1
|
Yin Y, Liu W, Li L, Cao W, Chen J, Zhao L, Sun X, Duan X, Ren G. Microwave freeze-drying characteristics and crosslinking behavior of wheat starch-laurel acid complex. Int J Biol Macromol 2024; 279:135235. [PMID: 39222784 DOI: 10.1016/j.ijbiomac.2024.135235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
This article investigates the effect of different microwave powers on the crosslinking behavior and microwave freeze-drying characteristics of wheat starch-lauroyl arginate complex during the microwave freeze-drying process. During microwave freeze-drying, as microwave power increased from 0.1 W/g to 0.9 W/g, the freeze-drying time of WS-LA was reduced by 50 %, while the uniformity of freeze-drying was not affected by its composition. In the research results obtained from DSC, Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), XRD, and SEM analyses, with the microwave power increased from 0.1 W/g to 0.9 W/g, the enthalpy value of the melting peak of the WS-LA (wheat starch-lauric acid) composite decreased from 1.15 J/g to 0.62 J/g. The full width at half maximum (FWHM) value increased from 25.6 to 30.79. The ratio of absorbance at 1022/995 cm-1 increased from 1.0111 to 1.0707. The recrystallization (RC) value decreased from 8.77 % to 0.07 %. Additionally, in the microstructure, the size of WS-LA composite particles decreased accordingly. The above findings indicated that the increase in microwave power during microwave freeze-drying had a negative impact on the formation of the WS-LA complex and the ordering of its structure in the sample.
Collapse
Affiliation(s)
- Yize Yin
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China
| | - Wenchao Liu
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China; Postdoctoral practice innovation base, Luohe Vocational Technology College, 462002 Luohe, China; Henan Nanjiecun (Group) Co., Ltd., 462600 Linying, China.
| | - Linlin Li
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China
| | - Weiwei Cao
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China
| | - Linlin Zhao
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Xiaofei Sun
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China
| | - Xu Duan
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, 471000 Luoyang, China.
| |
Collapse
|
2
|
Liu YS, Shi P, Javed HU, Ren MH, Fu Z. Cross-linking Arenga pinnata starch and chitosan by citric acid: Structure and properties. Int J Biol Macromol 2024; 280:136098. [PMID: 39343268 DOI: 10.1016/j.ijbiomac.2024.136098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
In order to improve the processing and digestibility of the Arenga pinnata (Wurmb.) Merr. starch (APS), low concentration citric acid (CA) and chitosan (CS) were used for dual modification. The purpose of this study was to prepare APS and CS complexes with CA, the complexes (CA-CS-APS) physicochemical properties were investigated. The short-range ordered structure (DO), double helix structure (DO) and relative crystallinity (RC) were decreased; CA-CS resulted in the surface roughness of APS, but the particle integrity was preserved; the particle size of CA-CS-APS was increased. Compared with APS, the peak viscosity of CA-CS-APS was decreased from 2534 cP to 27 cP; CA-CS reduced the swelling power of APS, CA3%-CS-APS decreased from 19.00 g/g to 8.17 g/g. The gelatinization enthalpy was decreased after CA-CS modification from 3.25 J/g to 0.55 J/g. CA-CS-APS exhibits higher storage modulus and loss modulus (2067 Pa and 80 Pa). CA-CS significantly improved the anti-digestibility of APS, and the resistant starch (RS) content was increased from 32 % to 39 %. This study provided a simple and effective way to prepare modified starch, which had the potential as food additives or used as a base material for film preparation.
Collapse
Affiliation(s)
- Yuan-Sen Liu
- Institute of Light Industry and Food Engineering, Guangxi University, 530004 Nanning, China; College of Food Engineering, Guangxi College and University Key Laboratory of High-value Utilization of Seafood and Prepared Food in Beibu Gulf, Beibu Gulf University, 535011 Qinzhou, China
| | - Ping Shi
- Institute of Light Industry and Food Engineering, Guangxi University, 530004 Nanning, China; College of Food Engineering, Guangxi College and University Key Laboratory of High-value Utilization of Seafood and Prepared Food in Beibu Gulf, Beibu Gulf University, 535011 Qinzhou, China
| | - Hafiz Umer Javed
- College of Food Engineering, Guangxi College and University Key Laboratory of High-value Utilization of Seafood and Prepared Food in Beibu Gulf, Beibu Gulf University, 535011 Qinzhou, China
| | - Min-Hong Ren
- Guangxi Vocational & Technical Institute of Industry, Nanning 530001, China
| | - Zhen Fu
- Institute of Light Industry and Food Engineering, Guangxi University, 530004 Nanning, China.
| |
Collapse
|
3
|
Liu Y, Yuan C, Cui B, Zhao M, Yu B, Guo L, Liu P, Fang Y. Encapsulation of apigenin into β-cyclodextrin metal-organic frameworks with high embedment efficiency and stability. Food Chem 2024; 443:138543. [PMID: 38301553 DOI: 10.1016/j.foodchem.2024.138543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
In an effort to improve the application performance of apigenin, β-cyclodextrin metal-organic frameworks (BCDMOFs) known as porous materials were used to encapsulate apigenin via an innovative pH-adjusted method. The embedment efficiency had a significant positive pH dependence, reaching a maximum of 79.2 % ± 1.2 % at pH12. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis demonstrated formation of apigenin/BCDMOFs composites, and exposure of BCDMOFs pores facilitated high embedment efficiency. Storage stability experiment and kinetic analysis showed degradation of apigenin/BCDMOFs composites was less than that of apigenin alone. Apigenin stability was increased by approximately 18 % after 7 days. BCDMOFs effectively encapsulated and controlled the release of apigenin, and the composites exhibited improved application performance in vitro.
Collapse
Affiliation(s)
- Yaqi Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
4
|
Haixia Z, Xijuan Y, Yongxin S, Guochao G, Qiao W, Li C, Zhiguang C. Analysis of the relationship between starch molecular conformation and enzymatic hydrolysis efficiency. Int J Biol Macromol 2024; 271:132570. [PMID: 38782316 DOI: 10.1016/j.ijbiomac.2024.132570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Resistant starch (RS) is important in controlling diabetes. The primary objective of this study is to examine the impact of molecular conformation on the enzymatic hydrolysis efficiency of starch by α-amylase. And the interactions between starch molecules with different conformations and α-amylase were analysed by using molecule dynamics simulation and molecular docking. It was found, the natural conformational starch molecule was hydrolysed from the middle of the starch chain by α-amylase, producing polysaccharides. The bent PS-conformational starch molecules with multiple O2-O3 intramolecular hydrogen bonds produced by high-pressure was hydrolysed from the head of the starch chain to produce glucose, which is not conducive to RS formation. The stretched H-conformation without intramolecular hydrogen bonds produced by heat treatment was not hydrolysed by α-amylase. However, it occupied the active groove and formed strong interactions with α-amylase, which prevented other starch molecules from binding to α-amylase, thus reducing hydrolysis efficiency. Moreover, the total interaction energies between the three starch molecules and α-amylase were approximately 78 kJ/mol. And several hydrogen bonds were formed between the starch molecules and α-amylase, which provides evidence for the continuous sliding hydrolysis hypothesis of α-amylase. Moreover, these results provide an important reference for elucidating the mechanism of RS formation.
Collapse
Affiliation(s)
- Zhong Haixia
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province 615000, China; Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai Province 810016, China
| | - Yang Xijuan
- Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai Province 810016, China
| | - She Yongxin
- Institute of Quality Standard and Testing Technology for Agro-products of CAAS, Beijing 100080, China
| | - Gan Guochao
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province 615000, China
| | - Wen Qiao
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province 615000, China
| | - Chen Li
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province 615000, China
| | - Chen Zhiguang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province 615000, China.
| |
Collapse
|
5
|
Li J, Deng F, Han P, Ding Y, Cao J. Preparation of Resistant Starch Types III + V with Moderate Amylopullulanase and Its Effects on Bread Properties. Foods 2024; 13:1251. [PMID: 38672923 PMCID: PMC11049056 DOI: 10.3390/foods13081251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The potential of PulY103A (a moderate amylopullulanase originating from Bacillus megaterium) for resistant starch production under moderate conditions (40 °C; a pH of 6.5) was investigated. PulY103A was much more suitable for pea resistant starch production with a high growth rate of 3.63. The pea resistant starch (PSpa) produced with PulY103A had lower levels of swelling power and solubility and a better level of thermostability than native pea starch (PSn) and autoclaved PS (PSa). The starch crystallinity pattern was B + V, which indicated that the PSpa belonged to RS types III + V. In addition, PSpa was used for breadmaking. The results showed that the bread quality was not significantly influenced compared to the control group when the content of PSpa was under 10% (p > 0.05). The bread supplemented with 10% PSpa had a significantly increased TDF content compared to that of the control (p < 0.05). Moreover, the in vitro mineral bioavailability of the bread sample was influenced gently compared to other dietary fibers, and the bread sample changed from a high-glycemic-index (GI) food to a medium-GI food corresponding to white bread at the same concentration of PSpa. These results indicated that PSpa is a good candidate for the production of dietary foods.
Collapse
Affiliation(s)
| | | | - Peng Han
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.L.); (F.D.); (Y.D.); (J.C.)
| | | | | |
Collapse
|
6
|
de Oliveira Maior L, Bach D, Demiate IM, Lacerda LG. Impact of cyclic and continuous dry heat modification on the structural, thermal, technological, and in vitro digestibility properties of potato starch (Solanum tuberosum L.): A comparative study. Int J Biol Macromol 2024; 263:130370. [PMID: 38403222 DOI: 10.1016/j.ijbiomac.2024.130370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Dry heat treatment (DHT) has been demonstrated as a viable method for starch modification, offering benefits due to its environmentally friendly process and low operational costs. This research modified potato starch using different DHT conditions (continuous-CDHT and cyclic-RDHT), with durations ranging from 3 to 15 h and 1 to 5 cycles, at 120 °C. The study investigated and compared the structural, thermal, pasting, and morphological properties of the treated samples to those of untreated potato starch, including in vitro digestibility post-modification. DHT altered the amylose content of the biopolymer. X-ray diffraction patterns transitioned from type B to type C, and a decrease in relative crystallinity (RC%) was observed. Morphological changes were more pronounced in starches modified by RDHT. Paste viscosities of both CDHT and RDHT-treated starches decreased significantly, by 61.7 % and 58.1 % respectively, compared to native starch. The gelatinization enthalpy of RDHT-treated starches reduced notably, from 17.60 to 16.10 J g-1. Additionally, starch digestibility was impacted, with cyclic treatments yielding a significant increase in resistant starch content, notably an 18.26 % rise. These findings underscore the efficacy of dry heat in enhancing the functional properties of potato starch.
Collapse
Affiliation(s)
- Luane de Oliveira Maior
- Food Science and Technology Graduate Program, State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti 4748, Uvaranas Campus, Ponta Grossa, PR 84030-900, Brazil
| | - Daniele Bach
- Food Science and Technology Graduate Program, State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti 4748, Uvaranas Campus, Ponta Grossa, PR 84030-900, Brazil
| | - Ivo Mottin Demiate
- Food Science and Technology Graduate Program, State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti 4748, Uvaranas Campus, Ponta Grossa, PR 84030-900, Brazil
| | - Luiz Gustavo Lacerda
- Food Science and Technology Graduate Program, State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti 4748, Uvaranas Campus, Ponta Grossa, PR 84030-900, Brazil.
| |
Collapse
|
7
|
Liu Q, Guan H, Guo Y, Wang D, Yang Y, Ji H, Jiao A, Jin Z. Structure and in vitro digestibility of amylose-lipid complexes formed by an extrusion-debranching-complexing strategy. Food Chem 2024; 437:137950. [PMID: 37952395 DOI: 10.1016/j.foodchem.2023.137950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The formation of amylose-lipid complexes, known as resistant starch type Ⅴ (RS5), is limited by the low content of amylose in natural starch, increasing the amylose content is an effective approach to improve the yield of RS5. In this paper, an extrusion-debranching-complexing strategy with two extrusions was proposed to increase the formation of amylose-lipid complexes. A combination of corn starch (CS), pullulanase (60 U/g, w/w), and lauric acid (LA) with different contents of 4 %, 6 % and 8 % (w/w) generated enzymatically debranched extruded corn starch-lauric acid (EECS-LA) complexes after the second extrusion. The EECS-LA complexes were ordered form II complexes, with a significantly improved short-range molecular order. The melting temperature was in the range of 105-145℃. The enthalpy change increased with the increase of LA content and the value was 9.42 J/g for EECS-8 %LA complexes; these complexes could reform after dissociation. Scanning electron microscopy examination of the EECS-LA complexes revealed an irregular lamellar structure. The RS content of EECS-LA complexes increased significantly, achieving a value of 38.34 % for EECS-8 %LA complexes. This extrusion-debranching-complexing strategy is effective for preparing RS5 and could be useful in industry for the continuous production of RS5.
Collapse
Affiliation(s)
- Qing Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Huanan Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
8
|
Guo J, Hang A, Qu Y, Li X, Zhang L, Wang M, Li S, He X, Zhang L, Hao L. Fabrication and release property of self-assembled garlic essential oil-amylose inclusion complex by pre-gelatinization coupling with high-speed shear. Int J Biol Macromol 2024; 254:127822. [PMID: 37926302 DOI: 10.1016/j.ijbiomac.2023.127822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/23/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Our aim was to investigate the preparation of self-assembled garlic essential oil-amylose inclusion complexes (SGAs) using garlic essential oil (GEO) and corn starch (CS), and evaluated their release properties. SGAs were fabricated by pre-gelatinization coupling with high-speed shear at different GEO-CS mass ratios. When the mass ratio of GEO to pre-gelatinized corn starch was set at 15 % (SGA-15 %), with a fixed shear rate of 9000 rpm and a shear time of 30 min, the allicin content was 0.573 ± 0.023 mg/g. X-ray diffraction (XRD) results revealed a starch V-type crystalline structure in SGAs with peaks at 13.0°, 18.0°, and 20.0° (2θ). Fourier Transform Infrared (FTIR) spectra of SGAs displayed a shift in the characteristic peak of diallyl trisulfide from 987.51 cm-1 to 991.45 cm-1. Scanning electron microscope (SEM) images revealed that SGAs exhibited lamellar structures covered with small granules. SGAs exhibited higher residual mass (approximately 12 %) than other samples. The resistant starch content of SGAs increased from 10.1 % to 18.4 % as GEO contents varied from 5 % to 15 %. In vitro digestion tests showed that about 53.21 % of allicin remained in SGA-15 % after 8 h. Therefore, this dual treatment can be a new method for fabricating controlled-release inclusion complexes of guest molecules.
Collapse
Affiliation(s)
- Jinbiao Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Anan Hang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yinghui Qu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xinyu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Zhang
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing 100010, PR China
| | - Mengjiao Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shumin Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xihong He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Liming Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing 100010, PR China.
| |
Collapse
|
9
|
Du Y, Chu J, Wang R, Zhang C, Zhang J, Zhi K. Efficient encapsulation of fat-soluble food-derived biofunctional substances (curcumin as an example) in dual-modified starch-based nanoparticles containing large conjugated systems. Int J Biol Macromol 2023; 242:125078. [PMID: 37230443 DOI: 10.1016/j.ijbiomac.2023.125078] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Acid-ethanol hydrolysis and subsequent cinnamic acid (CA) esterification were employed to prepare a series of dual-modified starches efficiently loaded with curcumin (Cur) utilizing large conjugation systems provided by CA. Structures of the dual-modified starches were confirmed by IR and NMR, and their physicochemical properties were characterized by SEM, XRD and TGA. The nanoparticles fabricated from the dual-modified starch have perfect spherical shape (250.7-448.5 nm, polydispersity index <0.3), excellent biosafety (no hematotoxicity, no cytotoxicity, no mutagenicity) and high loading of Cur (up to 26.7 % loading). By XPS analysis, this high loading is believed to be supported by the synergistic effect of hydrogen bonding (provided by hydroxyl groups) and π-π interactions (provided by large conjugation system). In addition, the encapsulation of dual-modified starch nanoparticles effectively enhanced the water solubility (18-fold) and physical stability (6-8-fold) of free Cur. In vitro gastrointestinal release showed that Cur-encapsulated dual-modified starch nanoparticles were released more preferably than free Cur and that the Korsmeyer-Peppas model was the most suitable release model. These studies suggest that dual-modified starches containing large conjugation systems would be a better alternative for encapsulating fat-soluble food-derived biofunctional substances in functional food and pharmaceutical applications.
Collapse
Affiliation(s)
- Yanjin Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaming Chu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruixia Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Kangkang Zhi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
10
|
Li J, Wang M, Liu G, Wang W, Hu A, Zheng J. Effects of microwave and conventional heating on physicochemical, digestive, and structural properties of debranched quinoa starch-oleic acid complexes with different water addition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2146-2154. [PMID: 36574261 DOI: 10.1002/jsfa.12415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND A starch-lipid complex is a new type of resistant starch, which is of great importance for the prevention of chronic diseases such as diabetes. Most starch-lipid complexes usually need to be treated by heating to make them suitable for a variety of applications, and starch-based foods are generally not edible without a heat-treatment process. However, the digestion and structural properties of the starch-lipid complex will be changed after heating. In this study, microwave and conventional heating were used to treat debranched quinoa starch-oleic acid complexes (DQS-OA) with different water addition conditions, and the effects of the two methods on the physicochemical, digestive, and structural properties of DQS-OA were compared. RESULTS The results of in vitro digestibility showed that the resistant starch content (235.34-269.55 g kg-1 ) of the conventional heating-treated samples was significantly higher than that the microwave-treated samples (141.51-157.99 g kg-1 ). Moreover, after microwave treatment, the short-range molecular order and crystalline structure of DQS-OA were destroyed and the particle size became smaller. In contrast, the thermal stability, enthalpy, and crystallinity of the complexes after conventional heating were improved. The ratio at 1047/1022 cm-1 of complexes has also been increased. CONCLUSION This study demonstrated that conventional water-bath heating was better than microwave heating in increasing digestion resistance, improving the short-range and long-range molecular order, and promoting the formation of DQS-OA. With an increase in water addition, the influence of microwave or water-bath treatment on the properties of DQS-OA became greater. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin, China
| | - Mengting Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin, China
| | - Guangxin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin, China
| | - Wei Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin, China
| | - Aijun Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin, China
| | - Jie Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin, China
| |
Collapse
|
11
|
Liu Q, Wang Y, Yang Y, Yu X, Xu L, Jiao A, Jin Z. Structure, physicochemical properties and in vitro digestibility of extruded starch-lauric acid complexes with different amylose contents. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
A novel starch-based microparticle with polyelectrolyte complexes and its slow digestion mechanism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Effects of water/ionic liquid ratios on the physicochemical properties of high amylose maize starch-lauric acid complex. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Wu X, Jiang Y, Wang X, Fang Y, Lin Q, Ding Y. Structural and in vitro starch digestion properties of starch-fatty acid nanocomplexes: effect of chain lengths and degree of unsaturation of fatty acids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7239-7248. [PMID: 35730731 DOI: 10.1002/jsfa.12089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The structural and digestion properties of starch-lipid complexes are closely related to the properties of lipids. The chain length and degree of unsaturation of fatty acids (FAs), which can affect the structural and digestion properties of starch-lipid nanocomplexes, therefore need to be examined in detail to gain a better understanding of this. In this study, the effects of chain length (10-18 carbons) and degree of unsaturation (0-2) of FA on the structural and in vitro starch digestion properties of high amylose corn starch (HAS)-FA nanocomplexes were investigated, as was the correlation between their structural alterations and digestibility. RESULTS This study showed that HAS-FA nanocomplexes with 10-carbon (38.55%) and 12-carbon (44.56%) FAs displayed high-resistant starch (RS) and slowly digestible starch (SDS) content, whereas those with 18-carbon FAs with two double bonds exhibited low RS + SDS content (23.41%). The complexing index, R1047/1022 , relative crystallinity, and enthalpy change in the HAS-FA nanocomplexes also increased with the reduction in the chain length (except for 10-carbon FA) and the degree of unsaturation of FAs, whereas the equilibrium hydrolysis percentage, kinetic constant and apparent amylose content showed an opposite trend. CONCLUSION Chain length and degree of unsaturation of FAs affected the digestibility of HAS-FA nanocomplexes. The HAS-FA nanocomplexes with 12-carbon FAs displayed high RS + SDS content with higher degrees of molecular order at long-range and short-range levels. Results provided guidelines to regulate the digestibility of starch-fatty acid nanocomplexes by varying the FA structures. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaonian Wu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yuling Jiang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xiaoyan Wang
- Technology Institute of Silk and Mulberry, Chongqing Academy of Animal Sciences, Rongchang, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yongbo Ding
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
15
|
Zhao X, Xing JJ, An NN, Li D, Wang LJ, Wang Y. Succeeded high-temperature acid hydrolysis of granular maize starch by introducing heat-moisture pre-treatment. Int J Biol Macromol 2022; 222:2868-2877. [DOI: 10.1016/j.ijbiomac.2022.10.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/09/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
16
|
Tao H, Guo L, Qin Z, Yu B, Wang Y, Li J, Wang Z, Shao X, Dou G, Cui B. Textural characteristics of mixed gels improved by structural recombination and the formation of hydrogen bonds between curdlan and carrageenan. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Wu F, Chi B, Xu R, Liao H, Xu X, Tan X. Changes in structures and digestibility of amylose-oleic acid complexes following microwave heat-moisture treatment. Int J Biol Macromol 2022; 214:439-445. [PMID: 35752333 DOI: 10.1016/j.ijbiomac.2022.06.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 11/28/2022]
Abstract
Amylose-oleic acid complexes (AOA) were exposed to microwave heat-moisture treatment (M-HMT) with different moisture content (MC), and the variations in structures and digestibility were investigated. M-HMT caused the dissociation of helical structures and destruction of short-range molecular order of AOA. Meanwhile, the molecules of amylose and oleic acid rearranged and more amylose-oleic acid complexes were formed during M-HMT, the complexing index of AOA was increased from 25.41 % to 41.20 % when treating at 35 % MC. Moreover, the relative content of single helix increased with increasing MC, resulting in higher V-type relative crystallinity. With ≥30 % MC, the treated complexes showed greater thermostability than that of original AOA. The treatment increased the enzymatic digestibility of AOA, and sample treated with 35 % MC had the highest resistant starch content of 82.33 %, which was 17.96 % higher than that of native AOA. The improved enzyme resistance should be correlated to increased molecular interplay and formation of amylose-oleic acid complexes.
Collapse
Affiliation(s)
- Fubin Wu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Bo Chi
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Ruyan Xu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, China
| | - Huiyun Liao
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, China.
| | - Xiaoqi Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Tan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
18
|
Li Q, Gao Y, Li Y, Du S, Yu X. Effect of hydrophilic groups in lipids on the characteristics of starch–lipid complexes. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling 712100 Shaanxi China
| | - Yuan Gao
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling 712100 Shaanxi China
| | - Yancai Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling 712100 Shaanxi China
| | - Shuang‐kui Du
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling 712100 Shaanxi China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling 712100 Shaanxi China
| |
Collapse
|
19
|
Kian-Pour N, Akdeniz E, Toker OS. Influence of coating-blanching in starch solutions, on the drying kinetics, transport properties, quality parameters, and microstructure of celery root chips. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Self-assembled and assembled starch V-type complexes for the development of functional foodstuffs: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Song L, Zhou J, Wang C, Meng G, Li Y, Jarin M, Wu Z, Xie X. Airborne pathogenic microorganisms and air cleaning technology development: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127429. [PMID: 34688006 DOI: 10.1016/j.jhazmat.2021.127429] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Transmission of pathogens through air is a critical pathway for the spread of airborne diseases, as airborne pathogenic microorganisms cause several harmful infections. This review summarizes the occurrence, transmission, and adverse impacts of airborne pathogenic microorganisms that spread over large distances via bioaerosols. Air cleaning technologies have demonstrated great potential to prevent and reduce the spread of airborne diseases. The recent advances in air cleaning technologies are summarized on the basis of their advantages, disadvantages, and adverse health effects with regard to the inactivation mechanisms. The application scope and energy consumption of different technologies are compared, and the characteristics of air cleaners in the market are discussed. The development of high-efficiency, low-cost, dynamic air cleaning technology is identified as the leading research direction of air cleaning. Furthermore, future research perspectives are discussed and further development of current air cleaning technologies is proposed.
Collapse
Affiliation(s)
- Lu Song
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, PR China; School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China
| | - Jianfeng Zhou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, GA, USA
| | - Can Wang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, PR China; School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China.
| | - Ge Meng
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, PR China; School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China
| | - Yunfei Li
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, PR China; School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China
| | - Mourin Jarin
- School of Civil and Environmental Engineering, Georgia Institute of Technology, GA, USA
| | - Ziyan Wu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, GA, USA
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, GA, USA.
| |
Collapse
|
22
|
Yan X, Diao M, Li C, Lu C, Zhao P, Zhang T. Formation and properties of starch-palmitic acid complex nanoparticles and their influence on Pickering emulsions. Int J Biol Macromol 2022; 204:685-691. [PMID: 35134453 DOI: 10.1016/j.ijbiomac.2022.01.170] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 11/20/2022]
Abstract
The starch-palmitic acid complex nanoparticles were prepared by Cyperus esculentus starch with enzymatic hydrolysis for different times and then complexed with palmitic acid. The FACE and 13C CP/MAS NMR analysis showed that there were more amylose molecules formed and complexed with palmitic acid when starch was treated by enzymatic hydrolysis for 4 h. With the enzymatic hydrolysis time increasing from 0 h to 4 h, the mean size of starch-palmitic acid complex nanoparticles increased from 500 ± 38.83 nm to 567.2 ± 22.32 nm, the size distribution became more uniform, and the crystallinity increased from 14.99% to 47.72%. The starch-palmitic acid complex nanoparticles could be used as a kind of stabilizers to stabilize Pickering emulsions. Rheological properties and storage stability of Pickering emulsions indicted that starch-palmitic acid complex nanoparticles can better stabilize. The starch-palmitic acid complex nanoparticles could be used as stabilizer of Pickering emulsion and encapsulation of bioactive compounds.
Collapse
Affiliation(s)
- Xiaoxia Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Mengxue Diao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chenfei Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chengwen Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ping Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|