1
|
Zhang J, Hong B, Abdollahi M, Wu H, Undeland I. Role of lingonberry press cake in producing stable herring protein isolates via pH-shift processing: A dose response study. Food Chem X 2024; 22:101456. [PMID: 38808166 PMCID: PMC11130683 DOI: 10.1016/j.fochx.2024.101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
The effects of cross-processing lingonberry press cake (LPC) (2.5-30 %, dw/dw) with herring co-products on protein yield, oxidative stability and color of pH-shift-produced protein isolates were investigated. Even at 2.5 % LPC, the formation of volatile oxidation-derived aldehydes, including hexanal, (E)-2-hexenal, heptanal, octanal, and 2,4-heptadienal, were prevented during the actual protein isolate production. Adding 10 % LPC successfully prevented formation of all these aldehydes also during eight days ice storage which was explained by the partitioning of phenolics, especially ideain (1.09 mg/g dw) and procyanidin A1 (65.5 mg/g dw), into isolates. Although higher amounts of LPC (20-30 %) further prolonged the oxidation lag phase, it reduced total protein yield, increased the consumption of acid and base, and darkened protein isolates. Therefore, it is recommended to use 10 % LPC when pH-shift-processing sensitive fish raw materials as a route to mitigate lipid oxidation and at the same time promote industrial symbiosis and more circular food production.
Collapse
Affiliation(s)
- Jingnan Zhang
- Department of Life Sciences- Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Bovie Hong
- Department of Life Sciences- Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Mehdi Abdollahi
- Department of Life Sciences- Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Haizhou Wu
- Department of Life Sciences- Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Ingrid Undeland
- Department of Life Sciences- Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| |
Collapse
|
2
|
Dragoev SG. Lipid Peroxidation in Muscle Foods: Impact on Quality, Safety and Human Health. Foods 2024; 13:797. [PMID: 38472909 DOI: 10.3390/foods13050797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
The issue of lipid changes in muscle foods under the action of atmospheric oxygen has captured the attention of researchers for over a century. Lipid oxidative processes initiate during the slaughtering of animals and persist throughout subsequent technological processing and storage of the finished product. The oxidation of lipids in muscle foods is a phenomenon extensively deliberated in the scientific community, acknowledged as one of the pivotal factors affecting their quality, safety, and human health. This review delves into the nature of lipid oxidation in muscle foods, highlighting mechanisms of free radical initiation and the propagation of oxidative processes. Special attention is given to the natural antioxidant protective system and dietary factors influencing the stability of muscle lipids. The review traces mechanisms inhibiting oxidative processes, exploring how changes in lipid oxidative substrates, prooxidant activity, and the antioxidant protective system play a role. A critical review of the oxidative stability and safety of meat products is provided. The impact of oxidative processes on the quality of muscle foods, including flavour, aroma, taste, colour, and texture, is scrutinised. Additionally, the review monitors the effect of oxidised muscle foods on human health, particularly in relation to the autooxidation of cholesterol. Associations with coronary cardiovascular disease, brain stroke, and carcinogenesis linked to oxidative stress, and various infections are discussed. Further studies are also needed to formulate appropriate technological solutions to reduce the risk of chemical hazards caused by the initiation and development of lipid peroxidation processes in muscle foods.
Collapse
Affiliation(s)
- Stefan G Dragoev
- Department of Meat and Fish Technology, Technological Faculty, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Sørensen ADM, Wu H, Hyldig G, Bøknæs N, Mejlholm O, Undeland I, Jacobsen C. Oxidative Stability of Side-Streams from Cod Filleting-Effect of Antioxidant Dipping and Low-Temperature Storage. Mar Drugs 2023; 21:591. [PMID: 37999415 PMCID: PMC10671878 DOI: 10.3390/md21110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Currently, side-streams (e.g., head, backbone, tail, and intestines) generated in the fish processing industry often end up as low-value products for feed applications or even as waste. In order to upcycle such side-streams, they need to be preserved to avoid oxidative degradation of the lipids between the generation point and the valorization plant. In the cod filleting industry, three main solid side-streams: viscera, heads, and backbones, are obtained. Hence, this study aimed to identify the most efficient antioxidant for preserving the cod side-streams using a dipping-based strategy prior to pre-valorization storage at low temperatures (ice and frozen storage). The dipping solutions evaluated contained: (i) a lipophilic rosemary extract (0.05% and 0.2% in 0.9% NaCl), (ii) Duralox MANC (a mixture of rosemary extract, ascorbic acid, tocopherols, and citric acid; 2% in 0.9% NaCl), and (iii) NaCl (0.9%) w/w solution. One group was not dipped. No dipping and dipping in NaCl were included as controls. The results showed a positive effect of dipping with solutions containing antioxidants as measured by peroxide value (PV), TBA-reactive substances (TBARS), and sensory profiling, e.g., rancid odor. Moreover, the oxidative stability increased with decreased storage temperature. The cod side-streams were in general most efficiently preserved by Duralox MANC, followed by the lipophilic rosemary extract (0.2%), compared to no dipping and dipping in NaCl solution and the lower concentration of the lipophilic rosemary extract (0.05%). The efficiency of the antioxidant treatments was independent of the side-stream fraction and storage temperature. Thus, using antioxidant dipping combined with low temperature storage is an efficient preservation method for maintaining the quality of the lipids in cod solid side-streams during their pre-valorization storage.
Collapse
Affiliation(s)
| | - Haizhou Wu
- Food and Nutrition Science, Department of Life Sciences (LIFE), Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Grethe Hyldig
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark (C.J.)
| | | | | | - Ingrid Undeland
- Food and Nutrition Science, Department of Life Sciences (LIFE), Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark (C.J.)
| |
Collapse
|
4
|
Malekmohammadi M, Ghanbarzadeh B, Hanifian S, Samadi Kafil H, Gharekhani M, Falcone PM. The Gelatin-Coated Nanostructured Lipid Carrier (NLC) Containing Salvia officinalis Extract: Optimization by Combined D-Optimal Design and Its Application to Improve the Quality Parameters of Beef Burger. Foods 2023; 12:3737. [PMID: 37893630 PMCID: PMC10606122 DOI: 10.3390/foods12203737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The current study aims to synthesize the gelatin-coated nanostructured lipid carrier (NLC) to encapsulate sage extract and use this nanoparticle to increase the quality parameters of beef burger samples. NLCs were prepared by formulation of gelatin (as surfactant and coating biopolymer), tallow oil (as solid lipid), rosemary essential oil (as liquid lipid), sage extract (as active material or encapsulant), polyglycerol ester and Tween 80 (as low-molecular emulsifier) through the high-shear homogenization-sonication method. The effects of gelatin concentrations and the solid/liquid ratio on the particle size, polydispersity index (PDI), and encapsulation efficiency (EE%) of sage extract-loaded NLCs were quantitatively investigated and optimized using a combined D-optimal design. Design expert software suggested the optimum formulation with a gelatin concentration of 0.1 g/g suspension and solid/liquid lipid ratio of 60/40 with a particle size of 100.4 nm, PDI of 0.36, and EE% 80%. The morphology, interactions, thermal properties, and crystallinity of obtained NLC formulations were investigated by TEM, FTIR, DSC, and XRD techniques. The optimum sage extract-loaded/gelatin-coated NLC showed significantly higher antioxidant activity than free extract after 30 days of storage. It also indicated a higher inhibitory effect against E. coli and P. aeruginosa than free form in MIC and MBC tests. The optimum sage extract-loaded/gelatin-coated NLC, more than free extract, increased the oxidation stability of the treated beef burger samples during 90 days of storage at 4 and -18 °C (verified by thiobarbituric acid and peroxide values tests). Incorporation of the optimum NLC to beef burgers also effectively decreased total counts of mesophilic bacteria, psychotropic bacteria, S. aureus, coliform, E. coli, molds, and yeasts of treated beef burger samples during 0, 3, and 7 days of storage in comparison to the control sample. These results suggested that the obtained sage extract-loaded NLC can be an effective preservative to extend the shelf life of beef burgers.
Collapse
Affiliation(s)
- Maedeh Malekmohammadi
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz P.O. Box 11365-4435, Iran (S.H.); (M.G.)
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
| | - Shahram Hanifian
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz P.O. Box 11365-4435, Iran (S.H.); (M.G.)
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz P.O. Box 51656-65811, Iran;
| | - Mehdi Gharekhani
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz P.O. Box 11365-4435, Iran (S.H.); (M.G.)
| | - Pasquale M. Falcone
- Department of Agricultural, Food and Environmental Sciences, University Polytechnical of Marche, Brecce Bianche 10, 60131 Ancona, Italy
| |
Collapse
|
5
|
Santschi MV, Undeland I, Abdollahi M. Ultrasound-aided pH-shift processing for resource-smart valorization of salmon and herring side streams. ULTRASONICS SONOCHEMISTRY 2023; 99:106539. [PMID: 37544170 PMCID: PMC10432243 DOI: 10.1016/j.ultsonch.2023.106539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
The possibility of reducing the amount of fresh water used during alkaline the pH-shift processing of salmon head (SH) and herring frame (HF) was evaluated with ultrasound (US) as a tool to mitigate its negative effects on protein yield. The role of water ratio and US for homogenate viscosity, mass yield, crude composition, functional properties and lipid oxidation of the SH and HF protein isolates were also investigated. Applying US during the solubilization step of the pH-shift process completely compensated for the reduced protein yield coming from using 3 rather than 6 volumes of water for HF, but not for SH. Using US had no negative effect on the composition and protein functionality of the HF protein isolate. However, it slightly increased its level of secondary lipid oxidation products. Altogether, applying US during the pH-shift processing at low water ratios can be a promising solution for more resource-smart valorization of herring side streams.
Collapse
Affiliation(s)
- Michaela V Santschi
- Department of Health Science and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland; Department of Life Sciences - Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Ingrid Undeland
- Department of Life Sciences - Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Mehdi Abdollahi
- Department of Life Sciences - Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
6
|
Wu H, Axelsson J, Kuhlin M, Fristedt R, Undeland I. Pilot-Scale Antioxidant Dipping of Herring ( Clupea harengus) Co-products to Allow Their Upgrading to a High-Quality Mince for Food Production. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:4727-4737. [PMID: 37013165 PMCID: PMC10064803 DOI: 10.1021/acssuschemeng.2c07164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Indexed: 06/19/2023]
Abstract
To enable production of high-quality mince from herring backbones, a scalable antioxidant strategy is needed due to the high susceptibility of herring muscle to lipid oxidation. We here measured the stabilizing effect of lab-/pilot-scale predipping of herring backbones (30-500 kg) in antioxidant solutions prior to production of mechanically separated mince (MSM). The antioxidants were (i) Duralox MANC, a mixture of rosemary extract, ascorbic acid, α-tocopherol, and citric acid, and (ii) rosemary extract with or without isoascorbic acid. Delivery of the key rosemary-derived antioxidant components carnosol and carnosic acid was monitored during the dipping process and ice/frozen storage. Predipping in 2% Duralox MANC gave MSM with 26.7-31.7 mg/kg carnosol + carnosic acid and extended the oxidation lag phase from <1 to 12 days during ice storage and from <1 to 6 months during frozen storage compared to control. Dipping in 0.2% rosemary extract with or without 0.5% isoascorbic acid solution gave MSM with 20.6-28.2 mg/kg carnosol + carnosic acid and extended the lag phase to 6 days and 9 months during ice and frozen storage, respectively. Our results confirmed, in pilot scale, that predipping herring coproducts in antioxidant solutions is a promising strategy to utilize these raw materials for, e.g., mince and burger production rather than for low value products as fish meal.
Collapse
Affiliation(s)
- Haizhou Wu
- Department
of Biology and Biological Engineering−Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - John Axelsson
- Department
of Biology and Biological Engineering−Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Martin Kuhlin
- Sweden
Pelagic AB, Hallgrens
väg 1, SE 47431 Ellös, Sweden
| | - Rikard Fristedt
- Department
of Biology and Biological Engineering−Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Ingrid Undeland
- Department
of Biology and Biological Engineering−Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| |
Collapse
|
7
|
Comparison of Commercial Fish Proteins' Chemical and Sensory Properties for Human Consumption. Foods 2023; 12:foods12050966. [PMID: 36900483 PMCID: PMC10000493 DOI: 10.3390/foods12050966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
To stop overfishing and meet the protein needs of a growing population, more information is needed on how to use marine by-catches, by-products, and undervalued fish species for human consumption. Turning them into protein powder is a sustainable and marketable way to add value. However, more knowledge of the chemical and sensory properties of commercial fish proteins is needed to identify the challenges in developing fish derivatives. This study aimed to characterize the sensory and chemical properties of commercial fish proteins to compare their suitability for human consumption. Proximate composition, protein, polypeptide and lipid profiles, lipid oxidation, and functional properties were analyzed. The sensory profile was compiled using generic descriptive analysis, and odor-active compounds were identified with gas-chromatography-mass spectrometry-olfactometry (GC-MS/O). Results indicated significant differences in chemical and sensory properties between processing methods but not between fish species. However, the raw material had some influence in the proteins' proximate composition. Bitterness and fishiness were the main perceived off-flavors. All samples, apart from hydrolyzed collagen, had intense flavor and odor. Differences in odor-active compounds supported the sensory evaluation results. The chemical properties revealed that the lipid oxidation, peptide profile, and raw material degradation are likely affecting the sensory properties of commercial fish proteins. Limiting lipid oxidation during processing is crucial for the development of mild-tasting and -smelling products for human consumption.
Collapse
|
8
|
Zhang J, Abdollahi M, Ström A, Undeland I. Lingonberry ( Vaccinium vitis-idaea) press-cake as a new processing aid during isolation of protein from herring ( Clupea harengus) co-products. Food Chem X 2023; 17:100592. [PMID: 36824149 PMCID: PMC9941359 DOI: 10.1016/j.fochx.2023.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/06/2023] Open
Abstract
High acid-consumption and lipid oxidation are challenges when recovering functional proteins from herring co-products via pH-shift-processing. Here, lingonberry press-cake (LP), which is abundant in organic acids and phenolics, was added to alkali-solubilized herring-co-product-proteins (2.5-30 % LP per dry weight) aiming to aid protein precipitation, save hydrochloric acid (HCl) and provide oxidative stability. The results revealed 5-30 % LP addition reduced HCl-consumption by 13-61 % and 19-79 % when precipitating proteins at pH 5.5 and 6.5, respectively. Higher LP% decreased protein content and lightness of protein isolates but raised the lipid content. Precipitation at pH 6.5 used less acid, reduced total protein yield and raised moisture content and darkness of isolates. Contrary to controls, lipid oxidation-derived volatiles did not develop in protein isolates precipitated with 10 % and 30 % LP, neither during the process itself nor during 21 days on ice. Altogether, LP was identified as a promising all-natural processing-aid to use during herring protein isolation.
Collapse
Affiliation(s)
- Jingnan Zhang
- Department of Biology and Biological Engineering- Food and Nutrition Science, Chalmers University of Technology, SE 412 96, Sweden,Corresponding author.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering- Food and Nutrition Science, Chalmers University of Technology, SE 412 96, Sweden
| | - Anna Ström
- Department of Chemistry and Chemical Engineering – Applied Chemistry, Chalmers University of Technology, SE 412 96, Sweden
| | - Ingrid Undeland
- Department of Biology and Biological Engineering- Food and Nutrition Science, Chalmers University of Technology, SE 412 96, Sweden
| |
Collapse
|
9
|
Wu H, Bak KH, Goran GV, Tatiyaborworntham N. Inhibitory mechanisms of polyphenols on heme protein-mediated lipid oxidation in muscle food: New insights and advances. Crit Rev Food Sci Nutr 2022; 64:4921-4939. [PMID: 36448306 DOI: 10.1080/10408398.2022.2146654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Lipid oxidation is a major cause of quality deterioration that decreases the shelf-life of muscle-based foods (red meat, poultry, and fish), in which heme proteins, particularly hemoglobin and myoglobin, are the primary pro-oxidants. Due to increasing consumer concerns over synthetic chemicals, extensive research has been carried out on natural antioxidants, especially plant polyphenols. The conventional opinion suggests that polyphenols inhibit lipid oxidation of muscle foods primarily owing to their strong hydrogen-donating and transition metal-chelating activities. Recent developments in analytical techniques (e.g., protein crystallography, nuclear magnetic resonance spectroscopy, fluorescence anisotropy, and molecular docking simulation) allow deeper understanding of the molecular interaction of polyphenols with heme proteins, phospholipid membrane, reactive oxygen species, and reactive carbonyl species; hence, novel hypotheses regarding their antioxidant mechanisms have been formulated. In this review, we summarize five direct and three indirect pathways by which polyphenols inhibit heme protein-mediated lipid oxidation in muscle foods. We also discuss the relation between chemical structures and functions of polyphenols as antioxidants.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, SE, Sweden
| | - Kathrine H Bak
- Department of Food Technology and Vetefrinary Public Health, Institute of Food Safety, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gheorghe V Goran
- Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, University of Agricultural, Bucharest, Romania
| | - Nantawat Tatiyaborworntham
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| |
Collapse
|
10
|
Pro-oxidative activity of trout and bovine hemoglobin during digestion using a static in vitro gastrointestinal model. Food Chem 2022; 393:133356. [DOI: 10.1016/j.foodchem.2022.133356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/11/2022] [Accepted: 05/29/2022] [Indexed: 11/18/2022]
|
11
|
Wu H, Forghani B, Abdollahi M, Undeland I. Five cuts from herring ( Clupea harengus): Comparison of nutritional and chemical composition between co-product fractions and fillets. Food Chem X 2022; 16:100488. [PMID: 36345506 PMCID: PMC9636446 DOI: 10.1016/j.fochx.2022.100488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Weight distribution, proximate composition, fatty acids, amino acids, minerals and vitamins were investigated in five sorted cuts (head, backbone, viscera + belly flap, tail, fillet) emerging during filleting of spring and fall herring (Clupea harengus). The herring co-product cuts constituted ∼ 60 % of the whole herring weight, with backbone and head dominating. Substantial amounts of lipids (5.8-17.6 % wet weight, ww) and proteins (12.8-19.2 % ww) were identified in the co-products, the former being higher in fall than in spring samples. Co-product cuts contained up to 43.1 % long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) of total FA, absolute levels peaking in viscera + belly flap. All cuts contained high levels of essential amino acids (up to 43.3 %), nutritional minerals (e.g., iodine, selenium, calcium, and iron/heme-iron), and vitamins E, D, and B12. Co-products were, in many cases, more nutrient-rich than the fillet and could be excellent sources for both (functional) food and nutraceuticals.
Collapse
|
12
|
Wu H, Tatiyaborworntham N, Hajimohammadi M, Decker EA, Richards MP, Undeland I. Model systems for studying lipid oxidation associated with muscle foods: Methods, challenges, and prospects. Crit Rev Food Sci Nutr 2022; 64:153-171. [PMID: 35916770 DOI: 10.1080/10408398.2022.2105302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipid oxidation is a complex process in muscle-based foods (red meat, poultry and fish) causing severe quality deterioration, e.g., off-odors, discoloration, texture defects and nutritional loss. The complexity of muscle tissue -both composition and structure- poses as a formidable challenge in directly clarifying the mechanisms of lipid oxidation in muscle-based foods. Therefore, different in vitro model systems simulating different aspects of muscle have been used to study the pathways of lipid oxidation. In this review, we discuss the principle, preparation, implementation as well as advantages and disadvantages of seven commonly-studied model systems that mimic either compositional or structural aspects of actual meat: emulsions, fatty acid micelles, liposomes, microsomes, erythrocytes, washed muscle mince, and muscle homogenates. Furthermore, we evaluate the prospects of stem cells, tissue cultures and three-dimensional printing for future model system development. Based on this reviewing of oxidation models, tailoring correct model to different study aims could be facilitated, and readers are becoming acquainted with advantages and shortcomings. In addition, insight into recent technology developments, e.g., stem cell- and tissue-cultures as well as three-dimensional printing could provide new opportunities to overcome the current bottlenecks of lipid oxidation studies in muscle.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, SE, Sweden
| | - Nantawat Tatiyaborworntham
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | | | - Eric A Decker
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Mark P Richards
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Ingrid Undeland
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, SE, Sweden
| |
Collapse
|
13
|
Zhang J, Ström A, Bordes R, Alminger M, Undeland I, Abdollahi M. fRadial discharge high shear homogenization and ultrasonication assisted pH-shift processing of herring co-products with antioxidant-rich materials for maximum protein yield and functionality. Food Chem 2022; 400:133986. [DOI: 10.1016/j.foodchem.2022.133986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
|
14
|
Wu H, Yin J, Xiao S, Zhang J, Richards MP. Quercetin as an inhibitor of hemoglobin-mediated lipid oxidation: Mechanisms of action and use of molecular docking. Food Chem 2022; 384:132473. [PMID: 35219235 DOI: 10.1016/j.foodchem.2022.132473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/06/2022] [Accepted: 02/13/2022] [Indexed: 11/30/2022]
Abstract
The antioxidant effect of quercetin on hemoglobin(Hb)-mediated lipid oxidation and the mechanisms involved were investigated. Quercetin strongly inhibited Hb-mediated lipid oxidation in washed muscle. Quercetin showed effective hydroxyl radical scavenging ability similar to butylated hydroxytoluene (BHT). Quercetin reduced metHb resulting in formation of oxyHb. Bound quercetin decreased heme dissociation from metHb. Conversion to oxyHb and decreased heme dissociation represent routes to limit Hb-mediated lipid oxidation. Electrospray ionization mass spectrometry (ESI-MS) indicated one molecule of quercetin was covalently bound to Hb α-chain. Quercetin quinone docked 3.3 Å from the thiol of αCys(H15) but not near any other Cys residues of turkey Hb. At the docking site, hydrogen bonding between quercetin quinone and amino acids of α- and β-chain was demonstrated. This represents a path by which quercetin became covalently bound to α-chain. Molecular docking of heme proteins to polyphenols provides a template to better understand antioxidant interactions in muscle foods.
Collapse
Affiliation(s)
- Haizhou Wu
- National Center of Meat Quality, Safety Control, Jiangsu Innovation Center of Meat Production, Processing, College of Food Science, Technology, Nanjing Agricultural University, Nanjing 210095, PR China; Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Meat Science and Animal Biologics Discovery Program, 1933 Observatory Dr. Madison, WI 53706, United States; Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Jie Yin
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Meat Science and Animal Biologics Discovery Program, 1933 Observatory Dr. Madison, WI 53706, United States
| | - Shulan Xiao
- National Center of Meat Quality, Safety Control, Jiangsu Innovation Center of Meat Production, Processing, College of Food Science, Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianhao Zhang
- National Center of Meat Quality, Safety Control, Jiangsu Innovation Center of Meat Production, Processing, College of Food Science, Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Mark P Richards
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Meat Science and Animal Biologics Discovery Program, 1933 Observatory Dr. Madison, WI 53706, United States.
| |
Collapse
|
15
|
Sajib M, Trigo JP, Abdollahi M, Undeland I. Pilot-Scale Ensilaging of Herring Filleting Co-Products and Subsequent Separation of Fish Oil and Protein Hydrolysates. FOOD BIOPROCESS TECH 2022; 15:2267-2281. [PMID: 35875173 PMCID: PMC9295090 DOI: 10.1007/s11947-022-02870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022]
Abstract
In this study, ensilaging of herring (Clupea harengus) filleting co-products was taken from lab-scale to pilot scale (1500 L) while monitoring the protein degree of hydrolysis (DH) and lipid oxidation. Subsequently, the possibility of recovering fish oil and protein hydrolysates using batch centrifugation at different g-forces/times was investigated. Around 38% DH was recorded after 2-day pilot-scale ensilaging of herring co-products at ambient temperature (i.e., ~ 22 °C), which was similar to the DH found in lab-scale (40% after 2 days; 22 °C). The lipid oxidation marker 2-thiobarbituric acid reactive substances (TBARS) reached 20 µmole TBARS/kg silage after 2-day ensilaging. Centrifugation of the silage at 3000-8500 × g for 2-20 min revealed successful separation into fish oil and protein hydrolysates. Heat-treating the silage (85 °C; 30 min) prior to centrifugation resulted in significantly higher oil and hydrolysates recoveries; the same being true for increased g-force. At 8500 × g, the recovery of oil and hydrolysates were 9.7 and 53.0% w/w, respectively, from heat-treated silage, while recoveries were 4.1 and 48.1% w/w, respectively, from non-heat treated silage. At 4500 × g, being a more scalable approach, corresponding numbers were 8.2 and 47.1% (w/w) as well as 2.0 and 40.2% (w/w). The recovered fish oil contained 8% EPA and 11% DHA of total fatty acids. Free fatty acids (FFA), peroxide value (PV), p-anisidine value (p-AV), and total oxidation (TOTOX) values of oils were in the range of 4-7% (FFA), 3.6-3.7 meq/kg oil (PV), 2.5-4.0 (p-AV), and 9.9-11.1 (TOTOX), respectively, which were within the acceptable limits for human consumption specified by the GOED voluntary monograph. The recovered protein hydrolysates contained peptides in the molecular weight range 0.3-6 kDa (~ 37%) and 11-34 kDa (~ 63%). Also, the remaining solids contained 15-17% (w/w) protein, having 44-45% essential amino acids. Overall, the results suggest that herring co-product silage is a valuable source of fish oil and protein hydrolysates, paving the way for ensilaging based-biorefining of herring co-products into multiple products. Supplementary Information The online version contains supplementary material available at 10.1007/s11947-022-02870-9.
Collapse
Affiliation(s)
- Mursalin Sajib
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - João P. Trigo
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Mehdi Abdollahi
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Ingrid Undeland
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
16
|
Tatiyaborworntham N, Oz F, Richards MP, Wu H. Paradoxical effects of lipolysis on the lipid oxidation in meat and meat products. Food Chem X 2022; 14:100317. [PMID: 35571332 PMCID: PMC9092974 DOI: 10.1016/j.fochx.2022.100317] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022] Open
Abstract
Lipolysis in meat and meat products is a phenomenon involving hydrolysis of lipids, notably via enzymatic catalysis that takes place even postmortem. During refrigerated and frozen storage of meat, in particular fish, endogenous lipolytic enzymes actively degrade triacylglycerols and phospholipids resulting in accumulation of free fatty acids and other hydrolytic products. A classical conjecture suggests that lipolysis enhances lipid oxidation which is involved in quality deterioration of fresh meat and, to some degrees, flavor development of certain meat products. Recent studies (<5 years) have shown that under some circumstances, lipolysis of certain lipolytic enzymes can inhibit lipid oxidation in muscle models, which provides more insight in lipid oxidation mechanisms in muscle matrices as well as implies potential strategies for improving meat quality. This review will discuss such paradoxical effects and potential mechanisms of lipolysis on lipid oxidation in meat and meat products.
Collapse
Affiliation(s)
- Nantawat Tatiyaborworntham
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Mark P. Richards
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Meat Science and Animal Biologics Discovery, 1933 Observatory Dr. Madison, WI 53706, United States
| | - Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| |
Collapse
|
17
|
Wu H, Forghani B, Abdollahi M, Undeland I. Lipid oxidation in sorted herring (Clupea harengus) filleting co-products from two seasons and its relationship to composition. Food Chem 2022; 373:131523. [PMID: 34801287 DOI: 10.1016/j.foodchem.2021.131523] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 11/04/2022]
Abstract
Lipid oxidation in ice-stored sorted herring fractions (head, backbone, viscera + belly flap, tail, fillet) from spring and fall, and its association with endogenous prooxidants, antioxidants and lipid substrates were investigated. Peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) had increased significantly in all fractions after 1 day, but for both seasons, the most rapid PV and TBARS development occurred in head, which also had highest hemoglobin (Hb) levels and lipoxygenases (LOX) activity. Viscera + belly flap was overall the most stable part, and also had the highest α-tocopherol content. Pearson correlation analyses across all five fractions confirmed a significant impact of Hb, LOX and α-tocopherol on the lipid oxidation susceptibility, while content of total iron, copper, lipids or polyunsaturated fatty acids provided no significant correlation. Overall, the study showed which pro-oxidants that should be inhibited or removed to succeed with value adding of herring filleting co-products and the fillet itself.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| | - Bita Forghani
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Ingrid Undeland
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| |
Collapse
|
18
|
Zhang J, Abdollahi M, Alminger M, Undeland I. Cross-processing herring and salmon co-products with agricultural and marine side-streams or seaweeds produces protein isolates more stable towards lipid oxidation. Food Chem 2022; 382:132314. [PMID: 35149464 DOI: 10.1016/j.foodchem.2022.132314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/10/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Herring and salmon filleting co-products were pH-shift processed together with seven antioxidant-containing raw materials ("helpers") including lingonberry-, apple-, oat-, barley- and shrimp-co-products, and two seaweeds (Saccharina latissima, Ulva fenestrata) to produce protein isolates stable towards lipid oxidation. Malondialdehyde (MDA) and 4-hydroxy-(E)-2-hexenal (HHE) levels revealed that all helpers, except shrimp shells, to different extents retarded lipid oxidation both during pH-shift-processing and ice storage. The three helpers performing best were: lingonberry press-cake > apple pomace ∼ Ulva. Color of protein isolates was affected by helper-derived pigments (e.g., anthocyanins, carotenoids, chlorophyll) and lipid oxidation-induced changes (e.g., metHb-formation, pigment-bleaching). In conclusion, combining fish co-products with other food side-streams or seaweeds during pH-shift processing appears a promising new tool to minimize lipid oxidation of protein isolates, both during their production and subsequent storage. Lingonberry press-cake was the most efficient helper but provided dark color which may narrow product development possibilities, something which requires further attention.
Collapse
Affiliation(s)
- Jingnan Zhang
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Marie Alminger
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Ingrid Undeland
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
19
|
Effect of oxidative modification by reactive oxygen species (ROS) on the aggregation of whey protein concentrate (WPC). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Wu H, Richards MP, Undeland I. Lipid oxidation and antioxidant delivery systems in muscle food. Compr Rev Food Sci Food Saf 2022; 21:1275-1299. [PMID: 35080797 DOI: 10.1111/1541-4337.12890] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/24/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022]
Abstract
Lipid oxidation accelerates quality deterioration in muscle-based foods (fish, red meat, and poultry), resulting in off-odors/flavors, color problems, texture defects, and safety concerns. Adding antioxidants is one approach to control lipid oxidation, and several delivery strategies have been applied, such as supplementing antioxidants to the feed, direct mixing into minces, or, for whole muscle pieces; spraying, glazing, and injection. However, some issues linked to these technologies hinder their wide utilization, such as low effectiveness, noncompatibility with clean label, and off-flavor. These shortcomings have promoted the development of new antioxidant delivery technologies. In this review, the main focus is on the principles, characteristics, and implementation of five novel antioxidant delivery methods in different types of muscle food products. Their advantages and drawbacks are also summarized, plus comments about future trends in this area. Among novel routes to deliver antioxidants to muscle foods are, for whole tissues, recyclable dipping solutions; for minces, encapsulation; and, for both minces and whole tissues, cross-processing with nonmuscle antioxidant-containing raw materials as well as applications of edible films/coatings and active packaging. Advantages of these technologies comprise, for example, low price, the possibility to control the antioxidant release rate, overcoming strong aromas from natural antioxidants, and allowing antioxidant-containing raw materials from the food industry to be valorized, providing an opportunity for more circular food production.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Mark P Richards
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ingrid Undeland
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
21
|
Kakko T, Damerau A, Nisov A, Puganen A, Tuomasjukka S, Honkapää K, Tarvainen M, Yang B. Quality of Protein Isolates and Hydrolysates from Baltic Herring (Clupea harengus membras) and Roach (Rutilus rutilus) Produced by pH-Shift Processes and Enzymatic Hydrolysis. Foods 2022; 11:foods11020230. [PMID: 35053963 PMCID: PMC8775156 DOI: 10.3390/foods11020230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 12/04/2022] Open
Abstract
Fractionation is a potential way to valorize under-utilized fishes, but the quality of the resulting fractions is crucial in terms of their applicability. The aim of this work was to study the quality of protein isolates and hydrolysates extracted from roach (Rutilus rutilus) and Baltic herring (Clupea harengus membras) using either pH shift or enzymatic hydrolysis. The amino acid composition of protein isolates and hydrolysates mostly complied with the nutritional requirements for adults, but protein isolates produced using pH shift showed higher essential to non-essential amino acid ratios compared with enzymatically produced hydrolysates, 0.84–0.85 vs. 0.65–0.70, respectively. Enzymatically produced protein hydrolysates had a lower total lipid content, lower proportion of phospholipids, and exhibited lower degrees of protein and lipid oxidation compared with pH-shift-produced isolates. These findings suggest enzymatic hydrolysis to be more promising from a lipid oxidation perspective while the pH-shift method ranked higher from a nutrient perspective. However, due to the different applications of protein isolates and hydrolysates produced using pH shift or enzymatic hydrolysis, respectively, the further optimization of both studied methods is recommended.
Collapse
Affiliation(s)
- Tanja Kakko
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
| | - Annelie Damerau
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
| | - Anni Nisov
- VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland; (A.N.); (K.H.)
| | - Anna Puganen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
| | - Saska Tuomasjukka
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
| | - Kaisu Honkapää
- VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland; (A.N.); (K.H.)
| | - Marko Tarvainen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (T.K.); (A.D.); (A.P.); (S.T.); (M.T.)
- Correspondence: ; Tel.: +358-452-737988
| |
Collapse
|
22
|
Phetsang H, Panpipat W, Panya A, Phonsatta N, Cheong L, Chaijan M. Chemical characteristics and volatile compounds profiles in different muscle part of the farmed hybrid catfish (
Clarias macrocephalus
×
Clarias gariepinus
). Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hatairad Phetsang
- Food Technology and Innovation Research Centre of Excellence School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat 80160 Thailand
| | - Worawan Panpipat
- Food Technology and Innovation Research Centre of Excellence School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat 80160 Thailand
| | - Atikorn Panya
- Food Biotechnology Research Team Functional Ingredients and Food Innovation Research Group National Centre for Genetic Engineering and Biotechnology (BIOTEC) 113 Thailand Science Park Phaholyothin Rd. Khlong Nueng Pathumthani 12120 Thailand
| | - Natthaporn Phonsatta
- Food Biotechnology Research Team Functional Ingredients and Food Innovation Research Group National Centre for Genetic Engineering and Biotechnology (BIOTEC) 113 Thailand Science Park Phaholyothin Rd. Khlong Nueng Pathumthani 12120 Thailand
| | - Ling‐Zhi Cheong
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition College of Food and Pharmaceutical Science Ningbo University Ningbo 315211 China
| | - Manat Chaijan
- Food Technology and Innovation Research Centre of Excellence School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat 80160 Thailand
| |
Collapse
|
23
|
A Recyclable Dipping Strategy to Stabilize Herring (Clupea harengus) Co-products During Ice Storage. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02717-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractApplying value-adding techniques to fish filleting co-products is rendered difficult due to their high susceptibility to lipid oxidation, microbial spoilage, and amine formation. In this study, a recyclable dipping strategy was developed and investigated for its ability to stabilize herring (Clupea harengus) co-products (head, backbone, caudal fin, intestines, belly flap, skin, and in some cases roe) against oxidation and microbial spoilage. From initial screening of seven antioxidative components/formulas in minced herring co-products during ice storage, an oil-soluble rosemary extract (RE-B) and isoascorbic acid (IAA) were identified as most promising candidates. These compounds were then formulated to a recyclable solution to be used for dipping of the herring co-products. The commercial Duralox MANC antioxidant mixture was used as a positive control. Dipping in 0.2% RE-B solution ± 0.5% IAA or in 2% Duralox MANC solutions remarkably increased the oxidation lag phase from < 1 day to > 12 days during subsequent storage on ice (0–1 °C) of minced or intact co-products, respectively, even when the antioxidant solutions were re-used up to 10 times. The dipping also reduced microbiological growth and total volatile basic nitrogen, but the effect became weaker with an increased number of re-using cycles. The presented dipping strategies could hereby facilitate more diversified end use of herring co-products from current fish meal to high-quality minces, protein isolates, or oils for the food industry.
Collapse
|
24
|
Phadke GG, Rathod NB, Ozogul F, Elavarasan K, Karthikeyan M, Shin KH, Kim SK. Exploiting of Secondary Raw Materials from Fish Processing Industry as a Source of Bioactive Peptide-Rich Protein Hydrolysates. Mar Drugs 2021; 19:md19090480. [PMID: 34564142 PMCID: PMC8468292 DOI: 10.3390/md19090480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Developing peptide-based drugs are very promising to address many of the lifestyle mediated diseases which are prevalent in a major portion of the global population. As an alternative to synthetic peptide-based drugs, derived peptides from natural sources have gained a greater attention in the last two decades. Aquatic organisms including plants, fish and shellfish are known as a rich reservoir of parent protein molecules which can offer novel sequences of amino acids in peptides, having unique bio-functional properties upon hydrolyzing with proteases from different sources. However, rather than exploiting fish and shellfish stocks which are already under pressure due to overexploitation, the processing discards, regarded as secondary raw material, could be a potential choice for peptide based therapeutic development strategies. In this connection, we have attempted to review the scientific reports in this area of research that deal with some of the well-established bioactive properties, such as antihypertensive, anti-oxidative, anti-coagulative, antibacterial and anticarcinogenic properties, with reference to the type of enzymes, substrate used, degree of particular bio-functionality, mechanism, and wherever possible, the active amino acid sequences in peptides. Many of the studies have been conducted on hydrolysate (crude mixture of peptides) enriched with low molecular bioactive peptides. In vitro and in vivo experiments on the potency of bioactive peptides to modulate the human physiological functions beneficially have demonstrated that these peptides can be used in the prevention and treatment of non-communicable lifestyle mediated diseases. The information synthesized under this review could serve as a point of reference to drive further research on and development of functionally active therapeutic natural peptides. Availability of such scientific information is expected to open up new zones of investigation for adding value to underutilized secondary raw materials, which in turn paves the way for sustainability in fish processing. However, there are significant challenges ahead in exploring the fish waste as a source of bioactive peptides, as it demands more studies on mechanisms and structure–function relationship understanding as well as clearance from regulatory and statutory bodies before reaching the end user in the form of supplement or therapeutics.
Collapse
Affiliation(s)
- Girija Gajanan Phadke
- Network for Fish Quality Management & Sustainable Fishing (NETFISH), The Marine Products Export Development Authority (MPEDA), Navi Mumbai 410206, Maharashtra, India;
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha 402109, Maharashtra, India;
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
| | - Krishnamoorthy Elavarasan
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Kochi 682029, Kerala, India;
| | - Muthusamy Karthikeyan
- The Marine Products Export Development Authority (MPEDA), Kochi 682036, Kerala, India;
| | - Kyung-Hoon Shin
- Department of Marine Science & Convergence Engineering, Hanyang University, ERICA Campus, Ansan 11558, Gyeonggi-do, Korea;
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, Hanyang University, ERICA Campus, Ansan 11558, Gyeonggi-do, Korea;
- Correspondence: ; Tel.: +82-31-400-5539 or +82-10-7223-6375
| |
Collapse
|