1
|
Shang YF, Chen H, Ni ZJ, Thakur K, Zhang JG, Khan MR, Wei ZJ. Platycodon grandiflorum saponins: Ionic liquid-ultrasound-assisted extraction, antioxidant, whitening, and antiaging activity. Food Chem 2024; 451:139521. [PMID: 38703735 DOI: 10.1016/j.foodchem.2024.139521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
This study explored the use of ionic liquid-ultrasound (ILU)-assisted extraction to enhance the extraction rate of Platycodon grandiflorum saponins (PGSs), and the content, extraction mechanism, antioxidant activity, whitening, and antiaging activity of PGSs prepared using ILU, ultrasound-water, thermal reflux-ethanol, and cellulase hydrolysis were compared. The ILU method particularly disrupted the cell wall, improved PGS extraction efficiency, and yielded a high total saponin content of 1.45 ± 0.02 mg/g. Five monomeric saponins were identified, with platycodin D being the most abundant at 1.357 mg/g. PGSs displayed excellent in vitro antioxidant activity and exhibited inhibitory effects on tyrosinase, elastase, and hyaluronidase. The results suggest that PGSs may have broad antioxidant, skin-whitening, and antiaging potential to a large extent. Overall, this study provided valuable insights into the extraction, identification, and bioactivities of PGSs, which could serve as a reference for future development and application of these compounds in the functional foods industry.
Collapse
Affiliation(s)
- Ya-Fang Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Hui Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Zhao L, Tang X, Ni X, Zhang J, Ineza Urujeni G, Wang D, He H, Dramou P. Efficient and Selective Adsorption of cis-Diols via the Suzuki-Miyaura Cross-Coupling-Modified Phenylboronic-Acid Functionalized Covalent Organic Framework. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1884-1891. [PMID: 38190755 DOI: 10.1021/acs.langmuir.3c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this work, a functional group (boronic acid) was modified onto a covalent organic framework (COF) using the Suzuki-Miyaura cross-coupling reaction to obtain a phenylboronic acid-functionalized covalent organic framework (BrCOF-PBA). This product was used as a selective adsorbent and largely as an efficient solid-phase extractant of flavonoids containing cis-diol structures like quercetin (QUE). Five or six-membered cyclic esters generated from the COF were characterized, and some physicochemical studies were performed, resulting in excellent chemical stability and crystallinity, high specific surface area, stable pore structure, and regular pore size. Unique selectivity of BrCOF-PBA was observed toward QUE and exhibited a huge adsorption capacity (213.96 mg g-1) in a relatively short time (90 min). In contrast, the adsorption properties of morin (MOR) and kaempferol (KAE) with a certain degree of chemical similarity to QUE were only 27.62 and 21.76 mg g-1, respectively. BrCOF-PBA also demonstrated good reusability and robustness, making it an attractive composite material for further analytical applicability.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xue Tang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xu Ni
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjing Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | | | - Dan Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hua He
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Pierre Dramou
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Molley TG, Jiang S, Ong L, Kopecky C, Ranaweera CD, Jalandhra GK, Milton L, Kardia E, Zhou Z, Rnjak-Kovacina J, Waters SA, Toh YC, Kilian KA. Gas-modulating microcapsules for spatiotemporal control of hypoxia. Proc Natl Acad Sci U S A 2023; 120:e2217557120. [PMID: 37040415 PMCID: PMC10120079 DOI: 10.1073/pnas.2217557120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high loading capacity, which precisely controls the oxygen content in cell culture. Here, a single microcapsule is able to locally perturb the oxygen balance, and varying the concentration and distribution of matrix-embedded microcapsules provides spatiotemporal control. We demonstrate attenuation of hypoxia signaling in populations of stem cells, cancer cells, endothelial cells, cancer spheroids, and intestinal organoids. Varying capsule placement, media formulation, and timing of replenishment yields tunable oxygen gradients, with concurrent spatial growth and morphogenesis in a single well. Capsule containing hydrogel films applied to chick chorioallantoic membranes encourages neovascularization, providing scope for topical treatments or hydrogel wound dressings. This platform can be used in a variety of formats, including deposition in hydrogels, as granular solids for 3D bioprinting, and as injectable biomaterials. Overall, this platform's simplicity and flexibility will prove useful for fundamental studies of oxygen-mediated processes in virtually any in vitro or in vivo format, with scope for inclusion in biomedical materials for treating injury or disease.
Collapse
Affiliation(s)
- Thomas G. Molley
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW2052, Australia
- School of Chemistry, University of New South Wales, Sydney, NSW2052, Australia
| | - Shouyuan Jiang
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Louis Ong
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
- Max-Planck Queensland Centre, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
| | - Chantal Kopecky
- School of Chemistry, University of New South Wales, Sydney, NSW2052, Australia
| | | | - Gagan K. Jalandhra
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Laura Milton
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
| | - Egi Kardia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Center, University of New South Wales, Sydney, NSW2052, Australia
| | - Zeheng Zhou
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW2052, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Shafagh A. Waters
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Center, University of New South Wales, Sydney, NSW2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW2052, Australia
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
- Max-Planck Queensland Centre, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
- Centre for Microbiome Research, Queensland University of Technology, Woolloongabba, QLD4102, Australia
| | - Kristopher A. Kilian
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW2052, Australia
- School of Chemistry, University of New South Wales, Sydney, NSW2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Center, University of New South Wales, Sydney, NSW2052, Australia
| |
Collapse
|
4
|
Liang F, Li W, Li M, Li X, He J, Wu Q. Kaempferol molecularly imprinted polymers: preparation, characterization and application to the separation of kaempferol from ginkgo leaves. POLYM INT 2023. [DOI: 10.1002/pi.6511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Fangping Liang
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Wurong Li
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Mingao Li
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Xican Li
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Jianfeng He
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Quanzhou Wu
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
5
|
Feng X, Cao Y, Qin Y, Zhao S, Toufouki S, Yao S. Triphase dynamic extraction system involved with ionic liquid and deep eutectic solvent for various bioactive constituents from Tartary Buckwheat simultaneously. Food Chem 2022; 405:134955. [DOI: 10.1016/j.foodchem.2022.134955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
|
6
|
The Improvement of Sensory and Bioactive Properties of Yogurt with the Introduction of Tartary Buckwheat. Foods 2022; 11:foods11121774. [PMID: 35741972 PMCID: PMC9222765 DOI: 10.3390/foods11121774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 01/24/2023] Open
Abstract
The incorporation of cereals in yogurt has recently gained increasing consumer approval, for its high nutritional value and health benefits, all over the world. Following this emerging trend, Tartary buckwheat (TB) was supplemented into yogurt as a natural functional ingredient in order to develop a yogurt with enhanced product characteristics and consumer acceptability. The impact of TB addition on physicochemical properties (pH, acidity, apparent viscosity, etc.) and the viability of lactic acid bacteria in yogurt was investigated. It is found that the TB introduction can reduce the pH, increase the acidity and apparent viscosity, and also greatly boost the bioactivities of yogurt. Response surface analysis demonstrated that yogurt with 8 g of TB, 10 g of sugar, and a fermentation duration of 5 h had the highest overall acceptability, and these cultural conditions were chosen as the best. Furthermore, the TB-added yogurt had not only a better sensory and aroma profile, but also good prospective health advantages when compared to regular yogurt. Our research shows that adding TB to yogurt has a significant positive impact on both overall quality and sensory characteristics, making a compelling case for using TB yogurt and developing new fermented dairy products.
Collapse
|
7
|
Zou L, Wu D, Ren G, Hu Y, Peng L, Zhao J, Garcia-Perez P, Carpena M, Prieto MA, Cao H, Cheng KW, Wang M, Simal-Gandara J, John OD, Rengasamy KRR, Zhao G, Xiao J. Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat ( Fagopyrum tataricum). Crit Rev Food Sci Nutr 2021; 63:657-673. [PMID: 34278850 DOI: 10.1080/10408398.2021.1952161] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tartary buckwheat belongs to the family Polygonaceae, which is a traditionally edible and medicinal plant. Due to its various bioactive compounds, the consumption of Tartary buckwheat is correlated to a wide range of health benefits, and increasing attention has been paid to its potential as a functional food. This review summarizes the main bioactive compounds and important bioactivities and health benefits of Tartary buckwheat, emphasizing its protective effects on metabolic diseases and relevant molecular mechanisms. Tartary buckwheat contains a wide range of bioactive compounds, such as flavonoids, phenolic acids, triterpenoids, phenylpropanoid glycosides, bioactive polysaccharides, and bioactive proteins and peptides, as well as D-chiro-inositol and its derivatives. Consumption of Tartary buckwheat and Tartary buckwheat-enriched products is linked to multiple health benefits, e.g., antioxidant, anti-inflammatory, antihyperlipidemic, anticancer, antidiabetic, antiobesity, antihypertensive, and hepatoprotective activities. Especially, clinical studies indicate that Tartary buckwheat exhibits remarkable antidiabetic activities. Various tartary buckwheat -based foods presenting major health benefits as fat and blood glucose-lowering agents have been commercialized. Additionally, to address the safety concerns, i.e., allergic reactions, heavy metal and mycotoxin contaminations, the quality control standards for Tartary buckwheat and its products should be drafted and completed in the future.
Collapse
Affiliation(s)
- Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Guixing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Pascual Garcia-Perez
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Maria Carpena
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Miguel A Prieto
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain.,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Ka-Wing Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Oliver D John
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|