1
|
Lei F, Zheng M, Zhang T, Wang S, Li B, He D, Zhang S, Zhou L, Zhang Q, Hu Z. Physicochemical analysis of beef tallow and its liquid fraction, comparing frying performance with high oleic acid rapeseed oil and rice bran oil. Food Chem 2025; 476:143515. [PMID: 40015054 DOI: 10.1016/j.foodchem.2025.143515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Fractionation allows the separation of components in beef tallow. This study compared the physicochemical characteristics and cholesterol content of beef tallow and its liquid fraction, evaluating their frying performance as potential deep-fat frying oils against plant oils. Results showed effective separation of unsaturated components from beef tallow through fractionation. Beef tallow exhibited superior physicochemical properties during frying, with lower deterioration levels than plant oils. Benzo[a]pyrene content increased in plant oils but remained low in beef tallow and its liquid fraction. The liquid fraction had a significantly shorter oxidative induction time of 0.38 h compared to 5.85 h and 5.24 h for plant oils. This study revealed that alterations were observed in beef tallow and its liquid fraction when used as frying oils, with beef tallow demonstrating stronger antioxidative properties compared to the liquid fraction, which exhibited lower levels of cholesterol and saturated fatty acids.
Collapse
Affiliation(s)
- Fenfen Lei
- Key Laboratory of Edible Oil Quality and Safety, State Administration for Market Regulation, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Grain and Oil Resources Comprehensive Exploitation and Engineering Technology Research Center of State Administration of Grain, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Wuhan Institute for Food and Cosmetic Control, Wuhan 430012, China
| | - Meiyu Zheng
- Key Laboratory of Edible Oil Quality and Safety, State Administration for Market Regulation, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Grain and Oil Resources Comprehensive Exploitation and Engineering Technology Research Center of State Administration of Grain, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tianyu Zhang
- Key Laboratory of Edible Oil Quality and Safety, State Administration for Market Regulation, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Grain and Oil Resources Comprehensive Exploitation and Engineering Technology Research Center of State Administration of Grain, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shu Wang
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430012, China
| | - Bin Li
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dongping He
- Key Laboratory of Edible Oil Quality and Safety, State Administration for Market Regulation, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Grain and Oil Resources Comprehensive Exploitation and Engineering Technology Research Center of State Administration of Grain, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Wuhan Institute for Food and Cosmetic Control, Wuhan 430012, China
| | - Sihong Zhang
- Key Laboratory of Edible Oil Quality and Safety, State Administration for Market Regulation, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Grain and Oil Resources Comprehensive Exploitation and Engineering Technology Research Center of State Administration of Grain, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Li Zhou
- Key Laboratory of Edible Oil Quality and Safety, State Administration for Market Regulation, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Grain and Oil Resources Comprehensive Exploitation and Engineering Technology Research Center of State Administration of Grain, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Qinfeng Zhang
- Key Laboratory of Edible Oil Quality and Safety, State Administration for Market Regulation, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory of Resources and Eco-Environment Geology, Hubei Geological Research Laboratory, Hubei, Geological Bureau, Wuhan 430034, China.
| | - Zhigang Hu
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
2
|
Mansour ST, Ibrahim H, Zhang J, Farag MA. Extraction and analytical approaches for the determination of post-food processing major carcinogens: A comprehensive review towards healthier processed food. Food Chem 2025; 464:141736. [PMID: 39461318 DOI: 10.1016/j.foodchem.2024.141736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Different food processing methods, e.g. fermentation, grilling, frying, etc., to improve food sensory attributes or shelf-stability are typically employed in different cuisines worldwide. These methods may illicit in-situ health-hazardous chemicals via thermal or enzymatic-mediated processes or chemical interactions with food preservatives. This review provides a comparative overview of the occurrence, extraction, and determination of the major food carcinogens such as nitrosamines (NAs), biogenic amines (BAs), heterocyclic aromatic amines (HAAs), polycyclic aromatic hydrocarbons (PAHs), ethyl carbamate (EC), and malondialdehyde (MDA). Their carcinogenicity levels vary from group 1 (carcinogenic to humans) e.g. benzo[a]pyrene, group 2A (probably carcinogenic to humans) e.g. N-nitrosodiethylamine, group 2B (possibly carcinogenic to humans) e.g. chrysene or group 3 (non-classifiable as carcinogenic to humans) e.g. MDA. Chromatography-based methods are the most predominant techniques used for their analysis. LC-MS is widely used for both volatile/non-volatile NAs, HAAs, BAs, and EC, whereas GC-MS is applied more for volatile NAs, PAHs and MDA.
Collapse
Affiliation(s)
- Somaia T Mansour
- Chemistry Department, American University in Cairo, New Cairo, Egypt.
| | - Hany Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt.
| | - Jiachao Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering Hainan University, Haikou 570228, China.
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
3
|
Lin Q, Zhang H, Lv X, Xie R, Chen BH, Lai YW, Chen L, Teng H, Cao H. A systematic study on the chemical model of polycyclic aromatic hydrocarbons formation from nutrients (glucose, amino acids, fatty acids) in food. Food Chem 2024; 446:138849. [PMID: 38460280 DOI: 10.1016/j.foodchem.2024.138849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), prominent carcinogens formed during food processing, pose health risks through long-term consumption. This study focuses on 16 priority PAHs in the European Union, investigating their formation during pyrolysis. Glucose, amino acids and fatty acids are important food nutrients. To further explore whether these nutrients in food form PAHs during heating, a single chemical model method was used to heat these nutrients respectively, and GC-MS/MS was used to identify and quantify the obtained components. Glucose is the most basic nutrient in food, so the influence of water, pH, temperature and other factors on the formation of PAHs was studied in the glucose model. At the same time, the models of amino acids and fatty acids were used to assist in improving the entire nutrient research system. According to our results, some previously reported mechanisms of PAHs formation by fatty acids heating were confirmed. In addition, glucose and amino acids could also produce many PAHs after heating, and some conclusions were improved by comparing the intermediates of PAHs from three types of nutrients.
Collapse
Affiliation(s)
- Qiuyi Lin
- College of Food Science and Technology, Guangdong Ocean university, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Haolin Zhang
- Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Xiaomei Lv
- College of Food Science and Technology, Guangdong Ocean university, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Ruiwei Xie
- College of Food Science and Technology, Guangdong Ocean university, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan, China.
| | - Yu-Wen Lai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan, China.
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean university, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean university, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean university, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Wang S, Chen H, Sun J, Zhang N, Wang S, Sun B. Effects of cooking methods on aroma formation in pork: A comprehensive review. Food Chem X 2023; 20:100884. [PMID: 38144779 PMCID: PMC10740095 DOI: 10.1016/j.fochx.2023.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 12/26/2023] Open
Abstract
Pork is widely consumed and appreciated by consumers across the world, and there are various methods of cooking pork. This study aimed to summarize the effects of different heat transfer media on pork flavor and the sources of flavor compounds. The cooking methods are classified based on the heat transfer media used, which include water and steam (e.g. steaming, boiling, and stewing), heat source or hot air (e.g. baking and smoking), oil (e.g. pan-frying, stir-frying, and deep frying), and other cooking technologies. The objective is to provide a reference for researchers studying pork cooking methods and flavor components.
Collapse
Affiliation(s)
- Shuwei Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Jie Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Ning Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Shuqi Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Ramesh A, Halpern LR, Southerland JH, Adunyah SE, Gangula PR. Saliva as a diagnostic tool to measure polycyclic aromatic hydrocarbon exposure in dental patients exposed to intimate partner violence (IPV). Biomed J 2023; 46:100586. [PMID: 36804615 PMCID: PMC10774449 DOI: 10.1016/j.bj.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Social habits such as tobacco use, alcohol consumption, and chemically contaminated diet contribute to poor oral health. Intimate Partner Violence (IPV) is a global public health epidemic which can exacerbate the prevalence of health conditions affecting a victim's lifespan. This study investigates using saliva as a biomarker for detecting levels of benzo(a)pyrene [B(a)P]; a toxicant present in cigarette smoke and barbecued meat in a population of IPV + female patients. METHODS A cross-sectional IRB-approved study utilized 63 female participants (37 African Americans [AA], and 26 non-African Americans [NAA]), who provided consent for the study. Participants submitted samples of saliva, as well as questionnaires about demographics, health history, and a well-validated (IPV) screen. RESULTS The prevalence of IPV was greater in AA compared to NAA. While the concentrations of PAHs/B(a)P detected in saliva of IPV samples in NAA were generally within the range of B(a)P reported for saliva from elsewhere, the concentrations were high in some IPV positive samples. Among the B(a)P metabolites, the concentrations of B(a)P 7,8-diol, B(a)P 3,6- and 6,12-dione metabolites were greater than the other metabolite in both AA and non-AA groups who were positive. CONCLUSION Our study supports the use of saliva as a potential "diagnostic rheostat" to identify toxicants that may exacerbate/precipitate systemic disease in female victims of IPV. In addition, our study is the first to report that IPV may precipitate the accumulation of B(a)P in oral cavity that can alter inflammatory cascades and increase risk of poor health outcomes in this population of patients.
Collapse
Affiliation(s)
- Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA.
| | - Leslie R Halpern
- Department of Dental Medicine, New York Medical College/ NYCHHC, Metropolitan Hospital, New York, USA
| | - Janet H Southerland
- Departments of Oral and Maxillofacial Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Pandu R Gangula
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
6
|
Aoudeh E, Oz E, Oz F. Effect of beef patties fortification with black garlic on the polycyclic aromatic hydrocarbons (PAHs) content and toxic potency. Food Chem 2023; 428:136763. [PMID: 37421662 DOI: 10.1016/j.foodchem.2023.136763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Nine different black garlic samples aged at varying temperatures and durations were added to the patties at 0.5% and 1% ratios and compared with raw garlic in terms of polycyclic aromatic hydrocarbons (PAHs) formation. The results showed that black garlic caused a reduction in the patties' content of ∑PAH8 by 38.17% to 94.12% compared to raw garlic, with the highest reduction percent in the patties fortified with 1% black garlic aged at 70 °C for 45 days. Beef patties fortified with black garlic reduced human exposure to PAHs from beef patties (from 1.66E to 01 to 6.04E-02 ng-TEQBaP kg-1 bw per day). The negligible cancer risk associated with exposure to PAHs through the consumption of beef patties was confirmed by very low ILCR (incremental lifetime cancer risk) values of 5.44E-14 and 4.75E-12. Finally, patty fortification with black garlic could be suggested as an effective way to reduce PAHs formation and exposure from patties.
Collapse
Affiliation(s)
- Eyad Aoudeh
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Türkiye
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Türkiye
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Türkiye.
| |
Collapse
|
7
|
Huang PH, Hou CY, Hsieh CW, Cheng KC, Ciou JY, Qiu YT, Huang CC, Hazeena SH. Investigation of the physicochemical properties of the thin slices of dried pork meat paper mixed with squid. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1590-1599. [PMID: 37033313 PMCID: PMC10076472 DOI: 10.1007/s13197-023-05702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Globally, the Peruvian squid (Dosidicus gigas) has the highest productivity among squid species. However, due to its high-water content and astringent taste, it has limited fresh food value. This study used Peruvian squid meat as the primary material to prepare thin slices of dried squid meat paper mixed with pork. Here, different proportions (20, 40, 60, 80, and 100%, while 0% as the control group) of squid surimi have used to mix with pork for the meat paper preparation and the changes in physicochemical properties, microstructure, and sensory evaluation were analyzed. The results showed that the total volatile basic nitrogen (TVB-N) contents increased with the storage period, where 20% squid surimi substitution had the lowest TVB-N content. The 20% squid surimi substitution group had the highest expansion rate, the lowest peroxide value (PV), and moisture content. The food-borne microorganisms (E. coli, coliforms, and Salmonella spp.) were within the legal limits or negative. Hardness and crispiness, 20-40% squid surimi substitution were closely similar to the control group. This study has provided an effective investigation of the possibility of expanding the utilization of Peruvian squid resources by combining appropriate squid surimi with minced pork for high-quality thin slices of dried meat paper.
Collapse
Affiliation(s)
- Ping-Hsiu Huang
- College of Food, Jiangsu Food and Pharmaceutical Science College, Huai’an, 223003 China
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, 40402 Taiwan, ROC
| | - Kuan-Chen Cheng
- Department of Medical Research, China Medical University Hospital, Taichung, 40402 Taiwan, ROC
- Institute of Biotechnology, National Taiwan University, Taipei, 10617 Taiwan
- Institute of Food Science Technology, National Taiwan University, Taipei, 10617 Taiwan, ROC
- Department of Optometry, Asia University, Taichung, 41354 Taiwan, ROC
| | - Jhih-Ying Ciou
- Department of Food Science, Tunghai University, Taichung, 407224 Taiwan, ROC
| | - Yi-Ting Qiu
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| | - Chin-Chih Huang
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| |
Collapse
|
8
|
Lai Y, Lee Y, Cao H, Zhang H, Chen B. Extraction of heterocyclic amines and polycyclic aromatic hydrocarbons from pork jerky and the effect of flavoring on formation and inhibition. Food Chem 2023; 402:134291. [DOI: 10.1016/j.foodchem.2022.134291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
9
|
Lai YW, Lee YT, Inbaraj BS, Chen BH. Formation and Inhibition of Heterocyclic Amines and Polycyclic Aromatic Hydrocarbons in Ground Pork during Marinating. Foods 2022; 11:3080. [PMID: 36230156 PMCID: PMC9563804 DOI: 10.3390/foods11193080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
This study aims to simultaneously extract heterocyclic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) from ground pork for respective analysis by UPLC-MS/MS and GC-MS/MS, and study the effects of different flavorings and marinating time length on their formation and inhibition. Results showed that both HA and PAH contents followed a time-dependent increase during marinating, with HAs being more susceptible to formation than PAHs. The total HA contents in unmarinated pork and juice was, respectively, 61.58 and 139.26 ng/g, and rose to 2986.46 and 1792.07 ng/g after 24-h marinating, which can be attributed to the elevation of reducing sugar and creatinine contents. The total PAH contents in unmarinated pork and juice were, respectively, 34.56 and 26.84 ng/g, and increased to 55.93 and 44.16 ng/g after 24-h marinating, which can be due to the increment of PAH precursors such as benzaldehyde, 2-cyclohexene-1-one and trans,trans-2,4-decadienal. Incorporation of 0.5% (w/v) cinnamon powder or 0.5% (w/v) green tea powder was effective in inhibiting HA formation with the former showing a more pronounced effect for marinated pork, while the latter was for marinated juice. However, their addition was only effective in inhibiting PAH formation in marinated pork. Principle component analysis revealed the relationship between HA and PAH formation in ground pork and juice during marinating.
Collapse
Affiliation(s)
- Yu-Wen Lai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yu-Tsung Lee
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
10
|
Sridhar K, Inbaraj BS, Chen BH. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food. CHEMOSPHERE 2022; 301:134702. [PMID: 35472615 DOI: 10.1016/j.chemosphere.2022.134702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Organic toxins are persistent chemicals of global concern capable of accumulating in environment and food. Surface enhanced Raman spectroscopy (SERS) is a promising technique that facilitates onsite detection of organic toxins. However, the fabrication of a SERS substrate is complicated and difficult to provide flexibility, fastness and cost-effectiveness. This study aims to develop a paper-based SERS method using grape skin-gold nanoparticles/graphene oxide (GE-AuNPs/GO) as SERS substrate and evaluate its efficiency with rhodamine 6G (Rh6G) as a model organic toxin and a real water and food contaminant. GE-AuNPs synthesized by green method using grape skin waste extract and GE-AuNPs/GO showed a surface plasmon resonance at 536 and 539 nm, particle size 18.6 and 19.5 nm, and zeta potential -44.6 and -59.7 mV, respectively. Paper-based SERS substrates were prepared by coating a hydrophobic thin-film of 30% polydimethylsiloxane solution in hexane on Whatman no. 1 filter paper, followed by drop-casting GE-AuNPs or GE-AuNPs/GO and drying. The SERS signals of Rh6G showed an enhancement factor of 5.8 × 104 for GE-AuNPs and 1.92 × 109 for GE-AuNPs/GO, implying that a combination of electromagnetic surface plasmon, charge transfer and molecular resonances may be responsible for a higher enhancement of signal by the latter. A low detection limit of 7.33 × 10-11 M in the linear range of 10-11-10-5 M was obtained for GE-AuNPs/GO, while the relative standard deviation of repeatability and reproducibility was 9.6 and 12.6%, respectively. Paper-based GE-AuNPs/GO SERS substrate was highly stable as <20% loss in efficiency was shown over a 60-day storage period. Application to real samples showed a high recovery of Rh6G from tap water (93.9-100.8%) as well as food samples such as red chilli powder (91.0-95.4%), red glutinous rice ball (96.6-98.3%) and tomato ketchup (98.9-102.3%) after QuEChERS extraction. Collectively, the developed paper-based GE-AuNPs/GO can be a potential substrate for sensitive onsite detection of rhodamine 6G by SERS method.
Collapse
Affiliation(s)
- Kandi Sridhar
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; Department of Nutrition, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
11
|
Bai S, You L, Wang Y, Luo R. Effect of Traditional Stir-Frying on the Characteristics and Quality of Mutton Sao Zi. Front Nutr 2022; 9:925208. [PMID: 35811981 PMCID: PMC9260384 DOI: 10.3389/fnut.2022.925208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
The effects of stir-frying stage and time on the formation of Maillard reaction products (MRP) and potentially hazardous substances with time in stir-fried mutton sao zi were investigated. Furosine, fluorescence intensity, Nε-(1-carboxymethyl)-L-lysine (CML), Nε-(1-carboxyethyl)-L-lysine (CEL), polyaromatic hydrocarbons PAHs), heterocyclic aromatic amines (HAAs), and acrylamides (AA) mainly presented were of stir-fried mutton sao zi. The furosine decreased after mixed stir-frying (MSF) 160 s due to its degradation as the Maillard reaction (MR) progressed. The fluorescent compound gradually increased with time during the stir-frying process. The CML and CEL peaked in MSF at 200 s. AA reached its maximum at MSF 120 s and then decreased. All the 5 HAAs were detected after MSF 200 s, suggesting that stir-frying mutton sao zi was at its best before MSF for 200 s. When stir-frying exceeded the optimal processing time of (MSF 160 s) 200 s, the benzo[a]pyrene peaked at 0.82 μg/kg, far lower than the maximum permissible value specified by the Commission of the European Communities. Extended stir-frying promoted MRP and some hazardous substances, but the content of potentially hazardous substances was still within the safety range for food.
Collapse
Affiliation(s)
- Shuang Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- School of Food and Wine, Ningxia University, Yinchuan, China
| | - Liqin You
- College of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Yongrui Wang
- School of Food and Wine, Ningxia University, Yinchuan, China
| | - Ruiming Luo
- School of Food and Wine, Ningxia University, Yinchuan, China
- *Correspondence: Ruiming Luo,
| |
Collapse
|
12
|
Liu Y, Yang X, Xiao F, Jie F, Zhang Q, Liu Y, Xiao H, Lu B. Dietary cholesterol oxidation products: Perspectives linking food processing and storage with health implications. Compr Rev Food Sci Food Saf 2021; 21:738-779. [PMID: 34953101 DOI: 10.1111/1541-4337.12880] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
Dietary cholesterol oxidation products (COPs) are heterogeneous compounds formed during the processing and storage of cholesterol-rich foods, such as seafood, meat, eggs, and dairy products. With the increased intake of COPs-rich foods, the concern about health implications of dietary COPs is rising. Dietary COPs may exert deleterious effects on human health to induce several inflammatory diseases including atherosclerosis, neurodegenerative diseases, and inflammatory bowel diseases. Thus, knowledge regarding the effects of processing and storage conditions leading to formation of COPs is needed to reduce the levels of COPs in foods. Efficient methodologies to determine COPs in foods are also essential. More importantly, the biological roles of dietary COPs in human health and effects of phytochemicals on dietary COPs-induced diseases need to be established. This review summarizes the recent information on dietary COPs including their formation in foods during their processing and storage, analytical methods of determination of COPs, metabolic fate, implications for human health, and beneficial interventions by phytochemicals. The formation of COPs is largely dependent on the heating temperature, storage time, and food matrices. Alteration of food processing and storage conditions is one of the potent strategies to restrict hazardous dietary COPs from forming, including maintaining relatively low temperatures, shorter processing or storage time, and the appropriate addition of antioxidants. Once absorbed into the circulation, dietary COPs can contribute to the progression of several inflammatory diseases, where the absorbed dietary COPs may induce inflammation, apoptosis, and autophagy in cells in the target organs or tissues. Improved intake of phytochemicals may be an effective strategy to reduce the hazardous effects of dietary COPs.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|