1
|
Cruz-Casas DE, Ramos-González R, Prado-Barragán LA, Iliná A, Aguilar CN, Rodríguez-Herrera R, Tsopmo A, Flores-Gallegos AC. Protein hydrolysates with ACE-I inhibitory activity from amaranth seeds fermented with Enterococcus faecium-LR9: Identification of peptides and molecular docking. Food Chem 2024; 464:141598. [PMID: 39413603 DOI: 10.1016/j.foodchem.2024.141598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
One of the causes of hypertension is the activity of angiotensin-I converting enzyme (ACEI), making its inhibition a crucial strategy for controlling the disease. Protein hydrolysates are a known source of bioactive peptides that contribute to ACE-I inhibition. This study aims to evaluate the ACE-I inhibitory activity of amaranth seed hydrolysates after fermentation with Enterococcus faecium-LR9 and to compare it with Leuconostoc mesenteroides-18C6 and enzymatic hydrolysis (Alcalase®). The fermentation strategy with LR9 proved to be more effective in inhibiting ACE-I (79.1 ± 2.6 %) in vitro compared to 18C6 (68.0 ± 9.8 %) and enzymatic hydrolysis (69.4 ± 1.2 %). Consequently, these protein hydrolysates were subjected to in silico analysis, identifying 125 novel peptides. Bioinformatics and molecular docking analyses revealed 10 peptides with high ACE-I inhibitory potential. Among them, the IFQFPKTY and VIKPPSRAW peptides stood out. Therefore, E. faecium-LR9 is a promising strain for the release of bioactive peptides from seed storage proteins.
Collapse
Affiliation(s)
- Dora Elisa Cruz-Casas
- School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico
| | - Rodolfo Ramos-González
- CONAHCYT-Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico
| | - Lilia Arely Prado-Barragán
- Biotechnology Department, Biological. Health Sciences Division, Universidad Autónoma Metropolitana, Iztapalapa Campus, 09340 Ciudad de México, Mexico
| | - Anna Iliná
- Nanobioscience Group, School of Chemistry, Universidad Autónoma de Coahuila. Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N Aguilar
- School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico
| | - Raúl Rodríguez-Herrera
- School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico
| | - Apollinaire Tsopmo
- Food Science Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada..
| | - Adriana Carolina Flores-Gallegos
- School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico.
| |
Collapse
|
2
|
Suárez SE, Rabesona H, Ménard O, Jardin J, Anton M, Cristina Añón M. Dynamic digestion of a high protein beverage based on amaranth: Structural changes and antihypertensive activity. Food Res Int 2024; 187:114416. [PMID: 38763666 DOI: 10.1016/j.foodres.2024.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
An amaranth beverage (AB) was subjected to a simulated process of dynamic gastrointestinal digestion DIDGI®, a simple two-compartment in vitro dynamic gastrointestinal digestion system. The structural changes caused to the proteins during digestion and the digesta inhibitory capacity of the angiotensin converting enzyme (ACE) were investigated. In gastric compartment the degree of hydrolysis (DH) was 14.7 ± 1.5 % and in the intestinal compartment, proteins were digests in a greater extent (DH = 60.6 ± 8.4 %). Protein aggregation was detected during the gastric phase. The final digesta obtained both at the gastric and intestinal level, showed ACE inhibitory capacity (IC50 80 ± 10 and 140 ± 20 μg/mL, respectively). Purified fractions from these digesta showed even greater inhibitory capacity, being eluted 2 (E2) the most active fraction (IC50 60 ± 10 μg/mL). Twenty-six peptide sequences were identified. Six of them, with potential antihypertensive capacity, belong to A. hypochondriacus, 3 agglutinins and 3 encrypted sequences in the 11S globulin. Results obtained provide new and useful information on peptides released from the digestion of an amaranth based beverage and its ACE bioactivity.
Collapse
Affiliation(s)
- Santiago E Suárez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, UNLP. CIC. CONICET (Consejo Nacional de Investigaciones Científica y Técnicas), Calle 47 y 116 - 1900, La Plata, Argentina; INRAE, UR BIA, F-44316 Nantes, France; INRAE, Institut AGRO, STLO, 35042 Rennes, France
| | | | | | | | | | - María Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, UNLP. CIC. CONICET (Consejo Nacional de Investigaciones Científica y Técnicas), Calle 47 y 116 - 1900, La Plata, Argentina.
| |
Collapse
|
3
|
Araujo-León JA, Sánchez-del Pino I, Ortiz-Andrade R, Hidalgo-Figueroa S, Carrera-Lanestosa A, Brito-Argáez LG, González-Sánchez A, Giácoman-Vallejos G, Hernández-Abreu O, Peraza-Sánchez SR, Xingú-López A, Aguilar-Hernández V. HPLC-Based Metabolomic Analysis and Characterization of Amaranthus cruentus Leaf and Inflorescence Extracts for Their Antidiabetic and Antihypertensive Potential. Molecules 2024; 29:2003. [PMID: 38731493 PMCID: PMC11085149 DOI: 10.3390/molecules29092003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The aim of this study was to investigate the potential of Amaranthus cruentus flavonoids (quercetin, kaempferol, catechin, hesperetin, naringenin, hesperidin, and naringin), cinnamic acid derivatives (p-coumaric acid, ferulic acid, and caffeic acid), and benzoic acids (vanillic acid and 4-hydroxybenzoic acid) as antioxidants, antidiabetic, and antihypertensive agents. An analytical method for simultaneous quantification of flavonoids, cinnamic acid derivatives, and benzoic acids for metabolomic analysis of leaves and inflorescences from A. cruentus was developed with HPLC-UV-DAD. Evaluation of linearity, limit of detection, limit of quantitation, precision, and recovery was used to validate the analytical method developed. Maximum total flavonoids contents (5.2 mg/g of lyophilized material) and cinnamic acid derivatives contents (0.6 mg/g of lyophilized material) were found in leaves. Using UV-Vis spectrophotometry, the maximum total betacyanin contents (74.4 mg/g of lyophilized material) and betaxanthin contents (31 mg/g of lyophilized material) were found in inflorescences. The leaf extract showed the highest activity in removing DPPH radicals. In vitro antidiabetic activity of extracts was performed with pancreatic α-glucosidase and intestinal α-amylase, and compared to acarbose. Both extracts exhibited a reduction in enzyme activity from 57 to 74%. Furthermore, the in vivo tests on normoglycemic murine models showed improved glucose homeostasis after sucrose load, which was significantly different from the control. In vitro antihypertensive activity of extracts was performed with angiotensin-converting enzyme and contrasted to captopril; both extracts exhibited a reduction of enzyme activity from 53 to 58%. The leaf extract induced a 45% relaxation in an ex vivo aorta model. In the molecular docking analysis, isoamaranthin and isogomphrenin-I showed predictive binding affinity for α-glucosidases (human maltase-glucoamylase and human sucrase-isomaltase), while catechin displayed binding affinity for human angiotensin-converting enzyme. The data from this study highlights the potential of A. cruentus as a functional food.
Collapse
Affiliation(s)
- Jesús Alfredo Araujo-León
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico; (J.A.A.-L.); (L.G.B.-A.)
| | - Ivonne Sánchez-del Pino
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico;
| | - Rolffy Ortiz-Andrade
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Mérida 97069, Yucatán, Mexico;
| | - Sergio Hidalgo-Figueroa
- CONAHCyT-División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, San Luis Potosí, Mexico;
| | - Areli Carrera-Lanestosa
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa 86280, Tabasco, Mexico;
| | - Ligia Guadalupe Brito-Argáez
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico; (J.A.A.-L.); (L.G.B.-A.)
| | - Avel González-Sánchez
- Facultad de Ingeniería, Universidad Autónoma de Yucatán (UADY), Mérida 97203, Yucatán, Mexico; (A.G.-S.); (G.G.-V.)
| | - Germán Giácoman-Vallejos
- Facultad de Ingeniería, Universidad Autónoma de Yucatán (UADY), Mérida 97203, Yucatán, Mexico; (A.G.-S.); (G.G.-V.)
| | - Oswaldo Hernández-Abreu
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco (UJAT), Cunduacán 86690, Tabasco, Mexico;
| | - Sergio R. Peraza-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico; (S.R.P.-S.); (A.X.-L.)
| | - Andrés Xingú-López
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico; (S.R.P.-S.); (A.X.-L.)
| | - Víctor Aguilar-Hernández
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico; (J.A.A.-L.); (L.G.B.-A.)
| |
Collapse
|
4
|
Du T, Xu Y, Xu X, Xiong S, Zhang L, Dong B, Huang J, Huang T, Xiao M, Xiong T, Xie M. ACE inhibitory peptides from enzymatic hydrolysate of fermented black sesame seed: Random forest-based optimization, screening, and molecular docking analysis. Food Chem 2024; 437:137921. [PMID: 37944395 DOI: 10.1016/j.foodchem.2023.137921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
In this study, black sesame seeds were fermented by Lactobacillus Plantarum NCU116 and then hydrolyzed using acid protease to improve Angiotensin-I-converting enzyme (ACE) inhibitory activity. The random forest-particle swarm optimization (RF-PSO) model was applied to predict the ACE inhibitory activity during the hydrolysis process based on the experimental data. After separating by adsorption chromatography, gel filtration chromatography, and reversed phased-high performance liquid chromatography and then screening in silico method, eight peptides were identified from fermented black sesame seed hydrolysates as ITAPHW, SLPNYHPSPR, QYLPR, IRPNGL, YHNAPIL, LSYPR, GFAGDDAPRA, and LDPNPRSF with IC50 values of 51.69 μM, 146.67 μM, 655.02 μM, 752.60 μM, 1.02 mM, 2.01 mM, 1.97 mM, and 3.43 mM, respectively. ITAPHW and SLPNYHPSPR exhibited high antioxidant activity and inhibited the ACE activity in a non-competitive pattern. Molecular docking revealed that the strong ACE inhibition of ITAPHW and SLPNYHPSPR is probably attributed to the interaction with Zn2+ of ACE.
Collapse
Affiliation(s)
- Tonghao Du
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yazhou Xu
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xiaoyan Xu
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Shijin Xiong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Linli Zhang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Biao Dong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jinqing Huang
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Nanchang 330200, China
| | - Tao Huang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330052, China
| | - Muyan Xiao
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330052, China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| | - Mingyong Xie
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| |
Collapse
|
5
|
Du T, Huang J, Xu X, Xiong S, Zhang L, Xu Y, Zhao X, Huang T, Xiao M, Xiong T, Xie M. Effects of fermentation with Lactiplantibacillus plantarum NCU116 on the antihypertensive activity and protein structure of black sesame seed. Int J Biol Macromol 2024; 262:129811. [PMID: 38302018 DOI: 10.1016/j.ijbiomac.2024.129811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Effects of fermentation by Lactobacillus Plantarum NCU116 on the antihypertensive potential of black sesame seed (BSS) and structure characteristics of fermented black sesame seed protein (FBSSP) were investigated. Angiotensin-I-converting enzyme (ACE) inhibition and zinc chelating ability of fermented black sesame seed hydrolysate (FBSSH) reached the highest of 60.78 ± 3.67 % and 2.93 ± 0.04 mg/mL at 48 h and 60 h of fermentation, respectively. Additionally, the antioxidant activities of FBSSH and surface hydrophobicity of FBSSP were increased noticeably by fermentation. The α-helix and β-rotation of FBSSP tended to decrease and increase, respectively, during fermentation. Correlation analysis indicated strong positive relationships between β-turn and ACE inhibition activity as well as zinc chelating ability with correlation coefficients r of 0.8976 and 0.8932. Importantly, novel ACE inhibitory peptides LLLPYY (IC50 = 12.20 μM) and ALIPSF (IC50 = 558.99 μM) were screened from FBSSH at 48 h using in silico method. Both peptides showed high antioxidant activities in vitro. Molecular docking analysis demonstrated that the hydrogen bond connected with zinc ions of ACE mainly attributed to the potent ACE inhibitory activity of LLLPYY. The findings indicated that fermentation by Lactobacillus Plantarum NCU116 is an effective method to enhance the antihypertensive potential of BSS.
Collapse
Affiliation(s)
- Tonghao Du
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Jinqing Huang
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Nanchang 330200, China
| | - Xiaoyan Xu
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Shijin Xiong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Linli Zhang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Yazhou Xu
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Xueting Zhao
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Tao Huang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; International Institute of Food Innovation, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330052, China
| | - Muyan Xiao
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; International Institute of Food Innovation, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330052, China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| | - Mingyong Xie
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| |
Collapse
|
6
|
Shao M, Wu H, Wang B, Zhang X, Gao X, Jiang M, Su R, Shen X. Identification and Characterization of Novel ACE Inhibitory and Antioxidant Peptides from Sardina pilchardus Hydrolysate. Foods 2023; 12:foods12112216. [PMID: 37297461 DOI: 10.3390/foods12112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Sardina pilchardus is a valuable source of bioactive peptides with potential applications in functional foods. In this study, we investigated the angiotensin-converting enzyme (ACE) inhibitory activity of Sardina pilchardus protein hydrolysate (SPH) produced using dispase and alkaline protease. Our results showed that the low molecular mass fractions (<3 kDa) obtained through ultrafiltration exhibited more effective ACE inhibition, as indicated by screening with ACE inhibitory activity. We further identified the low molecular mass fractions (<3 kDa) using an LC-MS/MS rapid screening strategy. A total of 37 peptides with potential ACE inhibitory activity were identified based on high biological activity scores, non-toxicity, good solubility, and novelty. Molecular docking was used to screen for peptides with ACE inhibitory activity, resulting in the identification of 11 peptides with higher -CDOCKER ENERGY and -CDOCKER INTERACTION ENERGY scores than lisinopril. The sequences FIGR, FILR, FQRL, FRAL, KFL, and KLF were obtained by synthesizing and validating these 11 peptides in vitro, all of which had ACE inhibitory activity, as well as zinc-chelating capacity. All six peptides were found to bind to the three active pockets (S1, S2, and S1') of ACE during molecular docking, indicating that their inhibition patterns were competitive. Further analysis of the structural characteristics of these peptides indicated that all six peptides contain phenylalanine, which suggests that they may possess antioxidant activities. After experimental verification, it was found that all six of these peptides have antioxidant activities, and we also found that the SPH and ultrafiltration fractions of SPH had antioxidant activities. These findings suggest that Sardina pilchardus may be a potential source of natural antioxidants and ACE inhibitors for the development of functional foods, and using LC-MS/MS in combination with an online database and molecular docking represents a promising, effective, and accurate approach for the discovery of novel ACE inhibitory peptides.
Collapse
Affiliation(s)
- Mingyang Shao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Haixing Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Bohui Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xuan Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xia Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Mengqi Jiang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Ruiheng Su
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xuanri Shen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition, Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center, Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Zhu F. Amaranth proteins and peptides: Biological properties and food uses. Food Res Int 2023; 164:112405. [PMID: 36738021 DOI: 10.1016/j.foodres.2022.112405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Amaranthus grains have attracted great attention due to its attractive health benefits. The grains have processing properties (e.g., starch related properties) similar to those of common cereals. Amaranth grains are gluten free and protein is a significant component of these grains. Proteins of the grains have been used in various food applications such as formulations of edible films and emulsions for controlled release of bioactive compounds. The proteins have been hydrolyzed using different enzymes to produce peptides and hydrolysates, which showed a range of biological functions including anti-hypertensive and antioxidant activities among others. They have been formulated into staple foods including breads and pastas for improved nutritional quality. This review summarizes the recent advances of the last 5 years in understanding the biological functions and food applications of proteins, protein hydrolysates and peptides from the grains of different Amaranthus species. Limitations in the studies summarized are critically discussed with an aim to improve the efficiency in amaranth grain protein and peptide research.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
8
|
Sharma N, Sahu JK, Bansal V, Esua OJ, Rana S, Bhardwaj A, Punia Bangar S, Adedeji AA. Trends in millet and pseudomillet proteins - Characterization, processing and food applications. Food Res Int 2023; 164:112310. [PMID: 36737904 DOI: 10.1016/j.foodres.2022.112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Millets are small-seeded crops which have been well adopted globally owing to their high concentration of macro and micronutrients such as protein, dietary fibre, essential fatty acids, minerals and vitamins. Considering their climate resilience and potential role in nutritional and health security, the year 2023 has been declared as 'International Year of Millets' by the United Nations. Cereals being the major nutrient vehicle for a majority population, and proteins being the second most abundant nutrient in millets, these grains can be a suitable alternative for plant-based proteins. Therefore, this review was written with an aim to succinctly provide an overview of the available literature take on the characterization, processing and applications of millet-based proteins. This information would play an important role in realizing the research gap restricting the utilization of complete potential of millet proteins. This can be further used by researchers and food industries for understanding the scope of millet proteins as an ingredient for novel food product development.
Collapse
Affiliation(s)
- Nitya Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110 016, India
| | - Jatindra K Sahu
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110 016, India.
| | - Vasudha Bansal
- Department of Foods and Nutrition, Government Home Science College, Chandigarh 160 010, India
| | - Okon Johnson Esua
- Department of Agricultural and Food Engineering, University of Uyo, Uyo 520101, Nigeria; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Sudha Rana
- Department of Food Science and Technology, Punjab Agriculture University, Ludhiana, Punjab 141004, India
| | - Aastha Bhardwaj
- Department of Food Technology, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, 29631, USA
| | - Akinbode A Adedeji
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
9
|
Cruz-Casas DE, Aguilar CN, Ascacio-Valdés JA, Rodríguez-Herrera R, Chávez-González ML, Flores-Gallegos AC. Bioactive protein hydrolysates obtained from amaranth by fermentation with lactic acid bacteria and Bacillus species. Heliyon 2023; 9:e13491. [PMID: 36846651 PMCID: PMC9950839 DOI: 10.1016/j.heliyon.2023.e13491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/04/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Protein hydrolysates are a promising source of bioactive peptides. One strategy by which they can be obtained is fermentation. This method uses the proteolytic system of microorganisms to hydrolyze the parental protein. Fermentation is a little-explored method for obtaining protein hydrolysates from amaranth. Different strains of lactic acid bacteria (LAB) and Bacillus species isolated from goat milk, broccoli, aguamiel, and amaranth flour were used in this work. First, the total protein degradation (%TPD) of amaranth demonstrated by the strains was determined. The results ranged from 0 to 95.95%, the strains that produced a higher %TPD were selected. These strains were identified by molecular biology and were found to correspond to the genera Enterococcus, Lactobacillus, Bacillus, and Leuconostoc. Fermentation was carried out with amaranth flour and the selected strains. After this process, water/salt extracts (WSE) containing the released protein hydrolysates were obtained from amaranth doughs. The peptide concentration was measured by the OPA method. The antioxidant, antihypertensive and antimicrobial activity of the WSE was evaluated. In the FRAP test, the best WSE was LR9 with a concentration of 1.99 μMTE/L ± 0.07. In ABTS, 18C6 obtained the highest concentration with 19.18 μMTE/L ± 0.96. In the DPPH test, there was no significant difference. In terms of antihypertensive activity, inhibition percentages ranging from 0 to 80.65% were obtained. Some WSE were found to have antimicrobial properties against Salmonella enterica and Listeria monocytogenes. Fermentation of amaranth with LAB and Bacillus spp. allowed the release of protein hydrolysates with antioxidant, antihypertensive, and antimicrobial activity.
Collapse
Affiliation(s)
- Dora Elisa Cruz-Casas
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n, Col. República, 25280, Saltillo, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n, Col. República, 25280, Saltillo, Coahuila, Mexico
| | - Juan A. Ascacio-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n, Col. República, 25280, Saltillo, Coahuila, Mexico
| | - Raúl Rodríguez-Herrera
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n, Col. República, 25280, Saltillo, Coahuila, Mexico
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n, Col. República, 25280, Saltillo, Coahuila, Mexico
| | - Adriana C. Flores-Gallegos
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n, Col. República, 25280, Saltillo, Coahuila, Mexico
| |
Collapse
|
10
|
Jia W, Du A, Fan Z, Shi L. Novel insight into the transformation of peptides and potential benefits in brown fermented goat milk by mesoporous magnetic dispersive solid phase extraction-based peptidomics. Food Chem 2022; 389:133110. [PMID: 35504074 DOI: 10.1016/j.foodchem.2022.133110] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Brown fermented goat milk as an excellent source of bioactive peptides has only been partially elucidated. Meticulously synthesized MOF@MG as magnetic sorbent for enriching endogenous peptides owned higher reproducibility and uniform distribution of peptides PI compared with ultrafiltration. Combined with UHPLC-Q-Orbitrap, fermentation for 12 h in brown goat milk with the highest overall acceptable degree through sensory evaluation was utilized to explore the transformation of peptides and health benefits, with trypsin or plasmin hydrolyzing proteins and aminopeptidase or carboxypeptidase hydrolyzing peptides to small peptides or amino acids. A total of 1317 peptides were identified by database matching (1259) and de novo sequencing (58), among 18 peptides could originate from gene-independent enzymatic formation and top 25 characteristic peptides were quantified with concentration ranging from 0.12 to 6.40 mg L-1. Bioinformatic analysis results indicated that brown fermented goat milk possesses higher health benefits because of more than 50 peptides with potential bioactivity.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
11
|
The Mechanisms of the Potential Probiotic Lactiplantibacillus plantarum against Cardiovascular Disease and the Recent Developments in its Fermented Foods. Foods 2022; 11:foods11172549. [PMID: 36076735 PMCID: PMC9455256 DOI: 10.3390/foods11172549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease (CVD) has become the leading cause of death worldwide. Many recent studies have pointed out that Lactiplantibacillus plantarum (Lb. plantarum) has great potential in reducing the risk of CVD. Lb. plantarum is a kind of lactic acid bacteria (LAB) widely distributed in fermented food and the human intestinal tract, some strains of which have important effects on human health and the potential to be developed into probiotics. In this review, we summarize the mechanism of potential probiotic strains of Lb. plantarum against CVD. It could regulate the body’s metabolism at the molecular, cellular, and population levels, thereby lowering blood glucose and blood lipids, regulating blood pressure, and ultimately reducing the incidence of CVD. Furthermore, since Lb. plantarum is widely utilized in food industry, we highlight some of the most important new developments in fermented food for combating CVD; providing an insight into these fermented foods can assist scientists in improving the quality of these foods as well as alleviating patients’ CVD symptoms. We hope that in the future functional foods fermented by Lb. plantarum can be developed and incorporated into the daily diet to assist medication in alleviating CVD to some extent, and maintaining good health.
Collapse
|
12
|
Yang D, Li L, Li C, Chen S, Deng J, Yang S. Formation and inhibition mechanism of novel angiotensin I converting enzyme inhibitory peptides from Chouguiyu. Front Nutr 2022; 9:920945. [PMID: 35938113 PMCID: PMC9355153 DOI: 10.3389/fnut.2022.920945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
Angiotensin I converting enzyme (ACE) inhibitory peptides from fermented foods exhibit great potential to alleviate hypertension. In this study, the peptide extract from Chouguiyu exhibited a good inhibition effect on ACE, and the inhibition rate was significantly enhanced after fermentation for 8 days. The ACE inhibitory peptides were further identified, followed by their inhibition and formation mechanisms using microbiome technology and molecular docking. A total of 356 ACE inhibitory peptides were predicted using in silico, and most ACE inhibitory peptides increased after fermentation. These peptides could be hydrolyzed from 94 kinds of precursor proteins, mainly including muscle-type creatine kinase, nebulin, and troponin I. P1 (VEIINARA), P2 (FAVMVKG), P4 (EITWSDDKK), P7 (DFDDIQK), P8 (IGDDPKF), P9 (INDDPKIL), and P10 (GVDNPGHPFI) were selected as the core ACE inhibitory peptides according to their abundance and docking energy. The salt bridge and conventional hydrogen bond connecting unsaturated oxygen atoms in the peptides contributed most to the ACE inhibition. The cleavage proteases from the microbial genera in Chouguiyu for preparing these 7 core ACE inhibitory peptides were further analyzed by hydrolysis prediction and Pearson's correlation. The correlation network showed that P7, P8, and P9 were mainly produced by the proteases from LAB including Lactococcus, Enterococcus, Vagococcus, Peptostreptococcus, and Streptococcus, while P1, P2, P4, and P10 were mainly Produced by Aeromonas, Bacillus, Escherichia, and Psychrobacter. This study is helpful in isolating the proteases and microbial strains to directionally produce the responding ACE inhibitory peptides.
Collapse
Affiliation(s)
- Daqiao Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- Laihao Li
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Chunsheng Li
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jianchao Deng
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shaoling Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|