1
|
Wang H, Zhao Y, Wu T, Hou Y, Chen X, Shi J, Liu K, Liu Y, Xu YJ. Development and application of a pseudotargeted lipidomics method for alkylglycerol analysis. Food Chem 2024; 437:137926. [PMID: 37948802 DOI: 10.1016/j.foodchem.2023.137926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Alkylglycerols (1-O-alkyl-sn-glycerols) are microscale but critical lipids in foods. Conventional lipidomics analysis often loses sight of alkylglycerol analysis. In this study, we developed a high coverage pseudotargeted lipidomics method for analyzing alkylglycerols. The developed method integrated the advantages of GC-MS and LC-MS to profile alkylglycerol-type ether lipids comprehensively, with the help of a data processing Dart package termed FFIMA (Feature Fragments Information Matching Algorithm). The developed method exhibited competitive superiority to conventional lipidomics, such as wider coverage and higher accuracy. The validated method was assessed by three aquatic products and three milks. A total of 25 alkylglycerols, 107 diacylglycerol ethers, 21 monoacylglycerol ethers, 28 alkylglycerol-type ether phospholipids, and 35 plasmalogens were identified in the six foods. The results demonstrated that this method offers a comprehensive analysis of a wide spectrum of alkylglycerols.
Collapse
Affiliation(s)
- Hailong Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yiqing Zhao
- Hyproca Nutrition Co., Ltd. Changsha, China; Ausnutria Dairy (China) Co., Ltd, China
| | - Tong Wu
- Hyproca Nutrition Co., Ltd. Changsha, China; Ausnutria Dairy (China) Co., Ltd, China
| | - Yanmei Hou
- Hyproca Nutrition Co., Ltd. Changsha, China; Ausnutria Dairy (China) Co., Ltd, China
| | - Xiaoyin Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Kun Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Schievano E, Piana L, Tessari M. Automatic nmr-based protocol for assessment of honey authenticity. Food Chem 2023; 420:136094. [PMID: 37062082 DOI: 10.1016/j.foodchem.2023.136094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
1H NMR analysis of organic extracts of honey is a powerful technique to confirm its botanical origin, thanks to the presence of signals that are specific to each floral typology. Similarly, signals from bee metabolites provide an important tool to verify honey entomological origin. Here, we present a method for honey screening that does not require any detailed analysis of the NMR spectrum for the detection and quantification of such markers. Our approach is based on the measurement of two spectral parameters, named entomological factor (EF) and aromatic factor (AF), calculated by integration of well-defined regions of the NMR spectrum. The values of EF and AF can reveal direct or indirect dilution of honey with sugar syrups. This method was tested on honeys of different floral origins and could identify all adulterated samples previously recognized by official techniques. Notably, several samples found compliant by official methods were proven non-genuine by the proposed approach.
Collapse
|
3
|
Dranca F, Ropciuc S, Pauliuc D, Oroian M. Honey adulteration detection based on composition and differential scanning calorimetry (DSC) parameters. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|