1
|
Cheng L, Peng L, Xu L, Yu X, Zhu Y, Wei X. Metabolic function and quality contribution of tea-derived microbes, and their safety risk in dark tea manufacture. Food Chem 2025; 464:141818. [PMID: 39486219 DOI: 10.1016/j.foodchem.2024.141818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Microbial fermentation, especially the microbes involved, plays a crucial role in the quality formation of dark tea. Over the last decade, numerous microbes have been isolated from dark tea and in turn, applied to dark tea manufacture through pure-strain, mixed-strain, and enhanced fermentation. This article systematically summarizes the specific metabolic function and quality contribution of tea-derived microbes, with special attention paid to their safety risk. Aspergillus niger converts catechins via hydrolysis, addition, oxidative polymerization, and B-ring fission, contributing greatly to the reddish-brown color and mellow taste of dark tea. Aspergillus sydowii and Penicillium simplicissimum are caffeine-degrading microbes, degrading caffeine mainly into theophylline. However, under adverse conditions, Aspergillus, Penicillium, and Fusarium species potentially produce aflatoxins, ochratoxin A, and citrinin, the mycotoxins occurring in dark tea. The in-depth knowledge of tea-derived microbes is important for improving the quality and safety of dark tea, providing a theoretical basis for its industrial modernization.
Collapse
Affiliation(s)
- Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaoping Yu
- Hubei Qingzhuan Tea Industry Development Group Co. Ltd., Xianning 437000, PR China
| | - Yuzhi Zhu
- Hubei Qingzhuan Tea Industry Development Group Co. Ltd., Xianning 437000, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
2
|
Mao H, Xu Y, Lu F, Ma C, Zhu S, Li G, Huang S, Zhang Y, Hou Y. An integrative multi-omics approach reveals metabolic mechanism of flavonoids during anaerobic fermentation of de'ang pickled tea. Food Chem X 2024; 24:102021. [PMID: 39659682 PMCID: PMC11629561 DOI: 10.1016/j.fochx.2024.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024] Open
Abstract
Anaerobic fermentation (AF) is critical process for Yunnan De'ang pickled tea production. Therefore, widely targeted metabolomics and metagenomics were integrated to reveal the AF mechanism. Lactic acid bacteria (LAB) (e.g. Lactiplantibacillus plantarum, Lactobacillus vaccinostercus and Lactobacillus paracollinoides) and yeasts like Candida metapsilosis and Cyberlindnera fabianii dominated in the AF. Based on bacterial community succession and metabolites variation, the whole AF processes were divided into two phases, i.e., before and after four months. A total of 327 characteristic metabolites (VIP >1.0, P < 0.05, and FC > 1.50 or < 0.67) were selected from the AF. Besides amino acids increase, LAB and yeasts also promoted non-galloylated catechins, and several simple flavones/flavonols, flavanones/flavanonols and methoxy flavones/flavonols accumulations along with galloylated catechins, flavonol/flavone glycosides and anthocyanins decrease during the AF. This study would improve the understanding about AF mechanism of tea-leaves from the perspectives of flavonoids metabolism and microbial community succession.
Collapse
Affiliation(s)
- Honglin Mao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yang Xu
- International College, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Fengmei Lu
- Yunnan Defeng Tea Industry Co., Ltd, Mangshi 678400, Yunnan, China
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Shaoxian Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guoyou Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Siqi Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yi Zhang
- Yunnan Defeng Tea Industry Co., Ltd, Mangshi 678400, Yunnan, China
| | - Yan Hou
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|
3
|
Aaqil M, Kamil M, Kamal A, Nawaz T, Peng C, Alaraidh IA, Al-Amri SS, Okla MK, Hou Y, Fahad S, Gong J. Metabolomics reveals a differential attitude in phytochemical profile of black tea ( Camellia Sinensis Var. assamica) during processing. Food Chem X 2024; 24:101899. [PMID: 39507928 PMCID: PMC11539724 DOI: 10.1016/j.fochx.2024.101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Black tea's quality and flavor are largely influenced by its processing stages, which affect its volatile and non-volatile phytochemicals. This study aimed to optimized black tea manufacturing by investigating withering time, fermentation time, and temperature's impact on sensory quality. Using a U*15 (157) uniform design, optimal conditions were determined: 14 h of withering, 5.6 h of fermentation, and a 34 °C temperature. A verification experiment analyzed the volatile and non-volatile profiles. HPLC, GC-MS, and LC-MS revealed dynamic changes in phytochemicals. Among 157 VOCs and 2642 metabolites, 19 VOCs (VIP > 1.5) were crucial for aroma, while 50 (VIP > 1.5, p < 0.01) characteristic metabolites were identified. During processing, fragrant volatile compounds like linalool oxides, geraniol, benzeneacetaldehyde, benzaldehyde, methyl salicylate, and linalyl acetate increased, contributing to rose and honey like aromas. These changes were crucial in developing the characteristic flavor and color of black tea. Twenty-four new compounds formed, while 80 grassy odor volatiles decreased. Non-volatile metabolites changed notably, with decreased catechins and increased gallic acid. Theaflavin compounds rose initially but declined later. This study outlines metabolite changes in Yunkang 10 black tea, crucial for flavor enhancement and quality control.
Collapse
Affiliation(s)
- Muhammad Aaqil
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Muhammad Kamil
- College of Management and Economics, Kunming University of Science and Technology, Yunnan 650201, China
| | - Ayesha Kamal
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Taufiq Nawaz
- College of Natural Sciences, South Dakota State University, Brookings, SD 57007,USA
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ibrahim A. Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud S. Al-Amri
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yan Hou
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650221, China
| |
Collapse
|
4
|
Xu X, Guo T, Zhang Q, Liu H, Wang X, Li N, Wang Y, Wei L, Hu L, Xu S. Comparative Evaluation of the Nutrient Composition and Lipidomic Profile of Different Parts of Muscle in the Chaka Sheep. Food Sci Anim Resour 2024; 44:1305-1326. [PMID: 39554830 PMCID: PMC11564135 DOI: 10.5851/kosfa.2024.e47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 11/19/2024] Open
Abstract
Mutton is one of the most popular meats among the public due to its high nutritional value. In this study, we compared and analyzed the nutritional composition and volatile flavor substances in longissimus dorsi (LD), psoas major (PM), and biceps femoris (BF) of the Chaka sheep, and then analyzed the lipid composition using the technique of UHPLC-Q-Exactive Orbitrap MS/MS. Our results indicated that the LD had the highest crude protein content (22.63%), the highest levels of aspartic acid (5.72%) and histidine (2.76%), the BF had the highest contents of glycine (3.40%) and proline (2.88%), the PM had the highest abundance of ω-6 polyunsaturated fatty acids (7.06%), linoleic acid (C18:2n6c; 5.03%), and volatile flavor compounds (alcohols, ketones, and esters). Moreover, our study detected 2,639 lipid molecules classified into 42 classes, among which phospholipids were the major lipids, accounting for nearly half of the total lipids. Among them, phosphatidylethanolamine (PE; 18:2/18:2) and phosphatidylcholine (PC; 25:0/11:3) were the characteristic lipids in LD. Phosphatidylserine (PS; 20:3e/20:4), lysophosphatidylcholine (LPC; 18:3), PE (8:1e/12:3), triacylglycerol (TG; 18:0e/16:0/18:1), TG (18:0/18:0/18:0), TG (18:0e/18:0/18:1), and TG (18:0e/18:1/18:1) were marker lipids in PM. LPC (16:0), LPC (18:1), lysophosphatidylethanolamine (18:1), PC (15:0/22:6), PE (18:1/18:1), Hex1Cer (d24:1/18:1), and PC (10:0e/6:0) were representative lipids in BF. Intermolecular correlations between PC, PE, Hex1Cer, PS, TG, diacylglycerol, and cardiolipid were revealed by correlation analysis. In conclusion, this study provided the interpretation of the specific nutritional indicators and lipid profile in the tripartite muscle of Chaka sheep, which can be used as a guidance for future research on the nutritional qualities and economic benefits of mutton.
Collapse
Affiliation(s)
- Xianli Xu
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Tongqing Guo
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Qian Zhang
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
| | - Hongjin Liu
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
| | - Xungang Wang
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
| | - Na Li
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Yalin Wang
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Lin Wei
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Linyong Hu
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
5
|
Li R, Wang T, Bo N, Wang Q, Chen Q, Liang Z, Guan Y, Jiang B, Ma Y, Zhao M. The carbohydrate metabolism and expression of carbohydrate-active enzyme genes in Aspergillus luchuensis fermentation of tea leaves. Front Microbiol 2024; 15:1408645. [PMID: 38894966 PMCID: PMC11183108 DOI: 10.3389/fmicb.2024.1408645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Carbohydrates, which make up 20 to 25% of tea beverages, are responsible for their flavor and bioactivity. Carbohydrates of pu-erh tea change during microbial fermentation and require further research. In this study, we examined the carbohydrate metabolism and expression of carbohydrate-active enzyme genes during the fermentation of tea leaves with Aspergillus luchuensis. Methods Widely targeted metabolomics analysis, high-performance anion-exchange chromatography measurements, and transcriptomics were used in this study. Results After fermentation, the levels of soluble sugar, hemicellulose, lignin, eight monosaccharides, and seven sugar alcohols increased. Meanwhile, the relative contents of polysaccharides, D-sorbitol, D-glucose, and cellulose decreased. High expression of 40 genes encoding 16 carbohydrate enzymes was observed during fermentation (FPKM>10). These genes encode L-iditol 2-dehydrogenase, pectinesterase, polygalacturonase, α-amylase, glucoamylase, endoglucanase, β-glucosidase, β-galactosidase, α-galactosidase, α-glucosidase, and glucose-6-phosphate isomerase, among others. Discussion These enzymes are known to break down polysaccharides and cell wall cellulose, increasing the content of monosaccharides and soluble sugars.
Collapse
Affiliation(s)
- Ruoyu Li
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Teng Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Nianguo Bo
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qi Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiuyue Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhengwei Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yanhui Guan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bin Jiang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan Ma
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ming Zhao
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Li M, Bai W, Yang Y, Zhang X, Wu H, Li Y, Xu Y. Waste Tea-Derived Theabrownins for Solar-Driven Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10158-10169. [PMID: 38354064 DOI: 10.1021/acsami.3c18438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Solar-driven seawater desalination has been considered an effective and sustainable solution to mitigate the global freshwater crisis. However, the substantial cost associated with photothermal materials for evaporator fabrication still hinders large-scale manufacturing for practical applications. Herein, we successfully obtained high yields of theabrownins (TB), which were oxidation polymerization products of polyphenols from waste and inferior tea leaves using a liquid-state fermentation strategy. Subsequently, a series of photothermal complexes were prepared based on the metal-phenolic networks assembled from TB and metal ions (Fe(III), Cu(II), Ni(II), and Zn(II)). Also, the screened TB@Fe(III) complexes were directly coated on a hydrophilic poly(vinylidene fluoride) (PVDF) membrane to construct the solar evaporation device (TB@Fe(III)@PVDF), which not only demonstrated superior light absorption property and notable hydrophilicity but also achieved a high water evaporation rate of 1.59 kg m-2 h-1 and a steam generation efficiency of 90% under 1 sun irradiation. More importantly, its long-term stability and exceptionally low production cost enabled an important step toward the possibility of large-scale practical applications. We believe that this study holds the potential to pave the way for the development of sustainable and cost-effective photothermal materials, offering new avenues for utilization of agriculture resource waste and solar-driven water remediation.
Collapse
Affiliation(s)
- Maoyun Li
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Yiyan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Zhao L, Tang X, Ni X, Zhang J, Ineza Urujeni G, Wang D, He H, Dramou P. Efficient and Selective Adsorption of cis-Diols via the Suzuki-Miyaura Cross-Coupling-Modified Phenylboronic-Acid Functionalized Covalent Organic Framework. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1884-1891. [PMID: 38190755 DOI: 10.1021/acs.langmuir.3c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this work, a functional group (boronic acid) was modified onto a covalent organic framework (COF) using the Suzuki-Miyaura cross-coupling reaction to obtain a phenylboronic acid-functionalized covalent organic framework (BrCOF-PBA). This product was used as a selective adsorbent and largely as an efficient solid-phase extractant of flavonoids containing cis-diol structures like quercetin (QUE). Five or six-membered cyclic esters generated from the COF were characterized, and some physicochemical studies were performed, resulting in excellent chemical stability and crystallinity, high specific surface area, stable pore structure, and regular pore size. Unique selectivity of BrCOF-PBA was observed toward QUE and exhibited a huge adsorption capacity (213.96 mg g-1) in a relatively short time (90 min). In contrast, the adsorption properties of morin (MOR) and kaempferol (KAE) with a certain degree of chemical similarity to QUE were only 27.62 and 21.76 mg g-1, respectively. BrCOF-PBA also demonstrated good reusability and robustness, making it an attractive composite material for further analytical applicability.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xue Tang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xu Ni
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjing Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | | | - Dan Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hua He
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Pierre Dramou
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
8
|
Wen M, Zhu M, Han Z, Ho CT, Granato D, Zhang L. Comprehensive applications of metabolomics on tea science and technology: Opportunities, hurdles, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4890-4924. [PMID: 37786329 DOI: 10.1111/1541-4337.13246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
With the development of metabolomics analytical techniques, relevant studies have increased in recent decades. The procedures of metabolomics analysis mainly include sample preparation, data acquisition and pre-processing, multivariate statistical analysis, as well as maker compounds' identification. In the present review, we summarized the published articles of tea metabolomics regarding different analytical tools, such as mass spectrometry, nuclear magnetic resonance, ultraviolet-visible spectrometry, and Fourier transform infrared spectrometry. The metabolite variation of fresh tea leaves with different treatments, such as biotic/abiotic stress, horticultural measures, and nutritional supplies was reviewed. Furthermore, the changes of chemical composition of processed tea samples under different processing technologies were also profiled. Since the identification of critical or marker metabolites is a complicated task, we also discussed the procedure of metabolite identification to clarify the importance of omics data analysis. The present review provides a workflow diagram for tea metabolomics research and also the perspectives of related studies in the future.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Daniel Granato
- Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
9
|
Wen L, Sun L, Chen R, Li Q, Lai X, Cao J, Lai Z, Zhang Z, Li Q, Song G, Sun S, Cao F. Metabolome and Microbiome Analysis to Study the Flavor of Summer Black Tea Improved by Stuck Fermentation. Foods 2023; 12:3414. [PMID: 37761123 PMCID: PMC10527649 DOI: 10.3390/foods12183414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Tea is the most popular and widely consumed beverage worldwide, especially black tea. Summer tea has a bitter and astringent taste and low aroma compared to spring tea due to the higher content of polyphenols and lower content of amino acids. Microbial fermentation is routinely used to improve the flavor of various foods. This study analyzed the relationship between the quality of black tea, metabolic characteristics, and microbial communities after microbial stuck fermentation in summer black tea. Stuck fermentation decreased the bitterness, astringency sourness, and freshness, and increased the sweetness, mellowness, and smoothness of summer black tea. The aroma also changed from sweet and floral to fungal, with a significant improvement in overall quality. Metabolomics analysis revealed significant changes in 551 non-volatile and 345 volatile metabolites after fermentation. The contents of compounds with bitter and astringent taste were decreased. Sweet flavor saccharides and aromatic lipids, and acetophenone and isophorone that impart fungal aroma showed a marked increase. These changes are the result of microbial activities, especially the secretion of extracellular enzymes. Aspergillus, Pullululanibacillus, and Bacillus contribute to the reduction of bitterness and astringency in summer black teas after stuck fermentation, and Paenibacillus and Basidiomycota_gen_Incertae_sedis contribute positively to sweetness. In addition, Aspergillus was associated with the formation of fungal aroma. In summary, our research will provide a suitable method for the improvement of tea quality and utilization of summer tea, as well as provide a reference for innovation and improvement in the food industry.
Collapse
Affiliation(s)
- Lianghua Wen
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China;
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China;
| | - Guang Song
- Guangzhou Yitang Biotechnology Co., Ltd., Guangzhou 510277, China;
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Fanrong Cao
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China;
| |
Collapse
|
10
|
Zeng Z, Jin S, Xiang X, Yuan H, Jin Y, Shi Q, Zhang Y, Yang M, Zhang L, Huang R, Song C. Dynamical changes of tea metabolites fermented by Aspergillus cristatus, Aspergillus neoniger and mixed fungi: A temporal clustering strategy for untargeted metabolomics. Food Res Int 2023; 170:112992. [PMID: 37316065 DOI: 10.1016/j.foodres.2023.112992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
Dark tea fermentation involves various fungi, but studies focusing on the mixed fermentation in tea remain limited. This study investigated the influences of single and mixed fermentation on the dynamical alterations of tea metabolites. The differential metabolites between unfermented and fermented teas were determined using untargeted metabolomics. Dynamical changes in metabolites were explored by temporal clustering analysis. Results indicated that Aspergillus cristatus (AC) at 15 days, Aspergillus neoniger (AN) at 15 days, and mixed fungi (MF) at 15 days had respectively 68, 128 and 135 differential metabolites, compared with unfermentation (UF) at 15 days. Most of metabolites in the AN or MF group showed a down-regulated trend in cluster 1 and 2, whereas most of metabolites in the AC group showed an up-regulated trend in cluster 3 to 6. The three key metabolic pathways mainly composed of flavonoids and lipids included flavone and flavonol biosynthesis, glycerophospholipid metabolism and flavonoid biosynthesis. Based on the dynamical changes and metabolic pathways of the differential metabolites, AN showed a predominant status in MF compared with AC. Together, this study will advance the understanding of dynamic changes in tea fermentation and provide valuable insights into the processing and quality control of dark tea.
Collapse
Affiliation(s)
- Zhaoxiang Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Shuna Jin
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Xingliang Xiang
- School of Life Sciences, Hainan University, 58 Renmin Avenue, Meilan District, 570228 Haikou, Hainan, China
| | - Hao Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Yuehui Jin
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Qingxin Shi
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Yanmei Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Min Yang
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Lijun Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Rongzeng Huang
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China.
| | - Chengwu Song
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China.
| |
Collapse
|
11
|
Fang X, Liu Y, Xiao J, Ma C, Huang Y. GC-MS and LC-MS/MS metabolomics revealed dynamic changes of volatile and non-volatile compounds during withering process of black tea. Food Chem 2023; 410:135396. [PMID: 36634561 DOI: 10.1016/j.foodchem.2023.135396] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
High-performance liquid chromatography (HPLC), headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and ultra-high performance liquid chromatography-Q-Exactive HF-X mass spectrometer (UHPLC-Q-Exactive HF/MS) were carried out to reveal dynamic changes of volatile and non-volatile compounds during the withering process of black tea. A total of 118 volatile organic compounds (VOCs) and 648 metabolites were identified in fresh and withered tea-leaves, respectively. Among them, 47 VOCs (OAV > 1.0) for the aroma formation, and 46 characteristic metabolites (VIP > 1.50, p < 0.01) selected through orthonormal partial least squares-discriminant analysis, indicated the withering contribution during black tea processing. Overall, the withering promoted alcohols, aldehydes, phenols, heterocyclic oxygen, hydrocarbons and halogenated hydrocarbons through relevant hydrolyzation, decomposition, terpene synthesis, and O-methylation. The hydrolyzation, O-methylation, condensation and N-acylation of kaempferol glycosides, quercetin glycosides, ester catechins, and gallic acid generated the accumulation of methoxyl flavonoids and flavonoid glucosides, dihydrokaempferol, syringic acid, theaflavins, and N-acylated amino acids, respectively.
Collapse
Affiliation(s)
- Xin Fang
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430064, China
| | - Yanan Liu
- Zhejiang Minghuang Natural Products Development Co., Ltd, Hangzhou, Zhejiang 310000, China
| | - Jingyi Xiao
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430064, China
| | - Cunqiang Ma
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430064, China
| | - Youyi Huang
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430064, China.
| |
Collapse
|
12
|
Ma C, Zhou B, Wang J, Ma B, Lv X, Chen X, Li X. Investigation and dynamic changes of phenolic compounds during a new-type fermentation for ripened Pu-erh tea processing. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Hou Y, Mao H, Lu F, Ma C, Zhu S, Li G, Huang S, Zhang Y, Lv C, Xiao R. Widely targeted metabolomics and HPLC analysis elaborated the quality formation of Yunnan pickled tea during the whole process at an industrial scale. Food Chem 2023; 422:135716. [PMID: 37156017 DOI: 10.1016/j.foodchem.2023.135716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Yunnan pickled tea is produced from fresh tea-leaves through fixation, rolling, anaerobic fermentation and sun-drying. In this study, widely targeted metabolomics using UHPLC-QQQ-MS/MS and HPLC analysis were carried out to elaborate its quality formation during the whole process. Results confirmed the contribution of preliminary treatments and anaerobic fermentation to the quality formation. A total of 568 differential metabolites (VIP > 1.0, P < 0.05, FC > 1.50 or < 0.67) were screened through OPLS-DA. (-)-Epigallocatechin and (-)-epicatechin significantly (P < 0.05) increased from the hydrolyzation of ester catechins, such as (-)-epigallocatechin gallate and (-)-epicatechin gallate in anaerobic fermentation. Additionally, the anaerobic fermentation promoted vast accumulations of seven essential amino acids, four phenolic acids, three flavones and flavone glycosides, pelargonidin and pelargonidin glycosides, flavonoids and flavonoid glycosides (i.e. kaempferol, quercetin, taxifolin, apigenin, myricetin, luteolin and their glycosides) through relevant N-methylation, O-methylation, hydrolyzation, glycosylation and oxidation.
Collapse
Affiliation(s)
- Yan Hou
- College of Tea, Yunnan Agriculture University, Kunming 650201, Yunnan, China; College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China.
| | - Honglin Mao
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China
| | - Fengmei Lu
- Yunnan Defeng Tea Co., Ltd, Mangshi 678400, Yunnan, China
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shaoxian Zhu
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China
| | - Guoyou Li
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China
| | - Siqi Huang
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China
| | - Yi Zhang
- Yunnan Defeng Tea Co., Ltd, Mangshi 678400, Yunnan, China
| | - Caiyou Lv
- College of Tea, Yunnan Agriculture University, Kunming 650201, Yunnan, China.
| | - Rong Xiao
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China.
| |
Collapse
|
14
|
Du J, Wu X, Sun S, Qin Y, Liao K, Liu X, Qiu R, Long Z, Zhang L. Study on inoculation fermentation by fungi to improve the taste quality of summer green tea. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Li T, Zhang Y, Jia H, Zhang J, Wei Y, Deng WW, Ning J. Effects of Microbial Action and Moist-Heat Action on the Nonvolatile Components of Pu-Erh Tea, as Revealed by Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15602-15613. [PMID: 36441948 DOI: 10.1021/acs.jafc.2c05925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbial action and moist-heat action are crucial factors that influence the piling fermentation (PF) of Pu-erh tea. However, their effects on the quality of Pu-erh tea remain unclear. In this study, the effects of spontaneous PF (SPPF) and sterile PF (STPF) on the chemical profile of Pu-erh tea were investigated for the first time, and sun-dried green tea was used as a raw material to determine the factors contributing to the unique quality of Pu-erh tea. The results indicated that the SPPF-processed samples had a stale and mellow taste, whereas the STPF-processed samples had a sweet and mellow taste. Through metabolomics-based analysis, 21 potential markers of microbial action (including kaempferol, quercetin, and dulcitol) and 10 potential markers of moist-heat action (including ellagic acid, β-glucogallin, and ascorbic acid) were screened among 186 differential metabolites. Correlation analysis with taste revealed that metabolites upregulated by moist-heat and microbial action were the main factors contributing to the staler mellow taste of the SPPF-processed samples and the sweeter mellow taste of the STPF-processed samples. Kaempferol, quercetin, and ellagic acid were the main active substances formed under microbial action. This study provides new knowledge regarding the quality formation mechanism of Pu-erh tea.
Collapse
Affiliation(s)
- Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, Anhui, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, China
| | - Yiyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, Anhui, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, China
| | - Huiyan Jia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, Anhui, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, Anhui, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, Anhui, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, Anhui, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, Anhui, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, China
| |
Collapse
|
16
|
Geographical origin identification of Chinese white teas, and their differences in tastes, chemical compositions and antioxidant activities among three production regions. Food Chem X 2022; 16:100504. [DOI: 10.1016/j.fochx.2022.100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
|
17
|
Hu T, Shi S, Ma Q. Modulation effects of microorganisms on tea in fermentation. Front Nutr 2022; 9:931790. [PMID: 35983492 PMCID: PMC9378870 DOI: 10.3389/fnut.2022.931790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Tea is a popular traditional drink and has been reported to exhibit various health-promoting effects because of its abundance of polyphenols. Among all the tea products, fermented tea accounts for the majority of tea consumption worldwide. Microbiota plays an important role in the fermentation of tea, which involves a series of reactions that modify the chemical constituents and thereby affect the flavor and bioactivities of tea. In the present review, the microorganisms involved in fermented tea and tea extracts in the recent studies were summarized and the modulation effects of microorganisms on tea in fermentation, including polyphenols composition and content, biological activities and sensory characteristics, were also critically reviewed. It is expected that the data summarized could provide some references for the development of microbial fermented tea drinks with specific nutrition and health benefits.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Shuoshuo Shi
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Qin Ma
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
18
|
Du Y, Yang C, Ren D, Shao H, Zhao Y, Yang X. Fu brick tea alleviates alcoholic liver injury by modulating the gut microbiota-liver axis and inhibiting the hepatic TLR4/NF-κB signaling pathway. Food Funct 2022; 13:9391-9406. [PMID: 35959866 DOI: 10.1039/d2fo01547a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study first evaluated the protective effects of Fu brick tea water extracts (FTE) on alcoholic liver injury and its underlying mechanism in C57BL/6J mice. Oral administration of FTE by oral gavage (400 mg per kg bw) for 12 weeks significantly alleviated lipid metabolism disorder, reduced the activities of serum ALT and AST, decreased the expression of the liver CYP2E1 gene, and enhanced the antioxidant capacities of the livers in alcohol-fed mice (p < 0.05). FTE also relieved alcohol-induced gut microbiota dysbiosis by promoting the proliferation of probiotics such as Muribaculaceae and Lactobacillus, and subsequently increased the cecal levels of short-chain fatty acids (SCFAs) and decreased the tryptophan content of alcohol-fed mice (p < 0.05). Importantly, FTE was found to improve the alcohol-impaired gut barrier function by up-regulating the expression of the epithelial tight junction protein. Accordingly, FTE decreased the circulating lipopolysaccharide (LPS) and thus inhibited the hepatic TLR4/NF-κB signaling pathway to ameliorate alcoholic liver injury. Cumulatively, these findings shed light on the important role of the gut microbiota-liver axis behind the protective efficacy of FTE on alcoholic liver injury.
Collapse
Affiliation(s)
- Yao Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Chengcheng Yang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
19
|
Impact of harvest season on bioactive compounds, amino acids and in vitro antioxidant capacity of white tea through multivariate statistical analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Zhou B, Ma B, Xu C, Wang J, Wang Z, Huang Y, Ma C. Impact of enzymatic fermentation on taste, chemical compositions and in vitro antioxidant activities in Chinese teas using E-tongue, HPLC and amino acid analyzer. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Excitation-emission matrix fluorescence spectroscopy coupled with chemometric methods for characterization and authentication of Anhua brick tea. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Yang G, Zhou D, Wan R, Wang C, Xie J, Ma C, Li Y. HPLC and high-throughput sequencing revealed higher tea-leaves quality, soil fertility and microbial community diversity in ancient tea plantations: compared with modern tea plantations. BMC PLANT BIOLOGY 2022; 22:239. [PMID: 35550027 PMCID: PMC9097118 DOI: 10.1186/s12870-022-03633-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ancient tea plantations with an age over 100 years still reserved at Mengku Town in Lincang Region of Yunan Province, China. However, the characteristic of soil chemicophysical properties and microbial ecosystem in the ancient tea plantations and their correlation with tea-leaves chemical components remained unclear. Tea-leaves chemical components including free amino acids, phenolic compounds and purine alkaloids collected from modern and ancient tea plantations in five geographic sites (i.e. Bingdao, Baqishan, Banuo, Dongguo and Jiulong) were determined by high performance liquid chromatography (HPLC), while their soil microbial community structure was analyzed by high-throughput sequencing, respectively. Additionally, soil microbial quantity and chemicophysical properties including pH, cation exchange capacity (CEC), soil organic matter (SOM), soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali-hydrolyzable nitrogen (AN), available phosphorous (AP) and available potassium (AK) were determined in modern and ancient tea plantations. RESULTS Tea-leaves chemical components, soil chemicophysical properties and microbial community structures including bacterial and fungal community abundance and diversity evaluated by Chao 1 and Shannon varied with geographic location and tea plantation type. Ancient tea plantations were observed to possess significantly (P < 0.05) higher free amino acids, gallic acid, caffeine and epigallocatechin (EGC) in tea-leaves, as well as soil fertility. The bacterial community structure kept stable, while fungal community abundance and diversity significantly (P < 0.05) increased in ancient tea plantation because of higher soil fertility and lower pH. The long-term plantation in natural cultivation way might significantly (P < 0.05) improve the abundances of Nitrospirota, Methylomirabilota, Ascomycota and Mortierellomycota phyla. CONCLUSIONS Due to the natural cultivation way, the ancient tea plantations still maintained relatively higher soil fertility and soil microbial ecosystem, which contributed to the sustainable development of tea-leaves with higher quality.
Collapse
Affiliation(s)
- Guangrong Yang
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Dapeng Zhou
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Renyuan Wan
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Conglian Wang
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jin Xie
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Cunqiang Ma
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Yongmei Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
23
|
Cai H, Zhong Z, Li Z, Zhang X, Fu H, Yang B, Zhang L. Metabolomics in quality formation and characterisation of tea products: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongli Cai
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhanming Li
- School of Grain Science and Technology Jiangsu University of Science and Technology Zhenjiang 212004 China
| | - Xiaojing Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Hongwei Fu
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Bingxian Yang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Lin Zhang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| |
Collapse
|
24
|
Wang S, Qiu Y, Gan RY, Zhu F. Chemical constituents and biological properties of Pu-erh tea. Food Res Int 2022; 154:110899. [DOI: 10.1016/j.foodres.2021.110899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
|
25
|
Interrelation analysis between phenolic compounds and in vitro antioxidant activities in Pu-erh tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113117] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Wang D, Shi L, Fan X, Lou H, Li W, Li Y, Ren D, Yi L. Development and validation of an efficient HILIC-QQQ-MS/MS method for quantitative and comparative profiling of 45 hydrophilic compounds in four types of tea (Camellia sentences). Food Chem 2022; 371:131201. [PMID: 34598116 DOI: 10.1016/j.foodchem.2021.131201] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
Hydrophilic constituents are significant for the taste and nutrition of tea, but their simultaneous quantification remains challenging due to the lack of efficient methods. Based on the hydrophilic interaction chromatography coupled with triple quadrupole-tandem mass spectrometry, this work developed and validated an efficient (8.5 min per run), sensitive (LOQ: 0.002-0.493 μg/mL) and accurate method. This method was successfully used to determine the contents of 45 hydrophilic constituents in Yunnan large-leaf tea. Umami amino acids and umami-enhanced nucleotides generally exhibited higher content in green tea and Pu-erh raw tea. By contrast, a few number of amino acids (e.g., proline and γ-aminobutyric acid) and most alkaloids and nucleosides showed significantly higher contents in black tea or Pu-erh ripen tea. By performing the orthogonal partial least squares discriminant analysis, classification models for distinguishing four types of tea, and green tea from Pu-erh raw tea were established.
Collapse
Affiliation(s)
- Dan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Lijuan Shi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Xiaowei Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Huaqiao Lou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Wenting Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Yonglin Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
27
|
Zhou B, Wang Z, Yin P, Ma B, Ma C, Xu C, Wang J, Wang Z, Yin D, Xia T. Impact of prolonged withering on phenolic compounds and antioxidant capability in white tea using LC-MS-based metabolomics and HPLC analysis: Comparison with green tea. Food Chem 2022; 368:130855. [PMID: 34496334 DOI: 10.1016/j.foodchem.2021.130855] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022]
Abstract
Contents of 20 bioactive compounds in 12 teas produced in Xinyang Region were determined by high performance liquid chromatography. Ultra-high performance liquid chromatography-quadrupole time of flight-mass spectrometry was developed for untargeted metabolomics analysis. Antioxidant activities were measured by 4 various assays. Those teas could be completely divided into green and white tea through principal component analysis, hierarchical cluster analysis and orthonormal partial least squares-discriminant analysis (R2Y = 0.996 and Q2 = 0.982, respectively). The prolonged withering generated 472 differentiated metabolites between white and green tea, prompted significant decreases (variable importance in the projection > 1.0, p-value < 0.05 and fold change > 1.50) of most catechins and 8 phenolic acids to form 4 theaflavins, and benefited for the accumulation of 17 flavonoids and flavonoid glycosides, 8 flavanone and their derivatives, 20 free amino acids, 12 sugars and 1 purine alkaloid. Additionally, kaempferol and taxifolin contributed to 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability of white tea.
Collapse
Affiliation(s)
- Binxing Zhou
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Zihao Wang
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Tea College, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China
| | - Peng Yin
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Tea College, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China; Key Laboratory of Tea Science of Education of Ministry, College of Horticulture, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Bingsong Ma
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Cunqiang Ma
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Chengcheng Xu
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiacai Wang
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ziyu Wang
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dingfang Yin
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
28
|
Tong Y, Lv Y, Yu S, Lyu Y, Zhang L, Zhou J. Improving (2S)-naringenin production by exploring native precursor pathways and screening higher-active chalcone synthases from plants rich in flavonoids. Enzyme Microb Technol 2022; 156:109991. [DOI: 10.1016/j.enzmictec.2022.109991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/06/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023]
|
29
|
Zhou B, Ma B, Ma C, Xu C, Wang J, Wang Z, Yin D, Xia T. Classification of Pu-erh ripened teas and their differences in chemical constituents and antioxidant capacity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Du Y, Yang W, Yang C, Yang X. A comprehensive review on microbiome, aromas and flavors, chemical composition, nutrition and future prospects of Fuzhuan brick tea. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Xiao Y, Liu H, Li H, Liu Q, Lu Q, Varshney RK, Chen X, Hong Y. Widely targeted metabolomics characterizes the dynamic changes of chemical profile in postharvest peanut sprouts grown under the dark and light conditions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Gao Y, Hou L, Gao J, Li D, Tian Z, Fan B, Wang F, Li S. Metabolomics Approaches for the Comprehensive Evaluation of Fermented Foods: A Review. Foods 2021; 10:2294. [PMID: 34681343 PMCID: PMC8534989 DOI: 10.3390/foods10102294] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Fermentation is an important process that can provide new flavors and nutritional and functional foods, to deal with changing consumer preferences. Fermented foods have complex chemical components that can modulate unique qualitative properties. Consequently, monitoring the small molecular metabolites in fermented food is critical to clarify its qualitative properties and help deliver personalized nutrition. In recent years, the application of metabolomics to nutrition research of fermented foods has expanded. In this review, we examine the application of metabolomics technologies in food, with a primary focus on the different analytical approaches suitable for food metabolomics and discuss the advantages and disadvantages of these approaches. In addition, we summarize emerging studies applying metabolomics in the comprehensive analysis of the flavor, nutrition, function, and safety of fermented foods, as well as emphasize the applicability of metabolomics in characterizing the qualitative properties of fermented foods.
Collapse
Affiliation(s)
- Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Lizhen Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Jie Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Danfeng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Zhiliang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| |
Collapse
|