1
|
Utarova N, Kakimov M, Gajdzik B, Wolniak R, Nurtayeva A, Yeraliyeva S, Bembenek M. Development of Gluten-Free Bread Production Technology with Enhanced Nutritional Value in the Context of Kazakhstan. Foods 2024; 13:271. [PMID: 38254572 PMCID: PMC10815016 DOI: 10.3390/foods13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
This research aims to enhance the nutritional value of gluten-free bread by incorporating a diverse range of components, including additives with beneficial effects on human health, e.g., dietary fibers. The research was focused on improving the texture, taste, and nutritional content of gluten-free products by creating new recipes and including novel biological additives. The goal was to develop gluten-free bread with less than 3 ppm gluten content that can be eaten by people suffering from gluten sensitivity. The physical and chemical properties of gluten-free rice, corn, green buckwheat, chickpea, amaranth, and plantain flours were examined to understand their unique characteristics and the possibility of their mixing combination to achieve the desired results. Initially, nine recipes were prepared, and in survey research, four baking recipes were selected and tested. The composition of amino acids in the prepared gluten-free bread was determined. The variant made of corn, green buckwheat flour with plantain was found to be top-rated. Changes in the nutritional content of the new product were analyzed, and general regulations and nutritional values were identified. Experimental baking processes were carried out, leading to the successful formulation of gluten-free bread containing corn, green buckwheat, and plantain flour in a ratio of 40:40:20, meeting gluten-free requirements and demonstrating improved nutritional properties, as well as consumption properties, confirmed by surveys conducted on a group of consumers.
Collapse
Affiliation(s)
- Nazira Utarova
- The Department of Food Technology and Processing Products, S.Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan; (N.U.); (A.N.)
| | - Mukhtarbek Kakimov
- The Department of Food Technology and Processing Products, S.Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan; (N.U.); (A.N.)
| | - Bożena Gajdzik
- Department of Industrial Informatics, Silesian University of Technology, 40-019 Katowice, Poland;
| | - Radosław Wolniak
- Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Ainur Nurtayeva
- The Department of Food Technology and Processing Products, S.Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan; (N.U.); (A.N.)
| | - Saule Yeraliyeva
- The Department of Design and Technology, Korkyt Ata Kyzylorda University, 29A Aiteke Bi Str., Kyzylorda 120014, Kazakhstan;
| | - Michał Bembenek
- Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
2
|
Ariaeenejad S, Gharechahi J, Foroozandeh Shahraki M, Fallah Atanaki F, Han JL, Ding XZ, Hildebrand F, Bahram M, Kavousi K, Hosseini Salekdeh G. Precision enzyme discovery through targeted mining of metagenomic data. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:7. [PMID: 38200389 PMCID: PMC10781932 DOI: 10.1007/s13659-023-00426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Metagenomics has opened new avenues for exploring the genetic potential of uncultured microorganisms, which may serve as promising sources of enzymes and natural products for industrial applications. Identifying enzymes with improved catalytic properties from the vast amount of available metagenomic data poses a significant challenge that demands the development of novel computational and functional screening tools. The catalytic properties of all enzymes are primarily dictated by their structures, which are predominantly determined by their amino acid sequences. However, this aspect has not been fully considered in the enzyme bioprospecting processes. With the accumulating number of available enzyme sequences and the increasing demand for discovering novel biocatalysts, structural and functional modeling can be employed to identify potential enzymes with novel catalytic properties. Recent efforts to discover new polysaccharide-degrading enzymes from rumen metagenome data using homology-based searches and machine learning-based models have shown significant promise. Here, we will explore various computational approaches that can be employed to screen and shortlist metagenome-derived enzymes as potential biocatalyst candidates, in conjunction with the wet lab analytical methods traditionally used for enzyme characterization.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Foroozandeh Shahraki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Fereshteh Fallah Atanaki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Jian-Lin Han
- Livestock Genetics Program, International Livestock Research, Institute (ILRI), Nairobi, 00100, Kenya
- CAAS-ILRI Joint Laboratory On Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xue-Zhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730050, China
| | - Falk Hildebrand
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, Norfolk, UK
- Digital Biology, Earlham Institute, Norwich, Norfolk, UK
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51, Uppsala, Sweden
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, Estonia
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | | |
Collapse
|
3
|
Ashok PP, Dasgupta D, Ray A, Suman SK. Challenges and prospects of microbial α-amylases for industrial application: a review. World J Microbiol Biotechnol 2023; 40:44. [PMID: 38114825 DOI: 10.1007/s11274-023-03821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023]
Abstract
α-Amylases are essential biocatalysts representing a billion-dollar market with significant long-term global demand. They have varied applications ranging from detergent, textile, and food sectors such as bakery to, more recently, biofuel industries. Microbial α-amylases have distinct advantages over their plant and animal counterparts owing to generally good activities and better stability at temperature and pH extremes. With the scope of applications expanding, the need for new and improved α-amylases is ever-growing. However, scaling up microbial α-amylase technology from the laboratory to industry for practical applications is impeded by several issues, ranging from mass transfer limitations, low enzyme yields, and energy-intensive product recovery that adds to high production costs. This review highlights the major challenges and prospects for the production of microbial α-amylases, considering the various avenues of industrial bioprocessing such as culture-independent approaches, nutrient optimization, bioreactor operations with design improvements, and product down-streaming approaches towards developing efficient α-amylases with high activity and recyclability. Since the sequence and structure of the enzyme play a crucial role in modulating its functional properties, we have also tried to analyze the structural composition of microbial α-amylase as a guide to its thermodynamic properties to identify the areas that can be targeted for enhancing the catalytic activity and thermostability of the enzyme through varied immobilization or selective enzyme engineering approaches. Also, the utilization of inexpensive and renewable substrates for enzyme production to isolate α-amylases with non-conventional applications has been briefly discussed.
Collapse
Affiliation(s)
- Patel Pratima Ashok
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Diptarka Dasgupta
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Anjan Ray
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil K Suman
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Thapa S, Zhou S, O'Hair J, Al Nasr K, Ropelewski A, Li H. Exploring the microbial diversity and characterization of cellulase and hemicellulase genes in goat rumen: a metagenomic approach. BMC Biotechnol 2023; 23:51. [PMID: 38049781 PMCID: PMC10696843 DOI: 10.1186/s12896-023-00821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Goat rumen microbial communities are perceived as one of the most potential biochemical reservoirs of multi-functional enzymes, which are applicable to enhance wide array of bioprocesses such as the hydrolysis of cellulose and hemi-cellulose into fermentable sugar for biofuel and other value-added biochemical production. Even though, the limited understanding of rumen microbial genetic diversity and the absence of effective screening culture methods have impeded the full utilization of these potential enzymes. In this study, we applied culture independent metagenomics sequencing approach to isolate, and identify microbial communities in goat rumen, meanwhile, clone and functionally characterize novel cellulase and xylanase genes in goat rumen bacterial communities. RESULTS Bacterial DNA samples were extracted from goat rumen fluid. Three genomic libraries were sequenced using Illumina HiSeq 2000 for paired-end 100-bp (PE100) and Illumina HiSeq 2500 for paired-end 125-bp (PE125). A total of 435gb raw reads were generated. Taxonomic analysis using Graphlan revealed that Fibrobacter, Prevotella, and Ruminococcus are the most abundant genera of bacteria in goat rumen. SPAdes assembly and prodigal annotation were performed. The contigs were also annotated using the DOE-JGI pipeline. In total, 117,502 CAZymes, comprising endoglucanases, exoglucanases, beta-glucosidases, xylosidases, and xylanases, were detected in all three samples. Two genes with predicted cellulolytic/xylanolytic activities were cloned and expressed in E. coli BL21(DE3). The endoglucanases and xylanase enzymatic activities of the recombinant proteins were confirmed using substrate plate assay and dinitrosalicylic acid (DNS) analysis. The 3D structures of endoglucanase A and endo-1,4-beta xylanase was predicted using the Swiss Model. Based on the 3D structure analysis, the two enzymes isolated from goat's rumen metagenome are unique with only 56-59% similarities to those homologous proteins in protein data bank (PDB) meanwhile, the structures of the enzymes also displayed greater stability, and higher catalytic activity. CONCLUSIONS In summary, this study provided the database resources of bacterial metagenomes from goat's rumen fluid, including gene sequences with annotated functions and methods for gene isolation and over-expression of cellulolytic enzymes; and a wealth of genes in the metabolic pathways affecting food and nutrition of ruminant animals.
Collapse
Affiliation(s)
- Santosh Thapa
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
- Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Joshua O'Hair
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Kamal Al Nasr
- Department of Computer Sciences, College of Engineering, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Alexander Ropelewski
- Pittsburgh Supercomputing Center, 300 S. Craig Street, Pittsburgh, PA, 15213, USA
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA.
| |
Collapse
|
5
|
Motahar SFS, Tiyoula FN, Motamedi E, Zeinalabedini M, Kavousi K, Ariaeenejad S. Computational Insights into the Selecting Mechanism of α-Amylase Immobilized on Cellulose Nanocrystals: Unveiling the Potential of α-Amylases Immobilized for Efficient Poultry Feed Hydrolysis. Bioconjug Chem 2023; 34:2034-2048. [PMID: 37823388 DOI: 10.1021/acs.bioconjchem.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The selection of an appropriate amylase for hydrolysis poultry feed is crucial for achieving improved digestibility and high-quality feed. Cellulose nanocrystals (CNCs), which are known for their high surface area, provide an excellent platform for enzyme immobilization. Immobilization greatly enhances the operational stability of α-amylases and the efficiency of starch bioconversion in poultry feeds. In this study, we immobilized two metagenome-derived α-amylases, PersiAmy2 and PersiAmy3, on CNCs and employed computational methods to characterize and compare the degradation efficiencies of these enzymes for poultry feed hydrolysis. Experimental in vitro bioconversion assessments were performed to validate the computational outcomes. Molecular docking studies revealed the superior hydrolysis performance of PersiAmy3, which displayed stronger electrostatic interactions with CNCs. Experimental characterization demonstrated the improved performance of both α-amylases after immobilization at high temperatures (80 °C). A similar trend was observed under alkaline conditions, with α-amylase activity reaching 88% within a pH range of 8.0 to 9.0. Both immobilized α-amylases exhibited halotolerance at NaCl concentrations up to 3 M and retained over 50% of their initial activity after 13 use cycles. Notably, PersiAmy3 displayed more remarkable improvements than PersiAmy2 following immobilization, including a significant increase in activity from 65 to 80.73% at 80 °C, an increase in activity to 156.48% at a high salinity of 3 M NaCl, and a longer half-life, indicating greater thermal stability within the range of 60 to 80 °C. These findings were substantiated by the in vitro hydrolysis of poultry feed, where PersiAmy3 generated 53.53 g/L reducing sugars. This comprehensive comparison underscores the utility of computational methods as a faster and more efficient approach for selecting optimal enzymes for poultry feed hydrolysis, thereby providing valuable insights into enhancing feed digestibility and quality.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Sadeghian Motahar
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj 31535-1897, Iran
| | - Fereshteh Noroozi Tiyoula
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14176-14411, Iran
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Research and Extension Organization (AREEO), Karaj 55555, Iran
| | - Mehrshad Zeinalabedini
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj 31535-1897, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14176-14411, Iran
| | - Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj 31535-1897, Iran
| |
Collapse
|
6
|
Liu P, Ma L, Duan W, Gao W, Fang Y, Guo L, Yuan C, Wu Z, Cui B. Maltogenic amylase: Its structure, molecular modification, and effects on starch and starch-based products. Carbohydr Polym 2023; 319:121183. [PMID: 37567718 DOI: 10.1016/j.carbpol.2023.121183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Maltogenic amylase (MAA) (EC3.2.1.133), a member of the glycoside hydrolase family 13 that mainly produces α-maltose, is widely used to extend the shelf life of bread as it softens bread, improves its elasticity, and preserves its flavor without affecting dough processing. Moreover, MAA is used as an improver in flour products. Despite its antiaging properties, the hydrolytic capacity and thermal stability of MAA can't meet the requirements of industrial application. However, genetic engineering techniques used for the molecular modification of MAA can alter its functional properties to meet application-specific requirements. This review briefly introduces the structure and functions of MAA, its application in starch modification, its effects on starch-based products, and its molecular modification to provide better insights for the application of genetically modified MAA in starch modification.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Li Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wenmin Duan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
7
|
Gharechahi J, Vahidi MF, Sharifi G, Ariaeenejad S, Ding XZ, Han JL, Salekdeh GH. Lignocellulose degradation by rumen bacterial communities: New insights from metagenome analyses. ENVIRONMENTAL RESEARCH 2023; 229:115925. [PMID: 37086884 DOI: 10.1016/j.envres.2023.115925] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/26/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Ruminant animals house a dense and diverse community of microorganisms in their rumen, an enlarged compartment in their stomach, which provides a supportive environment for the storage and microbial fermentation of ingested feeds dominated by plant materials. The rumen microbiota has acquired diverse and functionally overlapped enzymes for the degradation of plant cell wall polysaccharides. In rumen Bacteroidetes, enzymes involved in degradation are clustered into polysaccharide utilization loci to facilitate coordinated expression when target polysaccharides are available. Firmicutes use free enzymes and cellulosomes to degrade the polysaccharides. Fibrobacters either aggregate lignocellulose-degrading enzymes on their cell surface or release them into the extracellular medium in membrane vesicles, a mechanism that has proven extremely effective in the breakdown of recalcitrant cellulose. Based on current metagenomic analyses, rumen Bacteroidetes and Firmicutes are categorized as generalist microbes that can degrade a wide range of polysaccharides, while other members adapted toward specific polysaccharides. Particularly, there is ample evidence that Verrucomicrobia and Spirochaetes have evolved enzyme systems for the breakdown of complex polysaccharides such as xyloglucans, peptidoglycans, and pectin. It is concluded that diversity in degradation mechanisms is required to ensure that every component in feeds is efficiently degraded, which is key to harvesting maximum energy by host animals.
Collapse
Affiliation(s)
- Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhad Vahidi
- Animal Science Research Department, Qom Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Qom, Iran
| | - Golandam Sharifi
- Department of Basic Sciences, Encyclopedia Research Center, Institute for Humanities and Cultural Studies, Tehran, Iran
| | - Shohreh Ariaeenejad
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, And Extension Organization, Karaj, Iran
| | - Xue-Zhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730050, China
| | - Jian-Lin Han
- Livestock Genetics Program, International Livestock Research, Institute (ILRI), 00100, Nairobi, Kenya; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, And Extension Organization, Karaj, Iran; School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia.
| |
Collapse
|
8
|
Sequence-structural features and evolution of the α-amylase family GH119 revealed by the in silico analysis of its relatedness to the family GH57. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
9
|
Li J, Hu S, Xu M, Min F, Yu T, Yuan J, Gao J, Chen H, Wu Y. Elm ( Ulmus pumila L.) bark flour as a gluten substitute in gluten-free whole foxtail millet bread. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1163-1174. [PMID: 36908347 PMCID: PMC9998822 DOI: 10.1007/s13197-023-05670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/27/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023]
Abstract
Elm bark (Ulmus pumila L.) flour is a nutritious and sustainable edible material for developing the macromolecular network in the food matrix. In this study, the effects of Elm bark flour and water addition on technological and sensory characteristics of gluten-free whole foxtail millet bread were investigated. Structural analysis methods such as SEM, X-ray diffraction, and FTIR were used to supplement the rheological properties and baking quality. Results showed that Elm bark flour improved gelatinization characteristics and rheological properties (tanδ < 1) of gluten-free dough. Moreover, the porous and network structure of gluten-free bread was observed by image analysis and further confirmed by Fourier transform infrared spectroscopy and X-Ray diffraction, endowing higher specific volume (1.98 ± 0.13 cm3/g), and a decrease hardness from 97.43 to 11.56 N. Additionally, with the incorporation of Elm bark flour-water combination, specific volume (2.15 ± 0.09 cm3/g) and hardness (6.83 ± 0.50 N) were further optimized. Combined with the results of rheological properties and bread structure, Elm bark flour at 15% ratio and water addition at 120% level exhibited the most potent improvement of gluten-free bread. These results might contribute to the potential utilization of Elm bark flour as the sustainable resource in gluten-free products. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05670-x.
Collapse
Affiliation(s)
- Jingjing Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047 People’s Republic of China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 People’s Republic of China
- School of Food Science, Nanchang University, Nanchang, 330047 People’s Republic of China
| | - Shuai Hu
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200 People’s Republic of China
| | - Mengyu Xu
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047 People’s Republic of China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 People’s Republic of China
- School of Food Science, Nanchang University, Nanchang, 330047 People’s Republic of China
| | - Fangfang Min
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047 People’s Republic of China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 People’s Republic of China
- School of Food Science, Nanchang University, Nanchang, 330047 People’s Republic of China
| | - Tian Yu
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047 People’s Republic of China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 People’s Republic of China
- School of Food Science, Nanchang University, Nanchang, 330047 People’s Republic of China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 People’s Republic of China
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006 People’s Republic of China
| | - Jinyan Gao
- School of Food Science, Nanchang University, Nanchang, 330047 People’s Republic of China
| | - Hongbing Chen
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047 People’s Republic of China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 People’s Republic of China
| | - Yong Wu
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047 People’s Republic of China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, 330047 People’s Republic of China
| |
Collapse
|
10
|
Ariaeenejad S, Kavousi K, Zolfaghari B, Roy S, Koshiba T, Hosseini Salekdeh G. Efficient bioconversion of lignocellulosic waste by a novel computationally screened hyperthermostable enzyme from a specialized microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114587. [PMID: 36758508 DOI: 10.1016/j.ecoenv.2023.114587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
A large amount of lignocellulosic waste is generated every day in the world, and their accumulation in the agroecosystems, integration in soil compositions, or incineration for energy production has severe environmental pollution effects. Using enzymes as biocatalysts for the biodegradation of lignocellulosic materials, especially in harsh processing conditions, is a practical step towards green energy and environmental biosafety. Hence, the current study focuses on enzyme computationally screened from camel rumen metagenomics data as specialized microbiota that have the capacity to degrade lignocellulosic-rich and recalcitrant materials. The novel hyperthermostable xylanase named PersiXyn10 with the performance at extreme conditions was proper activity within a broad temperature (30-100 ℃) and pH range (4.0-11.0) but showed the maximum xylanolytic activity in severe alkaline and temperature conditions, pH 8.0 and temperature 90 ℃. Also, the enzyme had highly resistant to metals, surfactants, and organic solvents in optimal conditions. The introduced xylanase had unique properties in terms of thermal stability by maintaining over 82% of its activity after 15 days of incubation at 90 ℃. Considering the crucial role of hyperthermostable xylanases in the paper industry, the PersiXyn10 was subjected to biodegradation of paper pulp. The proper performance of hyperthermostable PersiXyn10 on the paper pulp was confirmed by structural analysis (SEM and FTIR) and produced 31.64 g/L of reducing sugar after 144 h hydrolysis. These results proved the applicability of the hyperthermostable xylanase in biobleaching and saccharification of lignocellulosic biomass for declining the environmental hazards.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Behrouz Zolfaghari
- CSE Department, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India; Department of Computer Engineering, Faculty of Engineering, Haliç University Eyüpsultan, Istanbul
| | - Swapnoneel Roy
- School of Computing, University of North Florida, Jacksonville, FL, USA
| | - Takeshi Koshiba
- Department of Mathematics, Faculty of Education and Integrated Arts and Sciences, Waseda University, Japan
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran; Department of Molecular Sciences, Macquarie University, Sydney, 2109 NSW, Australia
| |
Collapse
|
11
|
Ariaeenejad S, Motamedi E, Kavousi K, Ghasemitabesh R, Goudarzi R, Salekdeh GH, Zolfaghari B, Roy S. Enhancing the ethanol production by exploiting a novel metagenomic-derived bifunctional xylanase/β-glucosidase enzyme with improved β-glucosidase activity by a nanocellulose carrier. Front Microbiol 2023; 13:1056364. [PMID: 36687660 PMCID: PMC9845577 DOI: 10.3389/fmicb.2022.1056364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Some enzymes can catalyze more than one chemical conversion for which they are physiologically specialized. This secondary function, which is called underground, promiscuous, metabolism, or cross activity, is recognized as a valuable feature and has received much attention for developing new catalytic functions in industrial applications. In this study, a novel bifunctional xylanase/β-glucosidase metagenomic-derived enzyme, PersiBGLXyn1, with underground β-glucosidase activity was mined by in-silico screening. Then, the corresponding gene was cloned, expressed and purified. The PersiBGLXyn1 improved the degradation efficiency of organic solvent pretreated coffee residue waste (CRW), and subsequently the production of bioethanol during a separate enzymatic hydrolysis and fermentation (SHF) process. After characterization, the enzyme was immobilized on a nanocellulose (NC) carrier generated from sugar beet pulp (SBP), which remarkably improved the underground activity of the enzyme up to four-fold at 80°C and up to two-fold at pH 4.0 compared to the free one. The immobilized PersiBGLXyn1 demonstrated 12 to 13-fold rise in half-life at 70 and 80°C for its underground activity. The amount of reducing sugar produced from enzymatic saccharification of the CRW was also enhanced from 12.97 g/l to 19.69 g/l by immobilization of the enzyme. Bioethanol production was 29.31 g/l for free enzyme after 72 h fermentation, while the immobilized PersiBGLXyn1 showed 51.47 g/l production titre. Overall, this study presented a cost-effective in-silico metagenomic approach to identify novel bifunctional xylanase/β-glucosidase enzyme with underground β-glucosidase activity. It also demonstrated the improved efficacy of the underground activities of the bifunctional enzyme as a promising alternative for fermentable sugars production and subsequent value-added products.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran,*Correspondence: Shohreh Ariaeenejad, ;
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Rezvaneh Ghasemitabesh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Razieh Goudarzi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia,Ghasem Hosseini Salekdeh,
| | - Behrouz Zolfaghari
- Department of Integrated Art and Sciences, Faculty of Education, Waseda University, Tokyo, Japan
| | - Swapnoneel Roy
- School of Computing, University of North Florida, Jacksonville, FL, United States
| |
Collapse
|
12
|
Evaluation of shelf life and technological properties of bread elaborated with lactic acid bacteria fermented whey as a bio-preservation ingredient. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Saito K, Okouchi M, Yamaguchi M, Takechi T, Hatanaka Y, Kitsuda K, Mannari T, Takamura H. Quality improvement of gluten-free rice flour bread through the addition of high-temperature water during processing. J Food Sci 2022; 87:4820-4830. [PMID: 36181452 DOI: 10.1111/1750-3841.16333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
Recently, there has been an increase in the demand for gluten-free bread due to health reasons. One of the flours used to produce gluten-free bread is rice flour; flour characteristics are very important for breadmaking. Although a study has shown that the addition of high-temperature water can improve the quality of rice flour bread, studies are yet to consider different rice properties. Therefore, the aim of this study was to investigate the effect of adding high-temperature water and rice flour characteristics on the quality of rice flour bread using six commercially available rice flours. The rice flours used in the sample had amylose content from 12.1% to 24.5%, damaged starch content from 2.4% to 5.5%, mode diameter from 16.3 to 63.3 µm, protein content from 5.4% to 6.1%, and moisture content in the range of 12.0%-15.0%. The results showed that regardless of the rice characteristics, breads prepared at the optimum watering temperature were puffier and softer than those prepared using cold water (5°C). For rice flours with similar particle size, the optimal water temperature and degree of gelatinization for breadmaking increased with rice flours with lower amylose content. Furthermore, the rheological properties of dough prepared at the optimum water addition temperature were stable, with loss modulus (G″) being dominant over the entire frequency range in the frequency sweep test. Since the water temperature added to the dough affects breadmaking properties more than the characteristics of the rice flour, adjusting the water temperature may enable the production of high-quality bread even with rice flour unsuitable for making. PRACTICAL APPLICATION: Presently, the addition of high-temperature water to rice flour has been shown to improve the bread quality. In this study, we investigated the effects of high-temperature water addition on the quality of rice flour bread using rice flour varieties with different flour characteristics. Even in rice flour with small particle size and low amylose content, which is not suitable for breadmaking, bread quality can be improved by adding hot water at around 70°C. This is a simple and practical method to improve the quality of gluten-free rice flour bread without adding thickeners.
Collapse
Affiliation(s)
- Kumiko Saito
- Department of Food Science and Nutrition, Nara Women's University, Nara, Japan
| | - Maya Okouchi
- Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan.,Panasonic Operational Excellence Co., Ltd., Kadoma, Japan
| | - Mana Yamaguchi
- Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Tayori Takechi
- Faculty of Human Life Sciences Department of Food and Nutrition, Senri Kinran University, Suita, Japan
| | - Yoshiro Hatanaka
- Morinomiya Center, Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| | - Koji Kitsuda
- Research Institute of Environment, Agriculture and Fisheries, Habikino, Japan
| | - Takayo Mannari
- Department of Anatomy and Cell Biology, Nara Medical University, Nara, Japan.,KYOUSEI Science Center for Life and Nature, Nara Women's University, Nara, Japan
| | - Hitoshi Takamura
- Department of Food Science and Nutrition, Nara Women's University, Nara, Japan.,KYOUSEI Science Center for Life and Nature, Nara Women's University, Nara, Japan
| |
Collapse
|
14
|
Hunt for α-amylase from metagenome and strategies to improve its thermostability: a systematic review. World J Microbiol Biotechnol 2022; 38:203. [PMID: 35999473 DOI: 10.1007/s11274-022-03396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
With the advent of green chemistry, the use of enzymes in industrial processes serves as an alternative to the conventional chemical catalysts. A high demand for sustainable processes for catalysis has brought a significant attention to hunt for novel enzymes. Among various hydrolases, the α-amylase has a gamut of biotechnological applications owing to its pivotal role in starch-hydrolysis. Industrial demand requires enzymes with thermostability and to ameliorate this crucial property, various methods such as protein engineering, directed evolution and enzyme immobilisation strategies are devised. Besides the traditional culture-dependent approach, metagenome from uncultured bacteria serves as a bountiful resource for novel genes/biocatalysts. Exploring the extreme-niches metagenome, advancements in protein engineering and biotechnology tools encourage the mining of novel α-amylase and its stable variants to tap its robust biotechnological and industrial potential. This review outlines α-amylase and its genetics, its catalytic domain architecture and mechanism of action, and various molecular methods to ameliorate its production. It aims to impart understanding on mechanisms involved in thermostability of α-amylase, cover strategies to screen novel genes from futile habitats and some molecular methods to ameliorate its properties.
Collapse
|
15
|
Liu G, Wang ZM, Du N, Zhang Y, Wei Z, Tang XJ, Zhao L, Li C, Deng YY, Zhang MW. Recombinant Rice Quiescin Sulfhydryl Oxidase Strengthens the Gluten Structure through Thiol/Disulfide Exchange and Hydrogen Peroxide Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9106-9116. [PMID: 35736502 DOI: 10.1021/acs.jafc.2c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recombinant rice quiescin sulfhydryl oxidase (rQSOX) has the potential to improve the flour processing quality, but the mechanisms remain unclear. The effects of rQSOX on bread quality, dough rheology, and gluten structure and composition, with glucose oxidase as a positive control, were investigated. rQSOX addition could improve the dough processing quality, as proved by enhanced viscoelastic properties of dough as well as a softer crumb, higher specific volume, and lower moisture loss of bread. These beneficial effects were attributed to gluten protein polymerization and gluten network strengthening, evidenced by the improved concentration of SDS-insoluble gluten and formation of large gluten aggregates and the increased α-helix and β-turn conformation. Furthermore, decreased free sulfhydryl and increased dityrosine in gluten as well as improved H2O2 content in dough suggested that the rQSOX dough strengthening mechanism was mainly based on the formation of disulfide bonds and dityrosine cross-links in gluten by both thiol/disulfide direct exchange and hydrogen peroxide indirect oxidation pathways.
Collapse
Affiliation(s)
- Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhi-Ming Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nian Du
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yan Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - ZhenCheng Wei
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiao-Jun Tang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chao Li
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuan-Yuan Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ming-Wei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| |
Collapse
|
16
|
Ariaeenejad S, Kavousi K, Mamaghani ASA, Ghasemitabesh R, Hosseini Salekdeh G. Simultaneous hydrolysis of various protein-rich industrial wastes by a naturally evolved protease from tannery wastewater microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152796. [PMID: 34986419 DOI: 10.1016/j.scitotenv.2021.152796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Elimination of protein-rich waste materials is one of the vital environmental protection requirements. Using of non-naturally occurring chemicals for their remediation properties can potentially induce new pollutants. Therefore, enzymes encoded in the genomes of microorganisms evolved in the same environment can be considered suitable alternatives to chemicals. Identification of efficient proteases that can hydrolyze recalcitrant, protein-rich wastes produced by various industrial processes has been widely welcomed as an eco-friendly waste management strategy. In this direction, we attempted to screen a thermo-halo-alkali-stable metagenome-derived protease (PersiProtease1) from tannery wastewater. The PersiProtease1 exhibited high pH stability over a wide range and at 1 h in pH 11.0 maintained 87.59% activity. The enzyme possessed high thermal stability while retaining 76.64% activity after 1 h at 90 °C. Moreover, 65.34% of the initial activity of the enzyme remained in the presence of 6 M NaCl, showing tolerance against high salinity. The presence of various metal ions, inhibitors, and organic solvents did not remarkably inhibit the activity of the discovered protease. The PersiProtease1 was extracted from the tannery wastewater microbiota and efficiently applied for biodegradation of real sample tannery wastewater protein, chicken feathers, whey protein, dehairing sheepskins, and waste X-ray films. PersiProtease1 proved its enormous potential in simultaneous biodegradation of solid and liquid protein-rich industrial wastes based on the results.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Atefeh Sheykh Abdollahzadeh Mamaghani
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Rezvaneh Ghasemitabesh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran; Department of Molecular Sciences, Macquarie University, Sydney 2109, NSW, Australia.
| |
Collapse
|
17
|
Ariaeenejad S, Motamedi E, Salekdeh GH. Highly efficient removal of dyes from wastewater using nanocellulose from quinoa husk as a carrier for immobilization of laccase. BIORESOURCE TECHNOLOGY 2022; 349:126833. [PMID: 35149184 DOI: 10.1016/j.biortech.2022.126833] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
In this study, the synthesis of nanocellulose (NC) from an agro-waste of quinoa husks (QS) was reported for the first time. The NC nano-carrier was utilized for immobilization of a model laccase enzyme (PersiLac1) providing an innovative, green, and practical nano-biocatalyst for efficient removal of two different model dyes (malachite green (MG) and congo red (CR)) from water. This nano-biocatalyst developed a synergistic adsorption-degradation approach leading the dye molecules easily gathered near the nano-carrier by adsorption and then degraded effectively by the enzyme. Upon enzyme immobilization, the dye removals (%) were remarkably improved for both 150 mg/L of dyes (from 54% and 12%, for MG and CR, respectively, in case of the pristine NCs, to 98% and 60% for the immobilized enzyme). The immobilized PersiLac1 could decolorize the concentrated dye solutions and showed superior reusability (up to 83% dye removal after 18th runs for MG) and remarkable performance from complex real textile effluents.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran; Department of Molecular Sciences, Macquarie University, Sydney, NSW Australia
| |
Collapse
|
18
|
Šmídová Z, Rysová J. Gluten-Free Bread and Bakery Products Technology. Foods 2022; 11:foods11030480. [PMID: 35159630 PMCID: PMC8834121 DOI: 10.3390/foods11030480] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Gluten, a protein fraction from wheat, rye, barley, oats, their hybrids and derivatives, is very important in baking technology. The number of people suffering from gluten intolerance is growing worldwide, and at the same time, the need for foods suitable for a gluten-free diet is increasing. Bread and bakery products are an essential part of the daily diet. Therefore, new naturally gluten-free baking ingredients and new methods of processing traditional ingredients are sought. The study discusses the use of additives to replace gluten and ensure the stability and elasticity of the dough, to improve the nutritional quality and sensory properties of gluten-free bread. The current task is to extend the shelf life of gluten-free bread and bakery products and thus extend the possibility of its distribution in a fresh state. This work is also focused on various technological possibilities of gluten-free bread and the preparation of bakery products.
Collapse
|
19
|
Abstract
Starch and pullulan degrading enzymes are essential industrial biocatalysts. Pullulan-degrading enzymes are grouped into pullulanases (types I and type II) and pullulan hydrolase (types I, II and III). Generally, these enzymes hydrolyse the α-1,6 glucosidic bonds (and α-1,4 for certain enzyme groups) of substrates and form reducing sugars such as glucose, maltose, maltotriose, panose or isopanose. This review covers two main aspects: (i) bibliometric analysis of publications and patents related to pullulan-degrading enzymes and (ii) biological aspects of free and immobilised pullulan-degrading enzymes and protein engineering. The collective data suggest that most publications involved researchers within the same institution or country in the past and current practice. Multi-national interaction shall be improved, especially in tapping the enzymes from unculturable prokaryotes. While the understanding of pullulanases may reach a certain extend of saturation, the discovery of pullulan hydrolases is still limited. In this report, we suggest readers consider using the next-generation sequencing technique to fill the gaps of finding more new sequences encoding pullulan-degrading enzymes to expand the knowledge body of this topic.
Collapse
|
20
|
Salami M, Sadeghian Motahar SF, Ariaeenejad S, Sheykh Abdollahzadeh Mamaghani A, Kavousi K, Moosavi-Movahedi AA, Hosseini Salekdeh G. The novel homologue of the human α-glucosidase inhibited by the non-germinated and germinated quinoa protein hydrolysates after in vitro gastrointestinal digestion. J Food Biochem 2021; 46:e14030. [PMID: 34914113 DOI: 10.1111/jfbc.14030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
Quinoa (Chenopodium quinoa Willd) is a potential source of protein with ideal amino acid profiles which its bioactive compounds can be improved during germination and gastrointestinal digestion. The present investigation studies the impact of germination for 24 hr and simulated gastrointestinal digestion on α-glucosidase inhibitory activity of the quinoa protein and bioactive peptides against the novel homologue of human α-glucosidase, PersiAlpha-GL1. The sprouted quinoa after gastroduodenal digestion was the most effective α-glucosidase inhibitor showing 81.10% α-glucosidase inhibition at concentration 4 mg/ml with the half inhibition rate (IC50 ) of 0.07 mg/ml. Based on the kinetic analysis, both the germinated and non-germinated samples before and after digestion were competitive-type inhibitors of α-glucosidase. Results of this study showed the improved α-glucosidase inhibitory activity of the quinoa bioactive peptides after germination and gastrointestinal digestion and highlighted the potential of metagenome-derived PersiAlpha-GL1 as a novel homologue of the human α-glucosidase for developing the future anti-diabetic drugs. PRACTICAL APPLICATIONS: This study aimed to evaluate the effect of germination and gastrointestinal digestion of the quinoa protein and bioactive peptides on α-glucosidase inhibitory activity against the novel PersiAlpha-GL1. Metagenomic data were used to identify the novel α-glucosidase structurally and functionally homologue of human intestinal. The results showed the highest inhibition on PersiAlpha-GL1 by a germinated quinoa after gastroduodenal digestion and confirmed the potential of PersiAlpha-GL1 to enhance the effectiveness of the anti-diabetic drugs for industrial application.
Collapse
Affiliation(s)
- Maryam Salami
- Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Seyedeh Fatemeh Sadeghian Motahar
- Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Atefeh Sheykh Abdollahzadeh Mamaghani
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Kaveh Kavousi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
21
|
Ariaeenejad S, Zolfaghari B, Sadeghian Motahar SF, Kavousi K, Maleki M, Roy S, Hosseini Salekdeh G. Highly Efficient Computationally Derived Novel Metagenome α-Amylase With Robust Stability Under Extreme Denaturing Conditions. Front Microbiol 2021; 12:713125. [PMID: 34526977 PMCID: PMC8437397 DOI: 10.3389/fmicb.2021.713125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
α-Amylases are among the very critical enzymes used for different industrial purposes. Most α-amylases cannot accomplish the requirement of industrial conditions and easily lose their activity in harsh environments. In this study, a novel α-amylase named PersiAmy1 has been identified through the multistage in silico screening pipeline from the rumen metagenomic data. The long-term storage of PersiAmy1 in low and high temperatures demonstrated 82.13 and 71.01% activities after 36 days of incubation at 4 and 50°C, respectively. The stable α-amylase retained 61.09% of its activity after 180 min of incubation at 90°C and was highly stable in a broad pH range, showing 60.48 and 86.05% activities at pH 4.0 and pH 9.0 after 180 min of incubation, respectively. Also, the enzyme could resist the high-salinity condition and demonstrated 88.81% activity in the presence of 5 M NaCl. PersiAmy1 showed more than 74% activity in the presence of various metal ions. The addition of the detergents, surfactants, and organic solvents did not affect the α-amylase activity considerably. Substrate spectrum analysis showed that PersiAmy1 could act on a wide array of substrates. PersiAmy1 showed high stability in inhibitors and superb activity in downstream conditions, thus useful in detergent and baking industries. Investigating the applicability in detergent formulation, PersiAmy1 showed more than 69% activity after incubation with commercial detergents at different temperatures (30–50°C) and retained more than 56% activity after incubation with commercial detergents for 3 h at 10°C. Furthermore, the results of the wash performance analysis exhibited a good stain removal at 10°C. The power of PersiAmy1 in the bread industry revealed soft, chewable crumbs with improved volume and porosity compared with control. This study highlights the intense power of robust novel PersiAmy1 as a functional bio-additive in many industrial applications.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Behrouz Zolfaghari
- Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Seyedeh Fatemeh Sadeghian Motahar
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics, Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Morteza Maleki
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Swapnoneel Roy
- School of Computing, University of North Florida, Jacksonville, FL, United States
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization, Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
22
|
Sadeghian Motahar SF, Salami M, Ariaeenejad S, Emam‐Djomeh Z, Sheykh Abdollahzadeh Mamaghani A, Kavousi K, Moghadam M, Hosseini Salekdeh G. Synergistic Effect of Metagenome‐Derived Starch‐Degrading Enzymes on Quality of Functional Bread with Antioxidant Activity. STARCH-STARKE 2021. [DOI: 10.1002/star.202100098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Maryam Salami
- Department of Food Science and Engineering University College of Agriculture & Natural Resources University of Tehran Karaj Iran
| | - Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII) Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
| | - Zahra Emam‐Djomeh
- Department of Food Science and Engineering University College of Agriculture & Natural Resources University of Tehran Karaj Iran
| | - Atefeh Sheykh Abdollahzadeh Mamaghani
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII) Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB) Institute of Biochemistry and Biophysics (IBB) University of Tehran Tehran Iran
| | - Maryam Moghadam
- Department of Food Science and Engineering University College of Agriculture & Natural Resources University of Tehran Karaj Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII) Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
| |
Collapse
|
23
|
Dough Rheological Properties, Microstructure and Bread Quality of Wheat-Germinated Bean Composite Flour. Foods 2021; 10:foods10071542. [PMID: 34359411 PMCID: PMC8304690 DOI: 10.3390/foods10071542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/31/2023] Open
Abstract
Germinated bean flour (GBF) was obtained and incorporated in different levels (5%, 10%, 15%, 20% and 25%) into dough and bread made from refined wheat flour. The incorporation of GBF into wheat flour led to a decrease of the water absorption value, dough consistency, baking strength, extensibility and improved tolerance for mixing, total gas production and α-amylase activity. Tan δ increased in a frequency-dependent manner for the samples with a GBF addition, whereas the G’ and G” decreased with the increased value of the temperature. According to the microscopic structures of the dough samples, a decrease of the starch area may be clearly seen for the samples with high levels of GBF addition in wheat flour. The bread evaluation showed that the specific volume, porosity and elasticity increased, whereas the firmness, gumminess and chewiness decreased up to a level of 15% GBF addition in wheat flour. The color parameters L*, a* and b* of the bread samples indicated a darkening effect of GBF on the crumb and crust. From the sensory point of view, the bread up to a 15% GBF addition was well-appreciated by the panelists. According to the data obtained, GBF could be recommended for use as an improver, especially up to a level of 15% addition in the bread-making industry.
Collapse
|