y.-X.L.); (D.-Y.L.); (P.-F.J.); (L.Q.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Peng-Fei Jiang
- National Engineering Research Center of Seafood, Dalian 116034, China; (Z.-X.W.); (Y.-C.F.); (C.G.); forever-- (Y.-X.L.); (D.-Y.L.); (P.-F.J.); (L.Q.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Qin
- National Engineering Research Center of Seafood, Dalian 116034, China; (Z.-X.W.); (Y.-C.F.); (C.G.); forever-- (Y.-X.L.); (D.-Y.L.); (P.-F.J.); (L.Q.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
| | - Da-Yong Zhou
- National Engineering Research Center of Seafood, Dalian 116034, China; (Z.-X.W.); (Y.-C.F.); (C.G.); forever-- (Y.-X.L.); (D.-Y.L.); (P.-F.J.); (L.Q.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel.: +86-0411-86323453
| |
Collapse
|
18
|
Different Types of Meatballs Enriched with Wild Thyme/Lemon Balm Aqueous Extract-Complex Characterization. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123920. [PMID: 35745044 PMCID: PMC9227154 DOI: 10.3390/molecules27123920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
In the context of the increasing lactation problems among breastfeeding women, the development of a healthy lifestyle is needed. Different variants of pork, turkey, and beef meatballs, with added lemon balm (Melissa officinalis L.) and wild thyme (Thymus serpyllum L.) aqueous extract (6%), were obtained. These herbs were selected and used due to their antioxidant, antimicrobial, and lactogenic potential. Two thermal treatments, hot air convection (180 °C) and steam convection (94 °C), were applied for meatballs processing. The obtained meatballs were further subjected to a complex characterization. The functionality of the plant extracts was proved by the values of total content of polyphenols (2.69 ± 0.02 mg AG/g dw) and flavonoids (3.03 ± 0.24 mg EQ/g dw). FT-IR analysis confirmed the presence of trans-anethole and estragole at 1507–1508 cm−1 and 1635–1638 cm−1, respectively. Costumers’ overall acceptance had a score above 5.5 for all samples, on a scale of 1 to 9. Further analysis and human trials should be considered regarding the use of lactogenic herbs, given their health benefits and availability.
Collapse
|
19
|
Ha M, Warner RD, King C, Wu S, Ponnampalam EN. Retail Packaging Affects Colour, Water Holding Capacity, Texture and Oxidation of Sheep Meat more than Breed and Finishing Feed. Foods 2022; 11:foods11020144. [PMID: 35053876 PMCID: PMC8775162 DOI: 10.3390/foods11020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/27/2023] Open
Abstract
This study investigated the CIELab colour, water holding capacity, texture and oxidative stability of sheep meat from different breeds, finishing feeds, and retail packaging methods. Leg primal cuts from a subset of Composite wether lambs (n = 21) and Merino wether yearlings (n = 21) finished on a standard diet containing grain and cereal hay, a standard diet with camelina forage, or a standard diet with camelina meal, were used in this study. Semimembranosus and Vastus lateralis were packaged in vacuum skin packaging (VSP), or modified atmosphere packaging with 80% O2 and 20% CO2 (HioxMAP), or with 50% O2, 30% N2, and 20% CO2 (TrigasMAP). Packaging had a greater effect (p < 0.001) on L*, a*, b*, hue, and chroma than the effects from breed and finishing feed. Purge loss was affected by packaging. Cooking loss was affected by breed for Semimembranosus and packaging for both muscle types. HioxMAP and TrigasMAP increased WBSF and Texture Profile Analysis hardness of the meat compared to VSP. Lipid oxidation, assessed by TBARS, were lower in camelina forage or camelina meal supplemented diets and TrigasMAP compared to standard diet and HioxMAP, respectively. Total carbonyl and free thiol content were lower in VSP. Thus, supplementing feed with camelina forage or meal and lowering oxygen content in retail packaging by TrigasMAP or VSP are recommended to ensure optimal sheep meat quality.
Collapse
Affiliation(s)
- Minh Ha
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (R.D.W.); (C.K.); (S.W.)
- Correspondence:
| | - Robyn Dorothy Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (R.D.W.); (C.K.); (S.W.)
| | - Caitlin King
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (R.D.W.); (C.K.); (S.W.)
| | - Sida Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (R.D.W.); (C.K.); (S.W.)
| | - Eric N. Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia;
| |
Collapse
|
20
|
Álvarez S, Álvarez C, Hamill R, Mullen AM, O'Neill E. Drying dynamics of meat highlighting areas of relevance to dry-aging of beef. Compr Rev Food Sci Food Saf 2021; 20:5370-5392. [PMID: 34601801 DOI: 10.1111/1541-4337.12845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 11/26/2022]
Abstract
Drying of foods is a processing step, which has a variety of outcomes from improving shelf life and product stability, to reducing weight, or to achieving a targeted product eating quality. Drying is key step in the manufacturing of some dried meat products, such as jerky. It is also a major event that occurs when beef is dry-aged, where beef is exposed to air under defined conditions for an extended aging period. Although the conditions typically used to produce dried meat products are significantly different from those that prevail during dry-aging, both involve a gradual removal of water from muscle. As there is a paucity of research on the kinetics of the dehydration process occurring during dry-aging of beef, this paper comprehensively reviews models used to describe drying kinetics in other beef products, in order to gain insights regarding the key factors that impact water removal from meat. Consideration is given as to how the specific conditions during dry-aging such as air flows used (approximately 2 m/s), high air relative humidity, low temperature, and meat geometry will influence the kinetics of the drying. With regard to modeling, equations derived from Fick's second law of diffusion (e.g., thin-layer models) have been used to describe the drying kinetics of small-sized meat products. However, to apply Fick's law to dry-aging, some different considerations may need to be evaluated such as: tridimensional geometry (i.e., whole muscle); uniform initial moisture content; isotropic diffusion; negligible shrinkage;and a combination of internal and external resistances.
Collapse
Affiliation(s)
- Sara Álvarez
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - Carlos Álvarez
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - Ruth Hamill
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - Anne Maria Mullen
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - Eileen O'Neill
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Naqvi ZB, Campbell MA, Latif S, Thomson PC, McGill DM, Warner RD, Friend MA. Improving tenderness and quality of M. biceps femoris from older cows through concentrate feeding, zingibain protease and sous vide cooking. Meat Sci 2021; 180:108563. [PMID: 34044229 DOI: 10.1016/j.meatsci.2021.108563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
The study investigated the effect of zingibain protease and sous vide cooking on tenderness and water-holding capacity of M. biceps femoris (BF) from 30 older Angus cows (6-7 years) fed concentrates for 0, 28, 42 or 56 days. BF were cooked for 1, 8, and 18 h at 65 °C and 75 °C, without any pre-treatment, after they have been injected with water only or after they have been injected with either 1 g/L or 2 g/L ginger powder solution (containing zingibain). Samples were tested for cooking loss, total water content, Warner-Bratzler shear force (WBSF), collagen content, and myofibrillar fragmentation index (MFI). Results revealed the significant interactions between concentrate feeding, ginger powder injection, cooking temperature, and time on quality traits. WBSF was reduced (P < 0.001) by increasing zingibain concentration at 65 °C but a gradual decrease was noted at 75 °C. Collagen solubility and MFI increased (P < 0.05) with increasing zingibain concentration. Injecting zingibain along with sous vide cooking demonstrated the weakening of myofibrillar and connective tissue proteins contributing to enhanced collagen solubility and tenderness in BF.
Collapse
Affiliation(s)
- Zahra B Naqvi
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Albert Pugsley Place, Wagga Wagga, NSW 2678, Australia.
| | - Michael A Campbell
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Albert Pugsley Place, Wagga Wagga, NSW 2678, Australia
| | - S Latif
- Graham Centre for Agricultural Innovation, Albert Pugsley Place, Wagga Wagga, NSW 2678, Australia; NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Rd, Wagga Wagga, NSW 2650, Australia
| | - Peter C Thomson
- Graham Centre for Agricultural Innovation, Albert Pugsley Place, Wagga Wagga, NSW 2678, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - David M McGill
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robyn D Warner
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael A Friend
- Office of the Pro Vice-Chancellor (Research and Innovation) Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
22
|
Gagaoua M, Warner RD, Purslow P, Ramanathan R, Mullen AM, López-Pedrouso M, Franco D, Lorenzo JM, Tomasevic I, Picard B, Troy D, Terlouw EMC. Dark-cutting beef: A brief review and an integromics meta-analysis at the proteome level to decipher the underlying pathways. Meat Sci 2021; 181:108611. [PMID: 34157500 DOI: 10.1016/j.meatsci.2021.108611] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 01/06/2023]
Abstract
Comprehensive characterization of the post-mortem muscle proteome defines a fundamental goal in meat proteomics. During the last decade, proteomics tools have been applied in the field of foodomics to help decipher factors underpinning meat quality variations and to enlighten us, through data-driven methods, on the underlying mechanisms leading to meat quality defects such as dark-cutting meat known also as dark, firm and dry (DFD) meat. In cattle, several proteomics studies have focused on the extent to which changes in the post-mortem muscle proteome relate to dark-cutting beef development. The present data-mining study firstly reviews proteomics studies which investigated dark-cutting beef, and secondly, gathers the protein biomarkers that differ between dark-cutting versus beef with normal-pH in a unique repertoire. A list of 130 proteins from eight eligible studies was curated and mined through bioinformatics for Gene Ontology annotations, molecular pathways enrichments, secretome analysis and biological pathways comparisons to normal beef color from a previous meta-analysis. The major biological pathways underpinning dark-cutting beef at the proteome level have been described and deeply discussed in this integromics study.
Collapse
Affiliation(s)
- Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter Purslow
- Centro de Investigacion Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil B7001BBO, Argentina
| | - Ranjith Ramanathan
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Anne Maria Mullen
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Maria López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Igor Tomasevic
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080, Belgrade, Serbia
| | - Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Declan Troy
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - E M Claudia Terlouw
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| |
Collapse
|
23
|
Supaphon P, Kerdpiboon S, Vénien A, Loison O, Sicard J, Rouel J, Astruc T. Structural changes in local Thai beef during sous-vide cooking. Meat Sci 2021; 175:108442. [DOI: 10.1016/j.meatsci.2021.108442] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
|
24
|
Vaskoska R, Ha M, Ong L, Chen G, White J, Gras S, Warner R. Myosin sensitivity to thermal denaturation explains differences in water loss and shrinkage during cooking in muscles of distinct fibre types. Meat Sci 2021; 179:108521. [PMID: 33964804 DOI: 10.1016/j.meatsci.2021.108521] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/11/2021] [Accepted: 04/08/2021] [Indexed: 12/26/2022]
Abstract
The effect of thermal protein denaturation on the structure and quality of muscles of different fibre types is not well understood. Unaged masseter (100% type I fibres) and cutaneous trunci (93% type II fibres) muscles (N = 10) were assessed for their characteristics, protein denaturation, cooking loss, Warner- Bratzler shear force (WBSF) and shrinkage after heating at 50 °C - 85 °C with a rate of 5 °C/ min. Raw masseter had a higher pH, collagen and water content, shorter sarcomere, comparable fibre diameter, and shorter and wider fragments upon homogenization, than cutaneous trunci. In cutaneous trunci, at 55 °C - 60 °C, the lower transition temperature of myosin and the greater cumulative enthalpy resulted in greater cooking loss in muscle cuboids, and greater transverse, longitudinal and volume shrinkage in fibres and fibre fragments, than in masseter. Protein denaturation explained 71% variability in fibre fragment volume and 58% in cooking loss of both muscles, as well as 47% variability in WBSF of masseter.
Collapse
Affiliation(s)
- Rozita Vaskoska
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia.
| | - Minh Ha
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Lydia Ong
- Department of Chemical Engineering, The University of Melbourne, Victoria, Australia; The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - George Chen
- Department of Chemical Engineering, The University of Melbourne, Victoria, Australia
| | - Jason White
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia; Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Sally Gras
- Department of Chemical Engineering, The University of Melbourne, Victoria, Australia; The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Robyn Warner
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Dunshea F, Ha M, Purslow P, Miller R, Warner R, Vaskoska RS, Wheeler TL, Li X. Meat Tenderness: Underlying Mechanisms, Instrumental Measurement, and Sensory Assessment. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.10489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|