1
|
Liu Q, Huang W, Sheng C, Wu Y, Lu M, Li T, Zhang J, Wei Y, Wang Y, Ning J. Contribution of tea stems to large-leaf yellow tea aroma. Food Chem 2024; 460:140472. [PMID: 39032306 DOI: 10.1016/j.foodchem.2024.140472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Large-leaf yellow tea (LYT) is processed from both leaves and stems, resulting in a distinctive rice crust-like aroma. Tea stems may contribute differently to the aroma of LYT than leaves. This study aimed to clarify the specific contribution of stems to LYT. The volatile compounds in different components of LYT were extracted and analyzed using a combination of headspace solid-phase microextraction and stir bar sorptive extraction coupled with gas chromatography-olfactory-mass spectrometry. The results revealed high concentrations of compounds with roasty attributes in stems such as 2-ethyl-3,5-dimethylpyrazine (OAV 153-208) and 2-ethyl-3,6-dimethylpyrazine (OAV 111-140). Aroma recombination and addition experiments confirmed that the roasty aroma provided by stems plays a pivotal role in the formation of the distinctive flavor of LYT. This study offers novel insights into the contribution of stems to the aroma of LYT, which can be used for processing and quality enhancement of roasted tea.
Collapse
Affiliation(s)
- Qiuyan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wenjing Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Caiyan Sheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yida Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mingxia Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China..
| |
Collapse
|
2
|
Yan H, Lin Z, Li W, Gao J, Li P, Chen Q, Lv H, Zhang Y, Dai W, Lin Z, Zhu Y. Unraveling the Enantiomeric Distribution of Glycosidically Bound Linalool in Teas ( Camellia sinensis) and Their Acidolysis Characteristics and Pyrolysis Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38607252 DOI: 10.1021/acs.jafc.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Glycosidically bound linalool plays important roles in the formation of excellent tea flavor, while their enantiomeric distribution in teas and the actual transformations with free linalool are still unclear. In this study, a novel chiral ultrahigh performance liquid chromatography-mass spectrometry/mass spectrometry approach to directly analyze linalyl-β-primeveroside and linalyl-β-d-glucopyranoside enantiomers in teas was established and then applied in 30 tea samples. A close transformation relationship existed between the two states of linalool for their consistent dominant configurations (most S-form) and corresponding distribution trend in most teas (r up to 0.81). The acidolysis characterization indicated that free linalool might be slowly released from linalyl-β-primeveroside with stable enantiomeric ratios during long-term withering of white tea in a weakly acidic environment, along with other isomerized products, e.g., geraniol, nerol, α-terpineol, etc. Furthermore, a novel online thermal desorption-gas chromatography-mass spectrometry approach was established to simulate the pyrolysis releasing of linalyl-β-primeveroside during tea processing. Interestingly, free linalool was not the selected pyrolysis product of linalyl-β-primeveroside but rather trans/cis-2,6-dimethyl-2,6-octadiene during the high-fire roasting or baking step of oolong and green teas. The identification of above high-fire chemical marks presented great potential to scientifically evaluate the proper thermal conditions in the practical production of tea.
Collapse
Affiliation(s)
- Han Yan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Lin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weixuan Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianjian Gao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Pengliang Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qincao Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haipeng Lv
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yue Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Weidong Dai
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yin Zhu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
3
|
Zhang Y, Zhang YH, Yan H, Shao CY, Li WX, Lv HP, Lin Z, Zhu Y. Enantiomeric separation and precise quantification of chiral volatiles in Wuyi rock teas using an efficient enantioselective GC × GC-TOFMS approach. Food Res Int 2023; 169:112891. [PMID: 37254338 DOI: 10.1016/j.foodres.2023.112891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Chiral volatiles play important roles in the formation of aroma quality of foods. To date, enantiomeric characteristics of chiral volatiles in Wuyi rock tea (WRT) and their aroma contributions are still unclear. In this study, an efficient enantioselective comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (Es-GC × GC-TOFMS) approach to separate and precisely quantitate 24 pairs of chiral volatiles in WRTs was established, and the enantiomeric distribution and aroma contribution of chiral volatiles among WRTs from four representative cultivars were investigated. Enantiomeric ratio (ER) of R-α-ionone (80%) in Dahongpao (DHP), ER of S-α-terpineol (57%) in Jinfo (JF), ERs of R-γ-heptanolactone (69%), S-γ-nonanolactone (55%), (2R, 5S)-theaspirane B (91%), concentration of S-(E)-nerolidol (313.37 ng/mL) in Rougui (RG) and concentration of R-α-ionone (33.01 ng/mL) in Shuixian (SX) were unique from other types of WRTs, which were considered as the potential chemical markers to distinguish WRT cultivars. The OAV assessment determined 7 volatile enantiomers as the aroma-active compounds, especially R-α-ionone and R-δ-octanolactone in SX, as well as S-(E)-nerolidol and (1R, 2R)-methyl jasmonate in RG contribute much to aroma formation of the corresponding WRTs. The above results provide scientific references for discrimination of tea cultivars and directed improvement of the aroma quality of WRT.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yu-Hui Zhang
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Yan
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chen-Yang Shao
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei-Xuan Li
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Hai-Peng Lv
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
4
|
Zhu J, Cao X, Niu Y, Xiao Z. Investigation of Lactone Chiral Enantiomers and Their Contribution to the Aroma of Longjing Tea by Odor Activity Value and S-Curve. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6691-6698. [PMID: 37083459 DOI: 10.1021/acs.jafc.3c00860] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Odor activity value (OAV) and S-curve were used to study the content, proportion, and contribution of lactone chiral enantiomers in Longjing tea. A total of 10 enantiomers were identified in this study, among which (S)-(-)-δ-decalactone (45.4-84.4 μg/L), (S)-(-)-γ-decalactone (31.5-109 μg/L), (S)-(-)-γ-nonanolactone (23.4-72.8 μg/L), and (S)-(-)-γ-undecalactone (21.1-56.2 μg/L) presented the highest concentrations. Furthermore, (R)-(+)-γ-nonanolactone (OAV: 2-7), (S)-(-)-γ-nonanolactone (OAV: 1-5), (S)-(-)-δ-decalactone (OAV: 2-4), (R)-(+)-δ-decalactone (OAV: 1-3), and (R)-(+)-γ-undecalactone (OAV: 1-5) were determined as enantiomeric compounds that play an important role in the perceived aroma of Longjing tea. Compared with the aromatic reconstitution (AR), the threshold increased to different degrees after adding γ-nonanolactone, γ-decalactone, δ-decalactone, γ-undecalactone, and their chiral enantiomers. This finding indicated that these compounds exert significant effects on the overall aroma of the AR. The contribution of racemates and chiral enantiomers to the AR threshold and aroma is completely different. In view of the difference between racemic and enantiomers' aroma characteristics in Longjing tea, the analysis and identification of chiral enantiomers are necessary to enrich and improve the accurate analysis of the flavor profile of Longjing tea.
Collapse
Affiliation(s)
- JianCai Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xueying Cao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - YunWei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - ZuoBing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Yu J, Ho CT, Lin Z, Zhu Y, Feng Z, Ni D, Zeng S, Zeng X, Wang Y, Ning J, Zhang L, Zhai X, Wan X. Sensomics-Assisted Characterization of Key Flowery Aroma Compounds in Lu'an Guapian Green Tea Infusion ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37010118 DOI: 10.1021/acs.jafc.3c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The volatile fraction was isolated from the premium and common grade of Lu'an Guapian green tea infusion by solvent-assisted flavor evaporation distillation. With the application of aroma extract dilution analysis, a total of 52 aroma-active compounds were revealed in the flavor dilution (FD) factor area of 32-8192. Besides, five additional odorants with higher volatility were identified using solid-phase microextraction. The aroma profiles, FD factors, and quantitative data of premium Guapian (PGP) and common Guapian (CGP) showed apparent differences. The intensity of the flowery attribute was significantly higher in PGP than in CGP, while cooked vegetable-like was the most outstanding odor note in CGP. The recombination experiment and the omission test of PGP clarified that dimethyl sulfide, (E,E)-2,4-heptadienal, (E)-β-ionone, (E,Z)-2,6-nonadienal, 2-methylbutanal, indole, 6-methyl-5-hepten-2-one, hexanal, 3-methylbutanal, γ-hexalactone, methyl epijasmonate, linalool, geraniol, and (Z)-3-hexen-1-ol were the key odorants of PGP tea infusion. The omission and addition tests of flowery odorants manifested that (E)-β-ionone, geraniol, and (E,E)-2,4-heptadienal, with higher odor activity values in PGP than in CGP, contributed to the flowery attribute most. The difference in the concentration of the abovementioned odorants with flowery odor notes could be one of the main factors which led to the difference in aroma quality between the two grades of Lu'an Guapian.
Collapse
Affiliation(s)
- Jieyao Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhihui Feng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Xuehong Zeng
- Huiliu Tea Industrial Co., Limited, Lu'an 237000, China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Zhao Y, Wang M, Chen Y, Gao M, Wu L, Wang Y. LcERF134 increases the production of monoterpenes by activating the terpene biosynthesis pathway in Litsea cubeba. Int J Biol Macromol 2023; 232:123378. [PMID: 36716839 DOI: 10.1016/j.ijbiomac.2023.123378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Litsea cubeba, an aromatic species of the Lauraceae family, produces a diverse array of monoterpenes. The biosynthesis of monoterpenes is regulated by transcriptional factors (TFs), such as APETALA2/ethylene response factor (AP2/ERF). However, the regulatory mechanisms that control the AP2/ERF gene responsible for the biosynthesis of monoterpenes in L. cubeba have yet to be elucidated. Here, we identified an AP2/ERF gene, LcERF134, as an activator for the accumulation of citral and other monoterpenes. The expression level of LcERF134 was consistent with terpene synthase LcTPS42 in the pericarp. The transient overexpression of LcERF134 significantly increased monoterpene production in L. cubeba as well as the expression of rate-limiting genes involved in the monoterpene biosynthesis pathway. Furthermore, yeast one-hybrid, dual-luciferase and electrophoretic mobility shift assays demonstrated that LcERF134 activated the monoterpene biosynthesis pathway by directly binding to the GCC-box elements of the LcTPS42 and LcGPPS.SSU1 promoters. However, the overexpression of LcERF134 in tomatoes had no impact on the synthesis of monoterpenes, thus indicating that LcERF134 is a species-specific TF. Our research demonstrated that LcERF134 significantly increased the biosynthesis of monoterpenes by inducing the expression of LcTPS42 and LcGPPS.SSU1, thus offering insight into how to enhance the flavor of L. cubeba essential oil.
Collapse
Affiliation(s)
- Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Minyan Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| |
Collapse
|
7
|
Discovery and Flavor Characterization of High-Grade Markers in Baked Green Tea. Molecules 2023; 28:molecules28062462. [PMID: 36985433 PMCID: PMC10051951 DOI: 10.3390/molecules28062462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Green tea is a popular beverage around the world and possesses a unique flavor. The flavor qualities of green tea are closely related to its grade and this relationship has not yet been studied. Three baked green teas with similar flavor were studied, namely, Huangshan Maofeng, Taiping Houkui, and Shucheng Xiaolanhua. A total of 34 odor compounds were identified by solid phase microextraction (SPME) combined with two-dimensional comprehensive gas chromatography–olfactometry–mass spectrometry analysis (GC×GC-O-MS). The results of the clustering analysis showed that the content of D-limonene and linalool in the high-grade (Grade A) tea was much higher than the content in other grades, so they were identified as odor markers of Grade A baked green tea. The taste components of different grades of green tea infusion were analyzed by high-performance liquid chromatography–mass spectrometry (HPLC–MS) and HPLC. A combination of clustering analysis, principal component analysis (PCA), and orthogonal partial least squares discrimination analysis (OPLS-DA) indicated that galloylglucose, digalloylglucose, trigalloyglucose, strictinin, and gallic acid could be used as taste markers of Grade A baked green tea. Therefore, the results in this paper reveal the substances responsible for the odor and taste markers of high-grade baked green tea.
Collapse
|
8
|
Shi Q, Tang H, Mei Y, Chen J, Wang X, Liu B, Cai Y, Zhao N, Yang M, Li H. Effects of endogenous capsaicin stress and fermentation time on the microbial succession and flavor compounds of chili paste (a Chinese fermented chili pepper). Food Res Int 2023; 168:112763. [PMID: 37120214 DOI: 10.1016/j.foodres.2023.112763] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Chili paste, is a popular traditional product derived from chili pepper, and its fermentation system is affected by the variable concentration of capsaicin, which originates from the peppers. In the present study, the effects of capsaicin and fermentation time on the microbial community and flavor compounds of chili paste were investigated. After capsaicin supplementation, the total acid was significantly decreased (p < 0.05) along with lower total bacteria, especially lactic acid bacteria. Lactiplantibacillus, Lactobacillus, Weissella, Issatchenkia, Trichoderma, and Pichia were the shared and predominant genera; whereas, the Bacteroides and Kazachstania abundance was significantly increased due to the selection effect of capsaicin over time. Additionally, alterations of the microbial interaction networks and their metabolic preferences led to less lactic acid content with greater accumulation of ethyl nonanoate, methyl nonanoate, etc. This study will provide a perspective for selecting chili pepper varieties and improving the quality of fermented chili paste.
Collapse
|
9
|
Zhou Y, He Y, Zhu Z. Understanding of formation and change of chiral aroma compounds from tea leaf to tea cup provides essential information for tea quality improvement. Food Res Int 2023; 167:112703. [PMID: 37087269 DOI: 10.1016/j.foodres.2023.112703] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Abundant secondary metabolites endow tea with unique quality characteristics, among which aroma is the core component of tea quality. The ratio of chiral isomers of aroma compounds greatly affects the flavor of tea leaves. In this paper, we review the progress of research on chiral aroma compounds in tea. With the well-established GC-MS methods, the formation of, and changes in, the chiral configuration of tea aroma compounds during the whole cycle of tea leaves from the plant to the tea cup has been studied in detail. The ratio of aroma chiral isomers varies among different tea varieties and finished teas. Enzymatic reactions involving tea aroma synthases and glycoside hydrolases participate the formation of aroma compound chiral isomers during tea tree growth and tea processing. Non-enzymatic reactions including environmental factors such as high temperature and microbial fermentation involve in the change of aroma compound chiral isomers during tea processing and storage. In the future, it will be interesting to determine how changes in the proportions of chiral isomers of aroma compounds affect the environmental adaptability of tea trees; and to determine how to improve tea flavor by modifying processing methods or targeting specific genes to alter the ratio of chiral isomers of aroma compounds.
Collapse
Affiliation(s)
- Ying Zhou
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China.
| | - Yunchuan He
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China; College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| | - Zengrong Zhu
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China; College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| |
Collapse
|
10
|
Mei Y, Ge L, Lai H, Wang Y, Zeng X, Huang Y, Yang M, Zhu Y, Li H, Li J, Guo C, Hu T, Zhao N. Decoding the evolution of aromatic volatile compounds and key odorants in Suancai (a Chinese traditional fermented vegetable) during fermentation using stir bar sorptive extraction–gas chromatography–olfactometry–mass spectrometry. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Comprehensive analysis of carotenoids constituents in purple-coloured leaves and carotenoid-derived aroma differences after processing into green, black, and white tea. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Comparative investigation of key aroma terpenoids of Litsea cubeba essential oil by sensory, chromatographic, spectral and molecular studies. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Insights into Characteristic Volatiles in Wuyi Rock Teas with Different Cultivars by Chemometrics and Gas Chromatography Olfactometry/Mass Spectrometry. Foods 2022; 11:foods11244109. [PMID: 36553850 PMCID: PMC9777755 DOI: 10.3390/foods11244109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Wuyi rock tea (WRT) is one of the most famous subcategories of oolong tea, exhibiting distinct aroma characteristics with the application of different cultivars. However, a comprehensive comparison of the characteristic volatiles among WRTs with different cultivars has rarely been carried out. In this study, non-targeted analyses of volatile fragrant compounds (VFCs) and targeted aroma-active compounds in WRTs from four different cultivars were performed using chemometrics and gas chromatography olfactometry/mass spectrometry (GC-O/MS). A total of 166, 169, 166, and 169 VFCs were identified for Dahongpao (DHP), Rougui (RG), Shuixian (SX), and Jinfo (JF), respectively; and 40 components were considered as the key differential VFCs among WRTs by multivariate statistical analysis. Furthermore, 56 aroma-active compounds were recognized with predominant performances in "floral & fruity", "green & fresh", "roasted and caramel", "sweet", and "herbal" attributes. The comprehensive analysis of the chemometrics and GC-O/MS results indicated that methyl salicylate, p-cymene, 2,5-dimethylpyrazine, and 1-furfurylpyrrole in DHP; phenylethyl alcohol, phenethyl acetate, indole, and (E)-β-famesene in RG; linalool, phenethyl butyrate, hexyl hexanoate, and dihydroactinidiolide in JF; and naphthalene in SX were the characteristic volatiles for each type of WRT. The obtained results provide a fundamental basis for distinguishing tea cultivars, recombination, and simulation of the WRT aroma.
Collapse
|
14
|
Fei Z, Xie D, Wang M, Zhang Y, Zhang H, Du Q, Jin P. Enhanced biotransformation of bioactive components and volatile compounds of bamboo (Phyllostachys glauca McClure) leaf juice fermented by probiotic Streptococcus thermophiles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Wang M, Li J, Liu X, Liu C, Qian J, Yang J, Zhou X, Jia Y, Tang J, Zeng L. Characterization of Key Odorants in Lingtou Dancong Oolong Tea and Their Differences Induced by Environmental Conditions from Different Altitudes. Metabolites 2022; 12:1063. [PMID: 36355146 PMCID: PMC9695488 DOI: 10.3390/metabo12111063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 10/08/2023] Open
Abstract
Lingtou Dancong oolong tea is a famous Chinese oolong tea due to its special honey-like aroma. However, little is known about its specific aroma profile and key contributors. Furthermore, whether the aroma characteristics of Lingtou Dancong oolong tea are affected by the environmental conditions at different altitudes is unknown. In this study, the aromas in Lingtou Dancong oolong tea were extracted and analyzed by stir-bar sorptive extraction (SBSE) combined with gas chromatography-olfactometry (GC-O) and GC-mass spectrometry (GC-MS), and the aroma profiles of tea plants grown at different altitudes were compared. We detected 59 odor compounds in Lingtou Dancong oolong tea. Eight compounds with honey and floral odors were identified as key components on the basis of GC-O, GC-MS, odor activity value, and flavor dilution analyses. Differences in the contents of precursor geranyl diphosphate and transcript levels of structural genes were found to be responsible for the differential accumulation of linalool and hotrienol among plants grown at different altitudes. This is the first report on the aroma characteristics and key contributors of Lingtou Dancong oolong tea and their differences, as affected by altitude. These results provide details of the chemical basis of the aroma quality of Lingtou Dancong oolong tea.
Collapse
Affiliation(s)
- Miao Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Xiaohui Liu
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Chengshun Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jiajia Qian
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Yongxia Jia
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
16
|
Feng T, Sun J, Wang K, Song S, Chen D, Zhuang H, Lu J, Li D, Meng X, Shi M, Yao L, Ho CT. Variation in Volatile Compounds of Raw Pu-Erh Tea upon Steeping Process by Gas Chromatography-Ion Mobility Spectrometry and Characterization of the Aroma-Active Compounds in Tea Infusion Using Gas Chromatography-Olfactometry-Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13741-13753. [PMID: 36225119 DOI: 10.1021/acs.jafc.2c04342] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Steeping process is an important factor for aroma release of tea, which has rarely been investigated for the aroma changes of raw Pu-erh tea (RAPT). In addition, the comprehensive aroma characteristics identification of RAPT infusion is necessary. In this study, GC-IMS coupled with principal component analysis (PCA) was used to clarify the difference of volatile profiles during the steeping process of RAPT. Furthermore, the volatiles contained in the RAPT infusion were extracted by three pretreatment methods (HS-SPME, SBSE, and SAFE) and identified using GC-O-MS. According to the odor activity value, 28 of 66 compounds were categorized as aroma-active compounds. Aroma recombination and omission experiments showed that "fatty", "green", "fruity", and "floral" are considered to be the main aroma attributes of RAPT infusion with a strong relationship with 1-octen-3-one, 1-octen-3-ol, (E)-2-octenal, β-ionone, linalool, etc. This study will contribute a better understanding of the mechanism of the RAPT steeping process and volatile generation.
Collapse
Affiliation(s)
- Tao Feng
- Department of Perfume and Aroma Technology, University of Shanghai Institute of Technology, Shanghai201418, China
| | - Jiaqing Sun
- Department of Perfume and Aroma Technology, University of Shanghai Institute of Technology, Shanghai201418, China
| | - Kai Wang
- Technology Centre of China Tobacco Yunnan Industrial Co., Ltd., Kunming650231, China
| | - Shiqing Song
- Department of Perfume and Aroma Technology, University of Shanghai Institute of Technology, Shanghai201418, China
| | - Da Chen
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, 875 Perimeter Drive, Moscow, IdahoID 83844, United States
| | - Haining Zhuang
- Shanghai Urban Construction Vocational College, School of Health and Social Care, Shanghai201415, China
| | - Jun Lu
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Manukau1052, New Zealand
| | - Dejun Li
- R&D Center of Shanghai Apple Flavor and Fragrance Group Co., Ltd., Shanghai200436, China
| | - Xianle Meng
- R&D Center of Shanghai Apple Flavor and Fragrance Group Co., Ltd., Shanghai200436, China
| | - Mingliang Shi
- R&D Center of Shanghai Apple Flavor and Fragrance Group Co., Ltd., Shanghai200436, China
| | - Lingyun Yao
- Department of Perfume and Aroma Technology, University of Shanghai Institute of Technology, Shanghai201418, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey08901, United States
| |
Collapse
|
17
|
Zhao N, Ge L, Lai H, Wang Y, Mei Y, Huang Y, Zeng X, Su Y, Shi Q, Li H, Yuan H, Zhu Y, Zuo Y, Pang F, Guo C, Wang H, Hu T. Unraveling the contribution of pre-salting duration to microbial succession and changes of volatile and non-volatile organic compounds in Suancai (a Chinese traditional fermented vegetable) during fermentation. Food Res Int 2022; 159:111673. [DOI: 10.1016/j.foodres.2022.111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
|
18
|
Câmara JS, Martins C, Pereira JAM, Perestrelo R, Rocha SM. Chromatographic-Based Platforms as New Avenues for Scientific Progress and Sustainability. Molecules 2022; 27:5267. [PMID: 36014506 PMCID: PMC9412595 DOI: 10.3390/molecules27165267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Chromatography was born approximately one century ago and has undergone outstanding technological improvements in innovation, research, and development since then that has made it fundamental to advances in knowledge at different levels, with a relevant impact on the well-being and health of individuals. Chromatography boosted a comprehensive and deeper understanding of the complexity and diversity of human-environment interactions and systems, how these interactions affect our life, and the several societal challenges we are currently facing, namely those related to the sustainability of our planet and the future generations. From the life sciences, which allowed us to identify endogenous metabolites relevant to disease mechanisms, to the OMICS field, nanotechnology, clinical and forensic analysis, drug discovery, environment, and "foodprint", among others, the wide range of applications of today's chromatographic techniques is impressive. This is fueled by a great variability of powerful chromatographic instruments currently available, with very high sensitivity, resolution, and identification capacity, that provide a strong basis for an analytical platform able to support the challenging demands of the postgenomic and post COVID-19 eras. Within this context, this review aims to address the great utility of chromatography in helping to cope with several societal-based challenges, such as the characterization of disease and/or physiological status, and the response to current agri-food industry challenges of food safety and sustainability, or the monitoring of environmental contamination. These are increasingly important challenges considering the climate changes, the tons of food waste produced every day, and the exponential growth of the human population. In this context, the principles governing the separation mechanisms in chromatography as well the different types and chromatographic techniques will be described. In addition, the major achievements and the most important technological advances will be also highlighted. Finally, a set of studies was selected in order to evince the importance of different chromatographic analyses to understand processes or create fundamental information in the response to current societal challenges.
Collapse
Affiliation(s)
- José S. Câmara
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Cátia Martins
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| | - Jorge A. M. Pereira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Sílvia M. Rocha
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Dalpathadu K, Rajapakse H, Nissanka S, Jayasinghe C. Improving the Quality of Instant Tea with Low-Grade Tea Aroma. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
20
|
Wang J, Shi J, Zhu Y, Ma W, Yan H, Shao C, Wang M, Zhang Y, Peng Q, Chen Y, Lin Z. Insights into crucial odourants dominating the characteristic flavour of citrus-white teas prepared from citrus reticulata Blanco 'Chachiensis' and Camellia sinensis 'Fudingdabai'. Food Chem 2022; 377:132048. [PMID: 35030339 DOI: 10.1016/j.foodchem.2022.132048] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 11/25/2022]
Abstract
Citrus-white teas (CWs), which possess a balanced flavour of tea and citrus, are becoming more popular worldwide; however, their characteristic flavour and odourants received limited research. Volatile components of two types of CWs prepared from Citrus reticulata Blanco 'Chachiensis' and Camellia sinensis 'Fudingdabai' were comprehensively investigated using a combination of stir bar sorptive extraction and gas chromatography-mass spectrometry (GC-MS). Ninety-nine crucial odourants in the CWs were quantified by applying GC-olfactometry/MS, significant differences were compared, and their odour activity values (OAVs) were calculated. Twenty-two odourants (in total 2628.09 and 1131.18 mg/kg respectively) were further confirmed as traditional CW (CW-A) and innovated CW (CW-B) characteristic flavour crucial contributors which all possessed > 1 OAVs, particularly limonene (72919 in CW-A) and trans-β-ionone (138953 in CW-B). The unravelling of CWs aroma composition will greatly expanding our understanding of tea aroma chemistry and the potential aroma interactions will offer insights into tea blending technologies.
Collapse
Affiliation(s)
- Jiatong Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China; Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China
| | - Wanjun Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Han Yan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Chenyang Shao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Mengqi Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China
| | - Yuqiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China.
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China.
| |
Collapse
|
21
|
Shao CY, Zhang Y, Lv HP, Zhang ZF, Zeng JM, Peng QH, Zhu Y, Lin Z. Aromatic profiles and enantiomeric distributions of chiral odorants in baked green teas with different picking tenderness. Food Chem 2022; 388:132969. [PMID: 35447588 DOI: 10.1016/j.foodchem.2022.132969] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/04/2022]
Abstract
Suitable picking tenderness is an essential prerequisite for manufacturing tea. However, the influence of picking tenderness of fresh tea leaves on the aromatic components is still unclear. In this study, aromatic profiles and chiral odorants in fresh tea leaves and corresponding baked green teas with five levels of tenderness of two representative cultivars were analysed using stir bar sorptive extraction-gas chromatography-mass spectrometry. cis-Linalool oxide (furanoid) and methyl salicylate exhibited significantly increasing trends as samples of all series matured. The content of most chiral odorants was significantly high in the mature samples, and significant content variations of all enantiomers during baked green tea processing could be observed with different trends according to their precursors. In particular, the enantiomeric ratios of most chiral odorants were less influenced by the picking tenderness and processing, while drying (limonene), spreading and fixation (α-terpineol), and spreading (dihydroactinidiolide) influenced the chiral distribution of the aforementioned odorants.
Collapse
Affiliation(s)
- Chen-Yang Shao
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Hai-Peng Lv
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi-Fang Zhang
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jian-Ming Zeng
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qun-Hua Peng
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|