1
|
Sun Y, Zhang H, Peng W, Sun P, Ye X. Release of glycosidically-bound volatiles in orange juice under natural conditions. Food Chem 2023; 429:136827. [PMID: 37459712 DOI: 10.1016/j.foodchem.2023.136827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/20/2022] [Accepted: 07/04/2023] [Indexed: 08/24/2023]
Abstract
Glycosidically-bound volatiles (GBV) can be released by exogenous acid and enzymatic hydrolysis. However, the liberation of GBV in natural juice is not reported. It was found that part of the GBV in orange juice (OJ) under natural conditions can be released and the types of volatiles were considerably fewer than the ones under exogenous acid, or enzymatic hydrolysis. Seven types of aroma substances were released under endogenous enzyme, among which ethyl 3-hydroxyhexanoate and eugenol are characteristic aroma substances of OJ. Six kinds of aroma substances can be released under natural acidic conditions, none are characteristic aroma substances of OJ. Ten kinds of substances were released under endogenous enzymes in combination with the acidic condition, among which benzyl alcohol, ethyl 3-hydroxyhexanoate, citral, and eugenol are characteristic aroma substances of OJ. The results indicated that GBV may play an important role in resisting the decrease of free aroma in OJ during storage.
Collapse
Affiliation(s)
- Yujing Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hongjuan Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Peng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingqian Ye
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Pan X, Bi S, Lao F, Wu J. Factors affecting aroma compounds in orange juice and their sensory perception: A review. Food Res Int 2023; 169:112835. [PMID: 37254409 DOI: 10.1016/j.foodres.2023.112835] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Orange juice is the most widely consumed fruit juice globally because of its pleasant aromas and high nutritional value. Aromas, contributed by free and bound aroma compounds, are an important attribute and determine the quality of orange juice and consumer choices. Aldehydes, alcohols, esters, and terpenoids have been shown to play important roles in the aroma quality of orange juice. Many factors affect the aroma compounds in orange juice, such as genetic makeup, maturity, processing, matrix compounds, packaging, and storage. This paper reviews identified aroma compounds in free and bound form, the biosynthetic pathways of aroma-active compounds, and factors affecting aroma from a molecular perspective. This review also outlines the effect of variations in aroma on the sensory profile of orange juice and discusses the sensory perception pathways in human systems. Sensory perception of aromas is affected by aroma variations but also converges with taste perception. This review could provide critical information for further research on the aromas of orange juice and their manipulation during the development of products.
Collapse
Affiliation(s)
- Xin Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Shuang Bi
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China; College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
3
|
Sun R, Xing R, Zhang J, Deng T, Ge Y, Zhang W, Chen Y. Quality changes of HHP orange juice during storage: Metabolomic data integration analyses. Food Chem 2023; 404:134612. [PMID: 36288672 DOI: 10.1016/j.foodchem.2022.134612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
High hydrostatic pressure (HHP) is a non-thermal method of sterilizing orange juice. However, knowledge of the quality variation during its storage is limited. This study aimed to comprehensively analyze metabolite variations during HHP orange juice storage using gas chromatography-mass spectrometer and liquid chromatography-mass spectrometry. Fifty-seven volatiles and 49 non-volatiles were identified. Partial least square analysis results showed that 21 days was a dividing point for metabolites highly varied. Results of relative odor activity value showed nonanal, methyl butanoate, and ethyl butanoate decreased after six days, which might reduce fruity flavor. After 21 days, over 60 % of metabolites such as linalool, α-pinene, and ascorbic acids decreased while α-terpineol and limonin increased, which would likely result in a change of coniferous, tarry, and bitter, as well as decreased organoleptic quality and antioxidative activities. This study provides a theoretical basis to optimize the shelf-life of HHP orange juice and advice for consumers' choices.
Collapse
Affiliation(s)
- Ruixue Sun
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China
| | - Ranran Xing
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Tingting Deng
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yiqiang Ge
- China Rural Technology Development Center, Beijing 100045, China
| | - Weiwei Zhang
- College of Science, China Agricultural University, Beijing 100083, China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
4
|
Bao S, Yin D, Zhao Q, Zhou Y, Hu Y, Sun X, Liu X, Ma T. Comprehensive evaluation of the effect of five sterilization methods on the quality of black carrot juice based on PCA, TOPSIS and GRA models. Food Chem X 2023; 17:100604. [PMID: 36974191 PMCID: PMC10039260 DOI: 10.1016/j.fochx.2023.100604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The effect of thermal pasteurization (TP), high temperature long time (HTLT), ultra-high temperature instantaneous (UHT), high hydrostatic pressure (HHP) and thermosonication (TS) sterilization on the physicochemical, sensory and functional properties of black carrot juice (BCJ) were studied. And for the first time, the comprehensive quality of sterilized BCJ was quantified by mathematical modeling. UHT was the least suitable sterilization method for BCJ resulting from the most severe deterioration in functional properties. TS had adverse effects on sensory and physicochemical properties, but significantly increased the total flavonoids and anthocyanins contents (p < 0.05) and showed the strongest antioxidant activity, making it a nutritional high-value processing method. TP and HHP balanced the improvement of sensory properties and the retention of functional properties, which were the most suitable sterilization methods for BCJ. This study determined the optimal sterilization methods of BCJ, and provided a scientific solution for the screening of high quality processing methods.
Collapse
|
5
|
Salas-Millán JÁ, Aguayo E, Conesa-Bueno A, Aznar A. Revalorization of Melon By-Product to Obtain a Novel Sparkling Fruity-Based Wine. Foods 2023; 12:foods12030491. [PMID: 36766020 PMCID: PMC9914186 DOI: 10.3390/foods12030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Fresh melons not meeting cosmetic standards were revaluated into sparkling melon-based wine. Firstly, still melon wine was elaborated and bottled into 750 mL bottles, closed with a crown seal, and stored for 10-weeks at 14 °C. The oenological parameters and polar compounds in must, still wine, and during the sparkling process were evaluated during the experiment. The volatile profile was qualified by GC-MS, and the odor activity value (OAV) and relative odor contribution (ROC) were measured for aroma characterization. Results show that sparkling wine resulted in 12% v/v ethanol. Certain amino acids contributed to the transformation and increase of volatile compounds via Ehrlich's pathway: leucine to isoamyl alcohol; valine to iso-butyl alcohol; and phenylalanine to phenethyl alcohol. The volatile compounds also increased after the first fermentation, principally in acetate and ethyl esters, and higher alcohols. Isoamyl acetate, ethyl decanoate, 3,6-nonadienyl acetate, and (E,Z)-nonadien-1-ol had the highest OAV and ROC values among the volatiles; this contributed to the sweet, fruity, banana, tropical, nutty and melon aroma in this sparkling wine. Sensory evaluation (100 to 40) was evaluated according to International Organisation of Vine and Wine compendium, the final product (10-week) scored 92 points, with great visual, nose, and taste values. This study demonstrates how by-products revalorization can provide new products such as this novel sparkling wine with a characteristic and distinctive aroma, good sensory acceptance and market potential.
Collapse
Affiliation(s)
- José Ángel Salas-Millán
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), 30202 Cartagena, Spain
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain
- JimboFresh International SLL, C/Mina Buena Suerte, 1, La Unión, 30360 Murcia, Spain
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), 30202 Cartagena, Spain
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain
- Correspondence: (E.A.); (A.A.)
| | - Andrés Conesa-Bueno
- JimboFresh International SLL, C/Mina Buena Suerte, 1, La Unión, 30360 Murcia, Spain
| | - Arantxa Aznar
- Department of Agronomical Engineering, Institute of Plant Biotechnology, UPCT, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
- Correspondence: (E.A.); (A.A.)
| |
Collapse
|
6
|
Industry-Scale Microfluidizer: a Novel Technology to Improve Physiochemical Qualities and Volatile Flavor of Whole Mango Juice. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Yang F, Shi C, Yan L, Xu Y, Dai Y, Bi S, Liu Y. Low-frequency ultrasonic treatment: A potential strategy to improve the flavor of fresh watermelon juice. ULTRASONICS SONOCHEMISTRY 2022; 91:106238. [PMID: 36436485 PMCID: PMC9703038 DOI: 10.1016/j.ultsonch.2022.106238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 06/12/2023]
Abstract
A molecular sensory science approach was used to explore the effects of ultrasonic treatment on aroma compounds of watermelon juice. Watermelon juice was submitted to ultrasonic power at 325 W for 20 min. Ultrasonic treatment reduced odor related to cucumber and green descriptors, whilst significantly improved odors related to sweet, floral, and fruity descriptors, thus contributing to the overall flavor of watermelon juice. Compared with untreated watermelon juice, the amount and concentration of volatile compounds in ultrasonicated watermelon juice increased by 82.50% and 111.84%, respectively. Notably, 22 alkene compounds were newly formed in ultrasonicated watermelon juice, which contributed to sweet and fruity aroma of watermelon juice. The findings of the present study suggest that ultrasonic treatment may be a potential method to improve the overall flavor of watermelon juice.
Collapse
Affiliation(s)
- Fan Yang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chunhe Shi
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Lichang Yan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ying Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yixin Dai
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Shuang Bi
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Ye Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
8
|
Salas-Millán JÁ, Aznar A, Conesa E, Conesa-Bueno A, Aguayo E. Fruit Wine Obtained from Melon by-Products: Physico-Chemical and Sensory Analysis, and Characterization of Key Aromas by GC-MS. Foods 2022; 11:foods11223619. [PMID: 36429211 PMCID: PMC9689717 DOI: 10.3390/foods11223619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
About 20% of fresh fruits and vegetables are rejected for not meeting the superficial aesthetic standards (color, shape, and size). Part of the food production is not used in the human food chain. The transformation of these fresh products into novel re-valuable ones is a challenge for a sustainable food industry. This research studies an alcoholic fermentation fruit-based wine from two melon (Cucumis melo L.) cultivars: Jimbee® (smooth and yellow skin with orange flesh) and Okashi® (netted yellow-orange skin with pale green flesh). The melon juice (must) was fermented by Saccharomyces cerevisiae and enriched in sucrose and organic acids to achieve alcoholic fermentation, acidity, and flavors, obtaining a fruity-flavored and dry melon-based wine with 10° alcoholic grade, in both melon cultivars. The volatile compounds were measured by GC-MS and the odor activity value (OAV) was calculated. The Jimbee and Okashi melon wines increased their aromatic profile due to an increment in medium-chain fatty acid ethyl esters such as ethyl hexanoate, ethyl octanoate, and ethyl decanoate (OAV > 1), which contributed to the fruity aroma. Other volatile compounds such as ethyl 9-decenoate and phenethyl acetate (OAV > 1) appeared in the Okashi wine, which brought a floral aroma. For sensory evaluation (40−100), the Jimbee cultivar, with its orange flesh, scored 68.2 and the Okashi cultivar, with pale green flesh, scored 82.8, which was the preferred melon-based wine. This is an example of a circular economy model to produce a fruit-based wine with commercial potential and satisfactory sensory evaluation.
Collapse
Affiliation(s)
- José Ángel Salas-Millán
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), 30202 Cartagena, Spain
- Food Quality and Health Group, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain
- JimboFresh International SLL, C/Mina Buena Suerte, 1, 30360 Murcia, Spain
| | - Arantxa Aznar
- Department of Agronomical Engineering, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
| | - Encarnación Conesa
- Department of Agronomical Engineering, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
| | | | - Encarna Aguayo
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), 30202 Cartagena, Spain
- Food Quality and Health Group, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain
- Correspondence:
| |
Collapse
|
9
|
Jia X, Ren J, Fan G, Reineccius GA, Li X, Zhang N, An Q, Wang Q, Pan S. Citrus juice off-flavor during different processing and storage: Review of odorants, formation pathways, and analytical techniques. Crit Rev Food Sci Nutr 2022; 64:3018-3043. [PMID: 36218250 DOI: 10.1080/10408398.2022.2129581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the most widespread juice produced and consumed globally, citrus juice (mandarin juice, orange juice, and grapefruit juice) is appreciated for its attractive and distinct aroma. While the decrease of characteristic aroma-active compounds and the formation of off-flavor compounds are easy to occur in processing and storage conditions. This review provides a comprehensive literature of recent research and discovery on citrus juice off-flavor, primarily focusing on off-flavor compounds induced during processing and storage (i.e., thermal, storage, light, oxygen, package, fruit maturity, diseases, centrifugal pretreatment, and debittering process), formation pathways (i.e., terpene acid-catalyzed hydration, caramelization reaction, Maillard reaction, Strecker degradation, and other oxidative degradation) of the off-flavor compounds, effective inhibitor pathway to off-flavor (i.e., electrical treatments, high pressure processing, microwave processing, ultrasound processing, and chemical treatment), as well as odor assessment techniques based on molecular sensory science. The possible precursors (terpenes, sulfur-containing amino acids, carbohydrates, carotenoids, vitamins, and phenolic acids) of citrus juice off-flavor are listed and are also proposed. This review intends to unravel the regularities of aroma variations and even off-flavor formation of citrus juice during processing and storage. Future aroma analysis techniques will evolve toward a colorimetric sensor array for odor visualization to obtain a "marker" of off-flavor in citrus juice.
Collapse
Affiliation(s)
- Xiao Jia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Jingnan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Gary A Reineccius
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Nawei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Qingshan Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| |
Collapse
|
10
|
Rojas ML, Kubo MT, Miano AC, Augusto PE. Ultrasound processing to enhance the functionality of plant-based beverages and proteins. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Chen X, Quek SY. Free and glycosidically bound aroma compounds in fruit: biosynthesis, transformation, and practical control. Crit Rev Food Sci Nutr 2022; 63:9052-9073. [PMID: 35452325 DOI: 10.1080/10408398.2022.2064422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruit aroma makes an initial flavor impression and largely determines the consumer preference and acceptance of fruit products. Free volatile organic compounds (FVOCs) directly make up the characteristic aromas of fruits. While glycosidically bound volatile compounds (GBVs) can be hydrolyzed during fruit ripening, postharvest storage, and processing, releasing the attached aglycones as free volatiles that could alter the overall aroma attributes of fruits. GBVs typically exhibit significantly higher concentrations than their free counterparts in fruits such as grapes, cherries, kiwifruits, tomatoes, and tamarillos. This review highlights the biosynthesis of FVOCs and GBVs in fruit and illustrates their biological transformations for various functional purposes such as detoxification, aroma enhancement, plant defense, and pollinator attraction. Practical applications for regulating the levels of aroma compounds emitted or accumulated in fruit are also reviewed, emphasizing the metabolic engineering of free volatile metabolites and hydrolytic technologies on aroma glycosides. Generally, enzymatic hydrolysis using AR2000 is a common strategy to enhance the sensory attributes of fruit juices/wines, while acidic hydrolysis induces the oxidation and rearrangement of aglycones, generating artifacts with off-aromas. This review associates the occurrence of free and glycosidic bound volatiles in fruit and addresses their importance in fruit flavor enhancement and industrial applications.
Collapse
Affiliation(s)
- Xiao Chen
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Siew Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Riddet Institute, Centre of Research Excellence in Food Research, Palmerston North, New Zealand
| |
Collapse
|
12
|
Chen X, Fedrizzi B, Kilmartin PA, Quek SY. Free and Glycosidic Volatiles in Tamarillo ( Solanum betaceum Cav. syn. Cyphomandra betacea Sendt.) Juices Prepared from Three Cultivars Grown in New Zealand. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4518-4532. [PMID: 33843220 DOI: 10.1021/acs.jafc.1c00837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigated the free and glycosidic-bound volatiles in the juice samples of three tamarillo cultivars (i.e. Amber, Mulligan, and Laird's Large) that are widely grown in New Zealand. Juice samples were prepared from fruits at different ripening stages (green, middle, and ripe). Headspace solid-phase microextraction combined with gas chromatography-mass spectrometry was applied to analyze the free volatiles in the samples. A total of 20 free volatiles were detected. Among the samples, the ripe Mulligan juice gave the highest contents of free terpenoids (424 μg/L) and esters (691 μg/L). The glycosidic-bound volatiles were prepared by solid-phase extraction. The matrix effect was evaluated based on the recovery rate of analytes containing multiple aglycone classes. From the results, phenyl β-d-glucopyranoside was selected to compensate the matrix effect caused by insufficient acquisition of glycosidic volatiles during analyte preparation. In all the ripe-fruit juice samples, the aglycones 4-hydroxy-2,5-dimethyl-3(2H)-furanone and trans-2, cis-6-nonadienal were found to give high odor activity values. According to multivariate statistical analysis, 11 free volatiles and 22 glycosidic volatiles could be potentially applied as volatile makers to distinguish the juice samples. This study has provided a comprehensive understanding of the flavor chemistry of tamarillo juices, with a focus on the potential role of glycosidic aglycones as aroma contributors to tamarillo products.
Collapse
Affiliation(s)
- Xiao Chen
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Paul A Kilmartin
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Siew Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Centre of Research Excellence in Food Research, Riddet Institute, Palmerston North 4474, New Zealand
| |
Collapse
|
13
|
Tekgül Y, Çalışkan Koç G, Erten ES, Akdoğan A. Determination of the effect of wheat germ on the mineral and fatty acid composition and aroma compounds of tarhana: A traditional fermented cereal food. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yeliz Tekgül
- Köşk Vocational School Food Processing Department Aydın Adnan Menderes University Aydın Turkey
| | | | - Edibe Seda Erten
- Engineering Faculty Food Engineering Department Aydın Adnan Menderes University Aydın Turkey
| | - Arda Akdoğan
- Engineering and Natural Sciences Faculty Food Engineering Department Gümüşhane University Gümüşhane Turkey
| |
Collapse
|