1
|
Liang Y, Wang Z, Zhang L, Dai H, Wu W, Zheng Z, Lin F, Xu J, Huang Y, Sun W. Characterization of volatile compounds and identification of key aroma compounds in different aroma types of Rougui Wuyi rock tea. Food Chem 2024; 455:139931. [PMID: 38850976 DOI: 10.1016/j.foodchem.2024.139931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
In this study, we characterized the aroma profiles of different Rougui Wuyi rock tea (RGWRT) aroma types and identified the key aroma-active compounds producing these differences. The roasting process was found to have a considerable effect on the aroma profiles. Eleven aroma compounds, including linalool, β-ionone, geraniol, indole, and (E)-nerolidol, strongly affected the aroma profiles. An RGWRT aroma wheel was constructed. The rich RGWRT aroma was found to be dominated by floral, cinnamon-like, and roasty aromas. Human olfaction was correlated with volatile compounds to determine the aromatic characteristics of these compounds. Most key aroma-active compounds were found to have floral, sweet, and herbal aromas (as well as some other aroma descriptors). The differences in key compounds of different aroma types were found to result from the methylerythritol phosphate, mevalonic acid and shikimate metabolic pathways and the Maillard reaction. Linalool, geraniol, and (E,E)-2,4-heptadienal were found to spontaneously bind to olfactory receptors.
Collapse
Affiliation(s)
- Yilin Liang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingzhi Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haomin Dai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiwei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqiang Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fuming Lin
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China
| | - Jie Xu
- Wuyi Star Tea Industrial Company Limited, Wuyishan 354301, China
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China.
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Ao C, Niu X, Shi D, Zheng X, Yu J, Zhang Y. Dynamic Changes in Aroma Compounds during Processing of Flat Black Tea: Combined GC-MS with Proteomic Analysis. Foods 2024; 13:3243. [PMID: 39456305 PMCID: PMC11507447 DOI: 10.3390/foods13203243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Flat black tea (FBT) has been innovatively developed to alleviate homogenisation competition, but the dynamic changes in aroma components during the process remain unclear. This study employed HS-SPME-GC-MS to analyse the aroma components of tea samples from various processing stages of FBT, and to make a comparative assessment with conventional strip-like Congou black tea (SBT). Additionally, a proteomic analysis was conducted on fresh leaves, withered leaves, and frozen-thawed leaves. Significant changes were observed in the aroma components and proteins during the processing. The results of the multivariate and odour activity value analysis demonstrated that the principal aroma components present during the processing of FBT were linalool, (E)-2-hexen-1-al, methyl salicylate, geraniol, hexanal, benzeneacetaldehyde, (Z)-3-hexenyl butyrate, dimethyl sulphide, 2-methylbutanal, 2-ethylfuran, nonanal, nonanol, 3-methylbutanal, (Z)-3-hexen-1-ol, 2-pentylfuran, linalool oxide I, and β-myrcene. Freezing-thawing and final roasting are the key processing steps for forming the aroma quality of FBT. The final roasting yielded a considerable quantity of pyrazines and pyrroles, resulting in a high-fried aroma, but caused a significant reduction in linalool, geraniol, β-myrcene, and esters, which led to a loss of floral and fruity aromas. The freezing-thawing treatment resulted in an accelerated loss of aroma substances, accompanied by a decrease in the expression level of lipoxygenase and 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase. The formation of aroma substances in the linoleic acid metabolic pathway and terpenoid metabolic process was hindered, which had a negative impact on tea aroma. This study elucidates the causes of unsatisfactory aroma quality in tea products made from frozen tea leaves, providing theoretical support for the utilisation of frostbitten tea leaves, and helps us to understand the mechanism of aroma formation in black tea.
Collapse
Affiliation(s)
- Cun Ao
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (C.A.); (X.N.); (D.S.); (X.Z.)
| | - Xiaojun Niu
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (C.A.); (X.N.); (D.S.); (X.Z.)
| | - Daliang Shi
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (C.A.); (X.N.); (D.S.); (X.Z.)
| | - Xuxia Zheng
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (C.A.); (X.N.); (D.S.); (X.Z.)
| | - Jizhong Yu
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (C.A.); (X.N.); (D.S.); (X.Z.)
| | - Yingbin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
3
|
Song X, Wu Z, Liang Q, Ma C, Cai P. Prediction of storage years of Wuyi rock tea Shuixian by metabolites analysis. Food Sci Nutr 2024; 12:7166-7176. [PMID: 39479628 PMCID: PMC11521635 DOI: 10.1002/fsn3.4327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 11/02/2024] Open
Abstract
Wuyi rock teas of different storage duration have different flavor, bioactivity, and market value, Shuixian is a main variety of Wuyi rock tea. In this study, metabolites composition of Shuixian with different storage years were analyzed using Ultrahigh Performance Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry (UPLC-Q-TOF-MS). A total of 1201 compounds were identified, and 104 differential compounds (VIP > 1.5) were determined. Furthermore, the results showed that five compounds exhibited a positive correlation with storage time, such as alpha-terpineol formate, carnosol, 2-phenethyl-D-glucopyranoside, Ellagic acid, and D-ribosyl nicotinic acid, while 24 compounds showed a negative correlation, such as Ethyl linoleate, leucocyanidin, cis-3-hexenyl acetate. In total, 29 signature compounds significantly correlated with storage time. These findings shed light on the patterns and mechanisms of changes in the composition of Wuyi rock tea during storage and provide a theoretical foundation for distinguishing the storage years.
Collapse
Affiliation(s)
- Xiaoyue Song
- College of Food Science, Fujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Zhifeng Wu
- College of Food Science, Fujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Quanming Liang
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Chunhua Ma
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Pumo Cai
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| |
Collapse
|
4
|
Huang W, Liu Q, Fu X, Wu Y, Qi Z, Lu G, Ning J. Fatty acid degradation driven by heat during ripening contributes to the formation of the "Keemun aroma". Food Chem 2024; 451:139458. [PMID: 38670017 DOI: 10.1016/j.foodchem.2024.139458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Ripening refers to the process of chemical change during the refinement of Keemun black tea (KBT) and is crucial in the formation of Keemun Congou black tea's quality. In this study, the aroma composition of KBT during the ripening was analyzed. Sensomics indicated that ripening strengthened the coconut and fatty aroma of KBT and contributed to the decrease of green aroma substances, resulting in a shift of the overall aroma type of KBT to an integrated aroma profile, which was consistent with sensory evaluation. Changes in fatty acid content and the results of in vitro addition simulation tests confirmed that heat causes highly degradation of fatty acids into fatty aroma volatiles, which is a key driver of the formation of "Keemun aroma" quality. This study revealed the mechanism behind the formation of KBT's integrated "Keemun aroma" quality and the mode of thermal degradation of major fatty acids.
Collapse
Affiliation(s)
- Wenjing Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qiuyan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoxue Fu
- School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yida Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zihao Qi
- School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guofu Lu
- Xiangyuan Tea Industry Co., LTD, Hefei 230041, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Wu W, Jiang X, Zhu Q, Yuan Y, Chen R, Wang W, Liu A, Wu C, Ma C, Li J, Zhang J, Peng Z. Metabonomics analysis of the flavor characteristics of Wuyi Rock Tea (Rougui) with "rock flavor" and microbial contributions to the flavor. Food Chem 2024; 450:139376. [PMID: 38648695 DOI: 10.1016/j.foodchem.2024.139376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Wuyi Rock Tea (WRT) has different characteristics of "rock flavor" due to different production areas. In this study, we investigated the flavor characteristics and key components of "rock flavor" and the influence of microorganisms on the substances by combining metabolomics and microbiomics with the Rougui WRTs from the Zhengyan, Banyan, and Waishan production areas. The results showed that Rougui has a strong floral and fruity aroma, which is mainly brought by hotrienol, and the sweet, smooth, and fresh taste is composed of epicatechin gallate, epigallocatechin, epigallocatechin gallate, caffeine, theanine, soluble sugar, and sweet and bitter amino acids. Bacteria Chryseobacterium, Pedobacter, Bosea, Agrobacterium, Stenotrophomonas, and Actinoplanes mainly influence the production of hotrienol, epicatechin gallate, and theanine. Fungi Pestalotiopsis, Fusarium, Elsinoe, Teichospora and Tetracladium mainly influence the production of non-volatile compounds. This study provides a reference for the biological formation mechanism of the characteristic aroma of WRT's "rock falvor".
Collapse
Affiliation(s)
- Wenmiao Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xinyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Qi Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Rongping Chen
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Wenzhen Wang
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Anxing Liu
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Chengjian Wu
- Wuyishan Kaijie Rock Tea City Co., LTD, Nanping 353000, China; Fujian Vocational College of Agriculture, Fuzhou 350119, China
| | | | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
6
|
Zhang L, Zhou C, Zhang C, Zhang M, Guo Y. Volatilomics and Macro-Composition Analyses of Primary Wuyi Rock Teas of Rougui and Shuixian Cultivars from Different Production Areas. PLANTS (BASEL, SWITZERLAND) 2024; 13:2206. [PMID: 39204641 PMCID: PMC11359256 DOI: 10.3390/plants13162206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Wuyi Rock Tea (WRT) is cherished for its exceptional "rock flavor" and its quality shows obvious regional differences. However, the flavor characteristics of Primary Wuyi Rock Teas (PWRTs) from different production areas remain unclear. Here, the Camellia sinensis var. sinensis cv. 'Rougui' and 'Shuixian', two quintessential cultivars for making WRT, planted in Zhengyan, Banyan, at high elevations, and Waishan production areas were used to make PWRTs. We conducted a comprehensive comparison of the sensory attributes, volatile organic compounds (VOCs), and macro-compositions of PWRTs of 'Rougui' and 'Shuixian' cultivars from different producing areas. Sensory evaluation indicated that both 'Rougui' and 'Shuixian' PWRTs from Zhengyan exhibited the best flavor qualities, followed by those from Banyan, at high altitudes, and Waishan production areas. The results of the determination and analysis of VOCs showed 680 VOCs in 'Rougui' and 'Shuixian' PWRTs, and that the different production areas mainly influenced the quantitative pattern of VOCs and rarely the qualitative composition. Integrated multivariate statistical analysis methods revealed that benzyl alcohol, hotrienol, butanoic acid, 2-methyl-, hexyl ester, benzene, (2-nitroethyl)-, and geranyl isobutyrate may be the key VOCs affecting the aroma differences in PWRTs from different production areas. In addition, water-extractable substances, tea polyphenols, caffeine, and free amino acids may be the important macro-compositions that distinguish PWRTs from different production areas. The metabolite basis for differences in the flavor qualities of PWRTs across production areas was elucidated, which may be helpful for the production of high-quality WRT.
Collapse
Affiliation(s)
- Lixuan Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (C.Z.); (C.Z.); (M.Z.)
| | - Chengzhe Zhou
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (C.Z.); (C.Z.); (M.Z.)
| | - Cheng Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (C.Z.); (C.Z.); (M.Z.)
| | - Mengcong Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (C.Z.); (C.Z.); (M.Z.)
| | - Yuqiong Guo
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (C.Z.); (C.Z.); (M.Z.)
- Tea Green Cultivation and Processing Collaborative Innovation Center, Anxi County, Quanzhou 362400, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Yan Y, Liang Z, Huo Y, Wu Q, Ni L, Lv X. A Comparative Study of Microbial Communities, Biogenic Amines, and Volatile Profiles in the Brewing Process of Rice Wines with Hongqu and Xiaoqu as Fermentation Starters. Foods 2024; 13:2452. [PMID: 39123642 PMCID: PMC11311568 DOI: 10.3390/foods13152452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 08/12/2024] Open
Abstract
Rice wine is primarily crafted from grains through saccharification and liquification with the help of Qu. Qu plays an important role in the formation of the flavor quality of rice wine. Hongqu and Xiaoqu represent two prevalent varieties of Qu that are typically utilized in the brewing process of rice wine and play a crucial role in its production. In this study, GC, GC-MS, HPLC, and metagenomic sequencing techniques were used to contrast the microbial flora, biogenic amines, and aroma characteristics developed during the fermentation of rice wines, with Hongqu and Xiaoqu being used as initiating agents for the brewing process. The results show that the content of higher alcohols (including n-propanol, isobutanol, 3-methyl-1-butanol, and phenethyl alcohol) in rice wine brewed with Xiaoqu (XQW) was significantly higher than that in rice wine brewed with Hongqu (HQW). Contrarily, the concentration of biogenic amines in HQW surpassed that of XQW by a notable margin, but tyramine was significantly enriched in XQW and not detected in HQW. In addition, a multivariate statistical analysis revealed distinct disparities in the constitution of volatile components between HQW and XQW. Hexanoic acid, ethyl acetate, isoamyl acetate, ethyl caproate, ethyl decanoate, 2-methoxy-4-vinylphenol, etc., were identified as the characteristic aroma-active compounds in HQW and XQW. A microbiome analysis based on metagenomic sequencing showed that HQW and XQW had different dominant microorganisms in the brewing process. Burkholderia, Klebsiella, Leuconostoc, Monascus, and Aspergillus were identified as the primary microbial genera in the HQW fermentation period, while Pediococcus, Enterobacter, Rhizopus, Ascoidea, and Wickerhamomyces were the main microbial genera in the XQW brewing process. A bioinformatics analysis revealed that the concentrations of microbial genes involved in biogenic amines and esters biosynthesis were significantly higher in HQW than those in XQW, while the content of genes relevant to glycolysis, higher alcohol biosynthesis, and fatty acid metabolism was significantly higher in XQW than in HQW, which are the possible reasons for the difference in flavor quality between the two kinds of rice wine from the perspective of microbial functional genes.
Collapse
Affiliation(s)
- Yingyin Yan
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zihua Liang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yujia Huo
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Qi Wu
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Li Ni
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xucong Lv
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
8
|
Lan Y, Wang X, Wang L, Zhang W, Song Y, Zhao S, Yang X, Liu X. Change of physiochemical characteristics, nutritional quality, and volatile compounds of Chenopodium quinoa Willd. during germination. Food Chem 2024; 445:138693. [PMID: 38350197 DOI: 10.1016/j.foodchem.2024.138693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
The impacts of varying germination periods (0-72 h) on morphological properties, proximate composition, amino acid profile, GABA levels, antioxidant attributes, polyphenol content (both free and bound), and volatile compounds of quinoa were evaluated. Germination significantly increased the content of fiber, amino acids, GABA, polyphenols, and in-vitro antioxidant activities in quinoa. The optimal nutritional quality and antioxidant capacity of quinoa were observed during the 36-72 h germination period. We examined the dynamics of 47 phenolic compounds in quinoa during germination and noted a substantial rise in free phenolic acids and bound flavonoids post-germination. A total of 53 and 84 volatile compounds were respectively identified in ungerminated quinoa and germinated quinoa. It was found that the germination period of 24-48 h contributed to reducing the presence of undesirable flavors. TEM analysis revealed significant structural damage to the ultrastructure and relaxation of the cell wall in germinated quinoa grains.
Collapse
Affiliation(s)
- Yongli Lan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xinze Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lei Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wengang Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China
| | - Yujie Song
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Shiyang Zhao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xijuan Yang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Yang Y, Xie J, Wang Q, Wang L, Shang Y, Jiang Y, Yuan H. Volatolomics-assisted characterization of the key odorants in green off-flavor black tea and their dynamic changes during processing. Food Chem X 2024; 22:101432. [PMID: 38764783 PMCID: PMC11101678 DOI: 10.1016/j.fochx.2024.101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Aroma plays a pivotal role in the quality of black tea. However, the acceptability of black tea is greatly limited by the green off-flavor (GOF) resulting from the inappropriate processing control. In this study, the key odorants causing GOF were investigated by volatolomics, and their dynamic changes and formation pathways were in-depth understood. Significant alterations in volatile metabolites were observed in the withering stage. A total of 14 key odorants were identified as contributors to GOF, including 2-methylpropanal, 3-methylbutanal, 1-hexanol, nonanal, (E, E)-2,4-heptadienal, benzaldehyde, linalool, (E, E)-3,5-octadiene-2-one, β-cyclocitral, phenylacetaldehyde, (E, E)-2,4-nonadienal, methyl salicylate, geraniol, and β-ionone. Among them, (E, E)-2,4-heptadienal (OAV = 3913), characterized by fatty, green, and oily aromas, was considered to be the most important contributor causing GOF. Moreover, it was found that lipid degradation served as the primary metabolic pathway for GOF. This study provides a theoretical foundation for off-flavor control and quality improvement of black tea.
Collapse
Affiliation(s)
- Yanqin Yang
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jialing Xie
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qiwei Wang
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lilei Wang
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yan Shang
- Hangzhou Zhishan Tea Industry Co., LTD, Hangzhou 310000, China
| | - Yongwen Jiang
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
10
|
Zhou H, Liu Y, Wu Q, Zhang X, Wang H, Lei P. The manufacturing process provides green teas with differentiated nonvolatile profiles and influences the deterioration of flavor during storage at room temperature. Food Chem X 2024; 22:101371. [PMID: 38633742 PMCID: PMC11021834 DOI: 10.1016/j.fochx.2024.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Hundreds of green tea products are available on the tea market and exhibit different characteristics. In the present study, seven types of green tea were processed, and their nonvolatile profiles were analyzed by liquid chromatography-mass spectrometry. Non-spreading green tea contained higher concentrations of catechins and flavonoid glycosides, but lower concentrations of amino acids, caffeine, and theaflavins. Non-rolling green teas with a straight appearance contained higher concentrations of flavonoid glycosides and theaflavins. In contrast, leaf-rolling green teas contained much lower concentrations of flavonoid glycosides and catechins. These seven green tea qualities all decreased following prolonged storage, concurrent with increasing concentrations of proanthocyanidins, catechins dimers, theaflavins, and organic acids. The leaf-rolling green teas exhibited reduced levels of deterioration during storage in terms of their nonvolatile profile and sensory quality. Findings show that moderate destruction on tea leaves during green tea processing is beneficial to both tea flavor and quality maintenance during storage.
Collapse
Affiliation(s)
- Hanchen Zhou
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Yaqin Liu
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Qiong Wu
- Technology Center of Hefei Customs, Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei 230022, China
| | - Xiaolei Zhang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Hui Wang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Pandeng Lei
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| |
Collapse
|
11
|
Han Z, Ahmad W, Rong Y, Chen X, Zhao S, Yu J, Zheng P, Huang C, Li H. A Gas Sensors Detection System for Real-Time Monitoring of Changes in Volatile Organic Compounds during Oolong Tea Processing. Foods 2024; 13:1721. [PMID: 38890949 PMCID: PMC11171579 DOI: 10.3390/foods13111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
The oxidation step in Oolong tea processing significantly influences its final flavor and aroma. In this study, a gas sensors detection system based on 13 metal oxide semiconductors with strong stability and sensitivity to the aroma during the Oolong tea oxidation production is proposed. The gas sensors detection system consists of a gas path, a signal acquisition module, and a signal processing module. The characteristic response signals of the sensor exhibit rapid release of volatile organic compounds (VOCs) such as aldehydes, alcohols, and olefins during oxidative production. Furthermore, principal component analysis (PCA) is used to extract the features of the collected signals. Then, three classical recognition models and two convolutional neural network (CNN) deep learning models were established, including linear discriminant analysis (LDA), k-nearest neighbors (KNN), back-propagation neural network (BP-ANN), LeNet5, and AlexNet. The results indicate that the BP-ANN model achieved optimal recognition performance with a 3-4-1 topology at pc = 3 with accuracy rates for the calibration and prediction of 94.16% and 94.11%, respectively. Therefore, the proposed gas sensors detection system can effectively differentiate between the distinct stages of the Oolong tea oxidation process. This work can improve the stability of Oolong tea products and facilitate the automation of the oxidation process. The detection system is capable of long-term online real-time monitoring of the processing process.
Collapse
Affiliation(s)
- Zhang Han
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.A.); (Y.R.); (X.C.); (S.Z.); (J.Y.); (P.Z.)
| | - Yanna Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.A.); (Y.R.); (X.C.); (S.Z.); (J.Y.); (P.Z.)
| | - Xuanyu Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.A.); (Y.R.); (X.C.); (S.Z.); (J.Y.); (P.Z.)
| | - Songguang Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.A.); (Y.R.); (X.C.); (S.Z.); (J.Y.); (P.Z.)
| | - Jinghao Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.A.); (Y.R.); (X.C.); (S.Z.); (J.Y.); (P.Z.)
| | - Pengfei Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.A.); (Y.R.); (X.C.); (S.Z.); (J.Y.); (P.Z.)
- Chichun Machinery (Xiamen) Co., Ltd., Xiamen 361100, China;
| | - Chunchi Huang
- Chichun Machinery (Xiamen) Co., Ltd., Xiamen 361100, China;
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.A.); (Y.R.); (X.C.); (S.Z.); (J.Y.); (P.Z.)
| |
Collapse
|
12
|
Hua J, Ouyang W, Zhu X, Wang J, Yu Y, Chen M, Yang L, Yuan H, Jiang Y. Objective quantification technique and widely targeted metabolomic reveal the effect of drying temperature on sensory attributes and related non-volatile metabolites of black tea. Food Chem 2024; 439:138154. [PMID: 38071844 DOI: 10.1016/j.foodchem.2023.138154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Drying temperature (DT) considerably affects the flavor of black tea (BT); however, its influence on non-volatile metabolites (NVMs) and their correlations remain unclear. In this study, an objective quantification technique and widely targeted metabolomics were applied to explore the effects of DT (130 °C, 110 °C, 90 °C, and 70 °C) on BT flavor and NVMs conversion. BT with a DT of 90 °C presented the highest umami, sweetness, overall taste, and brightness color values. Using the weighted gene co-expression network and multiple factor analysis, 455 sensory trait-related NVMs were explored across six key modules. Moreover, 169 differential NVMs were screened, and flavonoids, phenolic acids, amino acids, organic acids, and lipids were identified as key differential NVMs affecting the taste and color attributes of BT in response to DT. These findings enrich the BT processing theory and offer technical support for the precise and targeted processing of high-quality BT.
Collapse
Affiliation(s)
- Jinjie Hua
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Wen Ouyang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Xizhe Zhu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Jinjin Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Yaya Yu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Ming Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Liyue Yang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Haibo Yuan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Yongwen Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| |
Collapse
|
13
|
Zhang M, Zhang L, Zhou C, Xu K, Chen G, Huang L, Lai Z, Guo Y. Metabolite Profiling Reveals the Dynamic Changes in Non-Volatiles and Volatiles during the Enzymatic-Catalyzed Processing of Aijiao Oolong Tea. PLANTS (BASEL, SWITZERLAND) 2024; 13:1249. [PMID: 38732464 PMCID: PMC11085110 DOI: 10.3390/plants13091249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
The enzymatic reaction stage (ECS) of oolong tea processing plays an important role in the formation of the flavor quality of the oolong tea. To investigate the dynamic changes in the volatile and non-volatile components in the leaves of oolong tea during the ECS, metabolomic studies were carried out using the leaf samples collected at different stages of the ECS of Aijiao oolong tea. Out of the identified 306 non-volatile metabolites and 85 volatile metabolites, 159 non-volatile metabolites and 42 volatile metabolites were screened out as key differential metabolites for dynamic changes during the ECS. A multivariate statistical analysis on the key differential metabolites showed that the accumulations of most metabolites exhibited dynamic changes, while some amino acids, nucleosides, and organic acids accumulated significantly after turning-over treatment. The evolution characteristics of 27 key precursors or transformed VOCs during the ECS of Aijiao oolong tea were clarified, and it was found that the synthesis of aroma substances was mainly concentrated in lipids as precursors and glycosides as precursor pathways. The results revealed the dynamic changes in the flavor metabolites in the ECS during the processing of Aijiao oolong tea, which provided valuable information for the formation of the characteristic flavor of Aijiao oolong tea.
Collapse
Affiliation(s)
- Mengcong Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
| | - Lixuan Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
| | - Chengzhe Zhou
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Xu
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
| | - Guangwu Chen
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
| | - Linjie Huang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
| | - Zhongxiong Lai
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (L.Z.); (C.Z.); (K.X.); (G.C.); (L.H.); (Z.L.)
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
14
|
Lin F, Wu H, Li Z, Huang Y, Lin X, Gao C, Wang Z, Yu W, Sun W. Effect of Mechanical Damage in Green-Making Process on Aroma of Rougui Tea. Foods 2024; 13:1315. [PMID: 38731686 PMCID: PMC11083345 DOI: 10.3390/foods13091315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Rougui Tea (RGT) is a typical Wuyi Rock Tea (WRT) that is favored by consumers for its rich taste and varied aroma. The aroma of RGT is greatly affected by the process of green-making, but its mechanism is not clear. Therefore, in this study, fresh leaves of RGT in spring were picked, and green-making (including shaking and spreading) and spreading (unshaken) were, respectively, applied after sun withering. Then, they were analyzed by GC-TOF-MS, which showed that the abundance of volatile compounds with flowery and fruity aromas, such as nerolidol, jasmine lactone, jasmone, indole, hexyl hexanoate, (E)-3-hexenyl butyrate and 1-hexyl acetate, in green-making leaves, was significantly higher than that in spreading leaves. Transcriptomic and proteomic studies showed that long-term mechanical injury and dehydration could activate the upregulated expression of genes related to the formation pathways of the aroma, but the regulation of protein expression was not completely consistent. Mechanical injury in the process of green-making was more conducive to the positive regulation of the allene oxide synthase (AOS) branch of the α-linolenic acid metabolism pathway, followed by the mevalonate (MVA) pathway of terpenoid backbone biosynthesis, thus promoting the synthesis of jasmonic acid derivatives and sesquiterpene products. Protein interaction analysis revealed that the key proteins of the synthesis pathway of jasmonic acid derivatives were acyl-CoA oxidase (ACX), enoyl-CoA hydratase (MFP2), OPC-8:0 CoA ligase 1 (OPCL1) and so on. This study provides a theoretical basis for the further explanation of the formation mechanism of the aroma substances in WRT during the manufacturing process.
Collapse
Affiliation(s)
- Fuming Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China;
| | - Huini Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| | - Zhaolong Li
- Institute of Animal Husbandry and Veterlnary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China;
| | - Xiying Lin
- Fuding Tea Technology Promotion Station, Ningde 355200, China;
| | - Chenxi Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| | - Wenquan Yu
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (H.W.); (C.G.); (Z.W.)
| |
Collapse
|
15
|
Wang D, Liu Z, Lan X, Wang C, Chen W, Zhan S, Sun Y, Su W, Lin CC, Liu W, Liu Y, Ni L. Unveiling the aromatic intricacies of Wuyi Rock Tea: A comparative study on sensory attributes and odor-active compounds of Rougui and Shuixian varieties. Food Chem 2024; 435:137470. [PMID: 37774626 DOI: 10.1016/j.foodchem.2023.137470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
The distinctive fragrance of Wuyi Rock Tea (WRT) has garnered high attention in recent years. Herein, we conducted a comprehensive comparison of the sensory attributes and odor-active compounds (OACs) between two quintessential WRTs, namely Rougui (RGT) and Shuixian (SXT). Sensory analysis revealed that RGT exhibited a more pronounced fruity aroma, while SXT had a more complex and intricate sensory profile. By using gas chromatography-olfactory mass spectrometry (GC-O-MS) and two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS) analyses, 26 OACs were identified. Among them, 12 compounds with odor activity values > 1 were recognized as key OACs. Noteworthily, eight compounds, including 6-methyl-5-hepten-2-one, 2-ethyl-3,5-dimethylpyrazine, 2,3-diethyl-5-methylpyrazine, linalool, methyl salicylate, geraniol, (E)-β-ionone, and (E)-nerolidol, were shared by both teas. The unique compounds for RGT were (E)-linalool oxide and (Z)-jasmone, while those for SXT were β-cyclocitral and α-ionone. These findings offer valuable insights for better understanding the flavor differences between the two most important types of WRT.
Collapse
Affiliation(s)
- Daoliang Wang
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhibin Liu
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Xiaoye Lan
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cainan Wang
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China; Fujian Institute of Food Science and Technology, Fuzhou, Fujian 350108, China
| | - Wensong Chen
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Sijia Zhan
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yaqian Sun
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weiying Su
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan, Province of China
| | - Wei Liu
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Ni
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
16
|
Yang Y, Xie J, Wang Q, Deng Y, Zhu L, Zhu J, Yuan H, Jiang Y. Understanding the dynamic changes of volatile and non-volatile metabolites in black tea during processing by integrated volatolomics and UHPLC-HRMS analysis. Food Chem 2024; 432:137124. [PMID: 37633132 DOI: 10.1016/j.foodchem.2023.137124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/28/2023]
Abstract
Processing technology has an important effect on the flavor quality of black tea. However, the dynamic changes of volatile and non-volatile metabolites in black tea during processing are poorly understood. In this study, the volatile and non-volatile compounds during black tea processing were comprehensively characterized by integrated volatolomics and UHPLC-Q-Exactive/MS analysis. Volatile and non-volatile metabolites changed continuously throughout the processing process, especially during the withering stage. A total of 178 volatile metabolites and 103 non-volatile metabolites were identified. Among them, 11 volatile components with relative odor activity value greater than 1 (including dimethyl sulfide, 3-methylbutanal, 2-methylbutanal, β-myrcene, β-ocimene, linalool, methyl salicylate, β-cyclocitral, β-citral, citral, and β-ionone) were regarded as key aroma-active components responsible for finished black tea with sweet aroma. This study provides a comprehensive understanding of dynamic evolution trajectory of volatile and non-volatile metabolites during processing, which lays a theoretical foundation for the targeted processing of high-quality black tea.
Collapse
Affiliation(s)
- Yanqin Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jialing Xie
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qiwei Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Li Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jiayi Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
17
|
Peng Y, Du Z, Wang X, Wu R, Zheng C, Han W, Liu L, Gao F, Liu G, Liu B, Hao Z, Yu X. From heat to flavor: Unlocking new chemical signatures to discriminate Wuyi rock tea under light and moderate roasting. Food Chem 2024; 431:137148. [PMID: 37598651 DOI: 10.1016/j.foodchem.2023.137148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Roasting is crucial for the distinct flavor of Wuyi rock tea (WRT). This study applied untargeted metabolomics to investigate the effects of roasting on 139 WRT samples roasted at light fire (LF) or moderate fire (MF) intensities. Compared to LF, MF roasting led to a decrease in the cis/trans flavanol ratio by 56% and theanine by 85%, while increasing the levels of N-ethyl-2-pyrrolidione-substituted flavanols (EPSFs), flavonol aglycones and flavone C-glycosides. Two new roast markers, 3-p-coumaroyl 1,5-lactone and 4-p-coumaroyl 1,5-lactone, were identified in WRT and their formation increased with roasting temperature. MF roasting facilitated the formation of diverse heterocycles (e.g., pyrazines) and aldehydes (e.g., (Z)-4-heptenal and (E,E)-2.4-decadienal) that contributed to the augmented roasted and fatty odors in WRT. Additionally, the Maillard product furfuryl methyl ether was solely detected in MF samples. These findings provide novel insights into roast markers in WRT with implications for improving quality control measures during tea roasting.
Collapse
Affiliation(s)
- Yifei Peng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenghua Du
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaxia Wang
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruimei Wu
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zheng
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbo Han
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Gao
- Fujian Farming Technology Extension Center, Fuzhou 350003, China
| | - Guoying Liu
- Wuyishan Institute of Agricultural Sciences, Wuyishan 354300, China
| | | | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaomin Yu
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
18
|
Gao Y, Yang Q, Jin G, Yang S, Qin R, Lyu L, Yao X, Zhang R, Chen S, Xu Y. Aroma Compound Changes in the Jiangxiangxing Baijiu Solid-State Distillation Process: Description, Kinetic Characters and Cut Point Selection. Foods 2024; 13:232. [PMID: 38254531 PMCID: PMC10814311 DOI: 10.3390/foods13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Solid-state distillation is a distinctive process for extracting the baijiu aroma compounds that determine the flavor character of baijiu. In this study, the changes in various chemical properties of the aroma compounds in three classical Jiangxiangxing baijiu fermented grain distillation processes were analyzed. The changes in the aroma compounds in the instantaneous distillates were quantified and correlation analyzes were conducted. The results showed that the effect of the aroma compounds was greater than the differences between the fermented grains. Eleven representative aroma compounds were selected to develop the kinetic models describing two opposing changes. For the regulation of the Jiangxiangxing baijiu aroma compounds, their recovery rates were calculated using a kinetic model. A comprehensive comparison of the recovery rates of the characteristic aroma and other aroma compounds at different cut-off values revealed that the optimum recovery rate of the characteristic aroma of Jiangxiangxing baijiu 2,3,5,6-tetramethylpyrazine was 14.53% at cut-off values of 3.9 and 19.8 min. In this study, representative changes in the aroma compounds and the selection of cut-off values to regulate the baijiu distillation aroma were proposed.
Collapse
Affiliation(s)
- Yuchen Gao
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science & Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Y.G.); (G.J.); (R.Q.); (R.Z.); (S.C.)
| | - Qiang Yang
- Jing Brand Co., Ltd., Huangshi 435100, China; (Q.Y.); (S.Y.); (L.L.); (X.Y.)
| | - Guangyuan Jin
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science & Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Y.G.); (G.J.); (R.Q.); (R.Z.); (S.C.)
| | - Shengzhi Yang
- Jing Brand Co., Ltd., Huangshi 435100, China; (Q.Y.); (S.Y.); (L.L.); (X.Y.)
| | - Ruiyang Qin
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science & Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Y.G.); (G.J.); (R.Q.); (R.Z.); (S.C.)
| | - Linjie Lyu
- Jing Brand Co., Ltd., Huangshi 435100, China; (Q.Y.); (S.Y.); (L.L.); (X.Y.)
| | - Xianze Yao
- Jing Brand Co., Ltd., Huangshi 435100, China; (Q.Y.); (S.Y.); (L.L.); (X.Y.)
| | - Rongzhen Zhang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science & Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Y.G.); (G.J.); (R.Q.); (R.Z.); (S.C.)
| | - Shuang Chen
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science & Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Y.G.); (G.J.); (R.Q.); (R.Z.); (S.C.)
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science & Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Y.G.); (G.J.); (R.Q.); (R.Z.); (S.C.)
| |
Collapse
|
19
|
Li C, Lin J, Hu Q, Sun Y, Wu L. An integrated metabolomic and transcriptomic analysis reveals the dynamic changes of key metabolites and flavor formation over Tieguanyin oolong tea production. Food Chem X 2023; 20:100952. [PMID: 37920364 PMCID: PMC10618703 DOI: 10.1016/j.fochx.2023.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
To interpret the formation characteristic flavor during oolong tea manufacturing process, the dynamic changes of key flavor components in samples from various processing steps of Tieguanyin oolong tea production were investigated using widely-targeted metabolomic and the transcriptomic approaches. As a result, a total of 1078 metabolites were determined, of which 62 compounds were identified as biomarkers significantly changed over the manufacturing process. Quantitative determination of the total 50,343 transcripts showed 7480 of them were co-expressed different genes. Glutamic acid served as a critical metabolism hub and a signaling molecule for diverse stress responses. Additionally, the targeted quantification results showed that the contents of catechins and xanthine alkaloids in dried tea were dramatically decreased by 20.19% and 7.15% respectively than those in fresh leaves, which potentially contributed to the alleviation of astringent or bitter palates, promoting the characteristic mellow and rich flavor of Tieguanyin oolong tea.
Collapse
Affiliation(s)
- Chenxue Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Jiaqi Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Qingcai Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| |
Collapse
|
20
|
Zhang M, Zhou C, Zhang C, Xu K, Lu L, Huang L, Zhang L, Li H, Zhu X, Lai Z, Guo Y. Analysis of Characteristics in the Macro-Composition and Volatile Compounds of Understory Xiaobai White Tea. PLANTS (BASEL, SWITZERLAND) 2023; 12:4102. [PMID: 38140429 PMCID: PMC10747399 DOI: 10.3390/plants12244102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Understory planting affects the growth environment of tea plants, regulating the tea plant growth and the formation of secondary metabolites, which in turn affects the flavor of Xiaobai white tea. The present research adopted biochemical composition determination, widely targeted volatilities (WTV) analysis, multivariate statistical analysis, and odor activity value (OAV) analysis to analyze the characteristics in the macro-composition and volatile compounds of understory white tea. The sensory evaluation results indicated that understory Xiaobai white tea (LWTs) was stronger than ordinary Xiaobai white tea (PWTs) in terms of the taste of smoothness, sweetness, and thickness as well as the aromas of the flower and sweet. Understory planting reduced light intensity and air temperature, increased air humidity, organic matter, total nitrogen, and available nitrogen contents, which improved the growth environment of tea plants. The phytochemical analysis showed that the water-extractable substances, caffeine, flavonoids, and soluble sugar contents of understory tea fresh-leaf (LF) were higher than those of ordinary fresh-leaf (PF). The phytochemical analysis showed that the free amino acids, theaflavins, thearubigins, water-extractable substances, and tea polyphenols contents of LWTs were significantly higher than those of PWTs, which may explain the higher smoothness, sweetness, and thickness scores of LWTs than those of PWTs. The 2-heptanol, 2-decane, damasone, and cedar alcohol contents were significantly higher in LWTs than in PWTs, which may result in stronger flowery and sweet aromas in LWTs than in PWTs. These results provide a firm experimental basis for the observed differences in the flavor of LWTs and PWTs.
Collapse
Affiliation(s)
- Mengcong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Kai Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Li Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Linjie Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Lixuan Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Huang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
| | - Xuefang Zhu
- Nanping Jianyang District Tea Development Center, Nanping 353000, China;
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (C.Z.); (C.Z.); (K.X.); (L.L.); (L.H.); (L.Z.); (H.L.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, Quanzhou 362400, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
21
|
Lu X, Lin Y, Tuo Y, Liu L, Du X, Zhu Q, Hu Y, Shi Y, Wu L, Lin J. Optimizing Processing Techniques of Oolong Tea Balancing between High Retention of Catechins and Sensory Quality. Foods 2023; 12:4334. [PMID: 38231828 DOI: 10.3390/foods12234334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/19/2024] Open
Abstract
Catechins are the major flavor substances in teas, which have a variety of health effects; however, high catechin and high sensory quality are a pair of contradictions that are difficult to coordinate. To explore the processing procedure with high catechins and high sensory quality, a single-factor processing experiment was carried out over the processing production of oolong tea. Combined with orthogonal partial least square discriminant analysis (OPLS-DA), correlation analysis, and principal component analysis (PCA), the optimal production procedure for oolong tea is as follows: red light withering for 8 h, leaf rotating for 10 min with a total standing time for 8 h, drum roasting for 5 min at 290 °C, low-temperature rolling (flattening at 4 °C for 5 min, without pressure for 1 min and under pressure for 5 min), microwave drying (800 W for 7.5 min). This study demonstrates a significant increase in the retention of catechins, which contributes to the mellow and brisk tastes of oolong tea, addressing the challenge of catechin content and sensory quality. Our study provides a novel insight into the relationship between the oolong tea processing and flavor formation.
Collapse
Affiliation(s)
- Xiaofeng Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanyan Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanming Tuo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijia Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxin Du
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunfei Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yutao Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
22
|
Wen M, Zhu M, Han Z, Ho CT, Granato D, Zhang L. Comprehensive applications of metabolomics on tea science and technology: Opportunities, hurdles, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4890-4924. [PMID: 37786329 DOI: 10.1111/1541-4337.13246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
With the development of metabolomics analytical techniques, relevant studies have increased in recent decades. The procedures of metabolomics analysis mainly include sample preparation, data acquisition and pre-processing, multivariate statistical analysis, as well as maker compounds' identification. In the present review, we summarized the published articles of tea metabolomics regarding different analytical tools, such as mass spectrometry, nuclear magnetic resonance, ultraviolet-visible spectrometry, and Fourier transform infrared spectrometry. The metabolite variation of fresh tea leaves with different treatments, such as biotic/abiotic stress, horticultural measures, and nutritional supplies was reviewed. Furthermore, the changes of chemical composition of processed tea samples under different processing technologies were also profiled. Since the identification of critical or marker metabolites is a complicated task, we also discussed the procedure of metabolite identification to clarify the importance of omics data analysis. The present review provides a workflow diagram for tea metabolomics research and also the perspectives of related studies in the future.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Daniel Granato
- Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
23
|
Jin JC, Liang S, Qi SX, Tang P, Chen JX, Chen QS, Chen YF, Yin JF, Xu YQ. Widely targeted metabolomics reveals the effect of different raw materials and drying methods on the quality of instant tea. Front Nutr 2023; 10:1236216. [PMID: 37899836 PMCID: PMC10600452 DOI: 10.3389/fnut.2023.1236216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Instant teas are particularly rich in tea polyphenols and caffeine and have great potential as food ingredients or additives to improve the quality of food and enhance their nutritional and commercial value. Methods To determine the relationships between raw material, drying method, and sensory and other quality attributes, instant teas were prepared from three tea varieties, namely black, green and jasmine tea, using two drying methods, namely spray-drying (SD) and freeze-drying (FD). Results Both the raw tea material and drying method influenced the quality of the finished instant teas. Black tea was quality stable under two drying, while green tea taste deteriorated much after SD. Jasmine tea must be produced from FD due to huge aroma deterioration after SD. FD produced instant tea with higher sensory quality, which was attributed to the lower processing temperature. Chemical compositional analysis and widely targeted metabolomics revealed that SD caused greater degradation of tea biochemical components. The flavonoids content changed markedly after drying, and metabolomics, combined with OPLS-DA, was able to differentiate the three varieties of tea. Instant tea preparations via SD often lost a large proportion of the original tea aroma compounds, but FD minimized the loss of floral and fruity aroma compounds. Changes in the tea flavonoids composition, especially during drying, contributed to the flavor development of instant tea. Discussion These results will provide an practicle method for high-quality instant tea production through choosing proper raw tea material and lowering down drying temperature with non-thermal technologies like FD.
Collapse
Affiliation(s)
- Jian-Chang Jin
- College of Biological and Environmental Engineering, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou, China
| | - Shuang Liang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, National Engineering Research Center for Tea Processing, Tea Research Institute Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | | | - Ping Tang
- Hangzhou Vocational and Technical College, Hangzhou, China
| | - Jian-Xin Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, National Engineering Research Center for Tea Processing, Tea Research Institute Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Quan-Sheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | | | - Jun-Feng Yin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, National Engineering Research Center for Tea Processing, Tea Research Institute Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong-Quan Xu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, National Engineering Research Center for Tea Processing, Tea Research Institute Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
24
|
Wang D, Wang C, Su W, Lin CC, Liu W, Liu Y, Ni L, Liu Z. Characterization of the Key Aroma Compounds in Dong Ding Oolong Tea by Application of the Sensomics Approach. Foods 2023; 12:3158. [PMID: 37685091 PMCID: PMC10486682 DOI: 10.3390/foods12173158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The Dong Ding oolong tea (DDT), grown and produced in Taiwan, is widely appreciated for its unique flavor. Despite its popularity, research on the aroma components of DDT remains incomplete. To address this gap, this study employed a sensomics approach to comprehensively characterize the key aroma compounds in DDT. Firstly, sensory evaluation showed that DDT had a prominent caramel aroma. Subsequent analysis using gas chromatography-olfactory mass spectrometry (GC-O-MS) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS) identified a total of 23 aroma-active compounds in DDT. Notably, three pyrazine compounds with roasted notes, namely 2-ethyl-5-methylpyrazine, 2-ethyl-3,5-dimethylpyrazine, and 2,3-diethyl-5-methylpyrazine, along with seven floral- and fruit-smelling compounds, namely 6-methyl-5-hepten-2-one, 3,5-octadien-2-one, linalool, (E)-linalool oxide, geraniol, (Z)-jasmone, and (E)-nerolidol, were identified as the key aroma compounds of DDT. Omission experiments further validated the significant contribution of the three pyrazines to the caramel aroma of DDT. Moreover, the content of 2-ethyl-3,5-dimethylpyrazine, 2,3-diethyl-5-methylpyrazine, (Z)-jasmone, 6-methyl-5-hepten-2-one and 2-ethyl-5-methylpyrazine was found to be higher in the high-grade samples, while (E)-nerolidol, linalool, geraniol and 3,5-octadien-2-one were found to be more abundant in the medium-grade samples. These findings provide valuable information for a better understanding of the flavor attributes of DDT.
Collapse
Affiliation(s)
- Daoliang Wang
- Institute of Food Science and Technology, Fuzhou University, Fuzhou 350108, China; (D.W.); (C.W.); (W.S.); (L.N.)
| | - Cainan Wang
- Institute of Food Science and Technology, Fuzhou University, Fuzhou 350108, China; (D.W.); (C.W.); (W.S.); (L.N.)
- Fujian Institute of Food Science and Technology, Fuzhou 350108, China
| | - Weiying Su
- Institute of Food Science and Technology, Fuzhou University, Fuzhou 350108, China; (D.W.); (C.W.); (W.S.); (L.N.)
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 300150, China;
| | - Wei Liu
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou 350108, China;
| | - Yuan Liu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Li Ni
- Institute of Food Science and Technology, Fuzhou University, Fuzhou 350108, China; (D.W.); (C.W.); (W.S.); (L.N.)
| | - Zhibin Liu
- Institute of Food Science and Technology, Fuzhou University, Fuzhou 350108, China; (D.W.); (C.W.); (W.S.); (L.N.)
| |
Collapse
|
25
|
Wang J, Bi H, Li M, Wang H, Xue M, Yu J, Ho CT, Zhang L, Zhuo Q, Jiang J, Wan X, Zhai X. Contribution of theanine to the temperature-induced changes in aroma profile of Wuyi rock tea. Food Res Int 2023; 169:112860. [PMID: 37254434 DOI: 10.1016/j.foodres.2023.112860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
Theanine is a distinctive amino acid in tea that plays a vital role in tea flavor during the roasting process. Model thermal reactions of total amino acids and sugars with different roasting conditions (low-fire, middle-fire, and high-fire) showed theanine competitively inhibited the formation of indole, skatole, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, and Strecker aldehydes, while greatly stimulated the production of roasty pyrazines. In addition, highest amounts of pyrazines were obtained under high-fire degree. Quantification of these reaction products in Wuyi rock tea (WRT) was realized in different roasted Dahongpao teas by means of sensomics approach. The quantitative data revealed the biggest influence of roasting temperatures on the formation of reaction products among indole, lipid oxidation products, and pyrazines, while other reaction products were only slightly affected. The findings of this study provide a fresh perspective on the impact of theanine on aroma formation during the roasting process, which will help to explore the formation of key odorants during tea production.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Haijun Bi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mengru Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Hui Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Manman Xue
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jieyao Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | | | | | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
26
|
Zhang Y, Zhang YH, Yan H, Shao CY, Li WX, Lv HP, Lin Z, Zhu Y. Enantiomeric separation and precise quantification of chiral volatiles in Wuyi rock teas using an efficient enantioselective GC × GC-TOFMS approach. Food Res Int 2023; 169:112891. [PMID: 37254338 DOI: 10.1016/j.foodres.2023.112891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Chiral volatiles play important roles in the formation of aroma quality of foods. To date, enantiomeric characteristics of chiral volatiles in Wuyi rock tea (WRT) and their aroma contributions are still unclear. In this study, an efficient enantioselective comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (Es-GC × GC-TOFMS) approach to separate and precisely quantitate 24 pairs of chiral volatiles in WRTs was established, and the enantiomeric distribution and aroma contribution of chiral volatiles among WRTs from four representative cultivars were investigated. Enantiomeric ratio (ER) of R-α-ionone (80%) in Dahongpao (DHP), ER of S-α-terpineol (57%) in Jinfo (JF), ERs of R-γ-heptanolactone (69%), S-γ-nonanolactone (55%), (2R, 5S)-theaspirane B (91%), concentration of S-(E)-nerolidol (313.37 ng/mL) in Rougui (RG) and concentration of R-α-ionone (33.01 ng/mL) in Shuixian (SX) were unique from other types of WRTs, which were considered as the potential chemical markers to distinguish WRT cultivars. The OAV assessment determined 7 volatile enantiomers as the aroma-active compounds, especially R-α-ionone and R-δ-octanolactone in SX, as well as S-(E)-nerolidol and (1R, 2R)-methyl jasmonate in RG contribute much to aroma formation of the corresponding WRTs. The above results provide scientific references for discrimination of tea cultivars and directed improvement of the aroma quality of WRT.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yu-Hui Zhang
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Han Yan
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chen-Yang Shao
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei-Xuan Li
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Hai-Peng Lv
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Untilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
27
|
Li Y, Yu S, Yang S, Ni D, Jiang X, Zhang D, Zhou J, Li C, Yu Z. Study on taste quality formation and leaf conducting tissue changes in six types of tea during their manufacturing processes. Food Chem X 2023; 18:100731. [PMID: 37397192 PMCID: PMC10314197 DOI: 10.1016/j.fochx.2023.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
This study fristly investigated the taste quality formation and leaf conducting tissue changes in six types of Chinese tea (green, black, oolong, yellow, white, and dark) made from Mingke No.1 variety. Non-targeted metabolomics showed the vital manufacturing processes (green tea-de-enzyming, black tea-fermenting, oolong tea-turning-over, yellow tea-yellowing, white tea-withering, and dark tea-pile-fermenting) were highly related to their unique taste formation, due to different fermentation degree in these processes. After drying, the retained phenolics, theanine, caffeine, and other substances significantly impacted each tea taste quality formation. Meanwhile, the tea leaf conducting tissue structure was significantly influenced by high processing temperature, and the change of its inner diameter was related to moisture loss during tea processing, as indicated by its significant different Raman characteristic peaks (mainly cellulose and lignin) in each key process. This study provides a reference for process optimization to improve tea quality.
Collapse
Affiliation(s)
- Yuchuan Li
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Songhui Yu
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Shuya Yang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Dejiang Ni
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Xinfeng Jiang
- Jiangxi Institute of Cash Crops /The Key Laboratory of Tea Quality and Safety Control in Jiangxi Province, Nanchang 330203, People's Republic of China
| | - De Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Jirong Zhou
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Chunlei Li
- Agricultural College, Weifang University of Science & Technology, Weifang, Shandong 262700, People's Republic of China
| | - Zhi Yu
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
28
|
Jia X, Wang Y, Li Q, Zhang Q, Zhang Y, Lin S, Cheng P, Chen M, Du M, Ye J, Wang H. Contribution of traditional deep fermentation to volatile metabolites and odor characteristics of Wuyi rock tea. Front Bioeng Biotechnol 2023; 11:1193095. [PMID: 37260830 PMCID: PMC10228688 DOI: 10.3389/fbioe.2023.1193095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
Fermentation is extremely important for the formation of the special flavor of Wuyi rock tea. This study determined volatile metabolite contents using GC-MS technique and futher analyzed their odor characteristics during the traditional deep fermentation technology of Wuyi rock tea. The results showed that 17 characteristic compounds significantly changed during the first stage of the preliminary processing, namely fresh leaves, withering and fermentation. The key to the formation of floral aroma lied in dihydromyrcenol, and the woody aroma derived from six terpenoids, and their synthesis depended on dihydromyrcenol content. The fruity aroma was dominated by six esters, and the fruity aroma mainly came from (Z) -3-hexen-1-yl butyrate, (E) -3-hexen-1-yl butyrate and 5-Hexenyl butyrate. This study provided an important theoretical and practical basis for improving the preliminary processing of Wuyi rock tea.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qisong Li
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Mengru Du
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
29
|
Peng Y, Zheng C, Guo S, Gao F, Wang X, Du Z, Gao F, Su F, Zhang W, Yu X, Liu G, Liu B, Wu C, Sun Y, Yang Z, Hao Z, Yu X. Metabolomics integrated with machine learning to discriminate the geographic origin of Rougui Wuyi rock tea. NPJ Sci Food 2023; 7:7. [PMID: 36928372 PMCID: PMC10020150 DOI: 10.1038/s41538-023-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The geographic origin of agri-food products contributes greatly to their quality and market value. Here, we developed a robust method combining metabolomics and machine learning (ML) to authenticate the geographic origin of Wuyi rock tea, a premium oolong tea. The volatiles of 333 tea samples (174 from the core region and 159 from the non-core region) were profiled using gas chromatography time-of-flight mass spectrometry and a series of ML algorithms were tested. Wuyi rock tea from the two regions featured distinct aroma profiles. Multilayer Perceptron achieved the best performance with an average accuracy of 92.7% on the training data using 176 volatile features. The model was benchmarked with two independent test sets, showing over 90% accuracy. Gradient Boosting algorithm yielded the best accuracy (89.6%) when using only 30 volatile features. The proposed methodology holds great promise for its broader applications in identifying the geographic origins of other valuable agri-food products.
Collapse
Affiliation(s)
- Yifei Peng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Zheng
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fuquan Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaxia Wang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghua Du
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Gao
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Feng Su
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Wenjing Zhang
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Xueling Yu
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Guoying Liu
- Wuyishan Institute of Agricultural Sciences, Wuyishan, 354300, China
| | - Baoshun Liu
- Wuyishan Tea Bureau, Wuyishan, 354300, China
| | - Chengjian Wu
- Fujian Vocational College of Agriculture, Fuzhou, 350119, China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenbiao Yang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiaomin Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
30
|
Zhou Y, He Y, Zhu Z. Understanding of formation and change of chiral aroma compounds from tea leaf to tea cup provides essential information for tea quality improvement. Food Res Int 2023; 167:112703. [PMID: 37087269 DOI: 10.1016/j.foodres.2023.112703] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Abundant secondary metabolites endow tea with unique quality characteristics, among which aroma is the core component of tea quality. The ratio of chiral isomers of aroma compounds greatly affects the flavor of tea leaves. In this paper, we review the progress of research on chiral aroma compounds in tea. With the well-established GC-MS methods, the formation of, and changes in, the chiral configuration of tea aroma compounds during the whole cycle of tea leaves from the plant to the tea cup has been studied in detail. The ratio of aroma chiral isomers varies among different tea varieties and finished teas. Enzymatic reactions involving tea aroma synthases and glycoside hydrolases participate the formation of aroma compound chiral isomers during tea tree growth and tea processing. Non-enzymatic reactions including environmental factors such as high temperature and microbial fermentation involve in the change of aroma compound chiral isomers during tea processing and storage. In the future, it will be interesting to determine how changes in the proportions of chiral isomers of aroma compounds affect the environmental adaptability of tea trees; and to determine how to improve tea flavor by modifying processing methods or targeting specific genes to alter the ratio of chiral isomers of aroma compounds.
Collapse
Affiliation(s)
- Ying Zhou
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China.
| | - Yunchuan He
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China; College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| | - Zengrong Zhu
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China; College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| |
Collapse
|
31
|
Zhang C, Zhou C, Tian C, Xu K, Lai Z, Lin Y, Guo Y. Volatilomics Analysis of Jasmine Tea during Multiple Rounds of Scenting Processes. Foods 2023; 12:foods12040812. [PMID: 36832885 PMCID: PMC9956320 DOI: 10.3390/foods12040812] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Jasmine tea is reprocessed from finished tea by absorbing the floral aroma of jasmine (Jasminum sambac (L.) Aiton); this process is commonly known as "scenting". Making high-quality jasmine tea with a refreshing aroma requires repeated scenting. To date, the detailed volatile organic compounds (VOCs) and the formation of a refreshing aroma as the number of scenting processes increases are largely unknown and therefore need further study. To this end, integrated sensory evaluation, widely targeted volatilomics analysis, multivariate statistical analyses, and odor activity value (OAV) analysis were performed. The results showed that the aroma freshness, concentration, purity, and persistence of jasmine tea gradually intensifies as the number of scenting processes increases, and the last round of scenting process without drying plays a significant role in improving the refreshing aroma. A total of 887 VOCs was detected in jasmine tea samples, and their types and contents increased with the number of scenting processes. In addition, eight VOCs, including ethyl (methylthio)acetate, (Z)-3-hexen-1-ol acetate, (E)-2-hexenal, 2-nonenal, (Z)-3-hexen-1-ol, (6Z)-nonen-1-ol, β-ionone, and benzyl acetate, were identified as key odorants responsible for the refreshing aroma of jasmine tea. This detailed information can expand our understanding of the formation of a refreshing aroma of jasmine tea.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
32
|
Yue C, Cao H, Zhang S, Hao Z, Wu Z, Luo L, Zeng L. Aroma characteristics of Wuyi rock tea prepared from 16 different tea plant varieties. Food Chem X 2023; 17:100586. [PMID: 36845464 PMCID: PMC9945420 DOI: 10.1016/j.fochx.2023.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Wuyi rock tea (WRT) is famous for its long history and unique characteristic of floral, fruity and nutty flavors. This study investigated the aroma characteristics of WRTs prepared from 16 different oolong tea plant varieties. The sensory evaluation results showed that all WRTs had an 'Yan flavor' taste, and the odor was strong and lasting. Roasted, floral and fruity odors were the prime aroma profiles for WRTs. Furthermore, a total of 368 volatile compounds were detected using HS-SPME-GC-MS and analyzed with OPLS-DA and HCA methods. The volatile compounds heterocyclic compounds, esters, hydrocarbons, terpenoids and ketones were the major aromatic components of the WRTs. Specifically, the volatile profiles among newly selected cultivars were comparatively analyzed, and 205 differential volatile compounds were found with variable importance in the projection (VIP) values above 1.0. These results indicated that the aroma profiles of WRTs were mainly dependent on the cultivar specificities of volatile compounds.
Collapse
Affiliation(s)
- Chuan Yue
- College of Food Science/Tea Research Institute, Southwest University, Beibei, Chongqing 400715, China
| | - Hongli Cao
- College of Food Science/Tea Research Institute, Southwest University, Beibei, Chongqing 400715, China
| | - Shaorong Zhang
- College of Food Science/Tea Research Institute, Southwest University, Beibei, Chongqing 400715, China
| | - Zhilong Hao
- College of Horticulture/Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China,Corresponding authors.
| | - Zongjie Wu
- Wuyi Mountain Yan Sheng Tea Industry Co., Ltd, Wuyishan 354301, China
| | - Liyong Luo
- College of Food Science/Tea Research Institute, Southwest University, Beibei, Chongqing 400715, China
| | - Liang Zeng
- College of Food Science/Tea Research Institute, Southwest University, Beibei, Chongqing 400715, China,Corresponding authors.
| |
Collapse
|
33
|
Wang D, Liu Z, Chen W, Lan X, Zhan S, Sun Y, Su W, Lin CC, Ni L. Comparative study of the volatile fingerprints of roasted and unroasted oolong tea by sensory profiling and HS-SPME-GC-MS. Curr Res Food Sci 2023; 6:100442. [PMID: 36687170 PMCID: PMC9852928 DOI: 10.1016/j.crfs.2023.100442] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Roasting plays important roles in shaping the volatile profile of oolong tea. In this study, the sensory attributes and volatile compositions of 153 roasted or unroasted oolong tea samples, belonging to four typical types, namely, High Mountain oolong tea (HMT), Tieguanyin tea (TGYT), Dongding oolong tea (DDT) and Wuyi rock tea (WRT), were studied in detail. Based on the sensory evaluation by tea evaluation experts, their respective sensory profiles were established and compared. Unroasted teas had more pronounced fresh and green flavors, while roasted teas had higher scores in pungent and caramel flavors. In particular, WRT demonstrated a unique fragrance of floral fruity flavors. By using HS-SPME-GC-MS analysis, a total of 128 compounds were identified across all samples. Notably, it was found that roasting largely increased the variety of volatile compounds in oolong tea. Furthermore, the characteristic volatile compounds of each type of tea were identified by PLS-DA modeling. Linalool and geraniol were the characteristic volatiles of HMT. Four volatiles, including (E)-nerolidol, jasmin lactone, benzeneacetaldehyde, and 4-methyl benzaldehyde oxime were identified as the characteristic volatiles of TGYT. Seven volatiles, including N-ethyl pyrrole, 3-(hydroxy methyl) pyridine, 4-pyridylcarbinol, 1-methyl pyrrole-2-carboxaldehyde, 2-ethyl-3,5-dimethyl pyrazine, 4-amino-2,3-xylenol, and 4,6-dimethyl pyrimidine were the characteristic volatiles of DDT. For WRT, 2,2,6-trimethyl cyclohexan-1-one, hexanoic acid, benzaldehyde, benzyl alcohol, β-cyclocitral, (E)-β-ionone, α-ionone, and octanoic acid were the characteristic volatiles. These findings expand our knowledge of the volatile fingerprints of oolong tea.
Collapse
Affiliation(s)
- Daoliang Wang
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhibin Liu
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian, 350108, China,Corresponding author. Institute of Food Science & Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Wensong Chen
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xiaoye Lan
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Sijia Zhan
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yaqian Sun
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Weiying Su
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan, China
| | - Li Ni
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian, 350108, China,Corresponding author. Institute of Food Science & Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| |
Collapse
|
34
|
Zhan S, Liu Z, Su W, Lin CC, Ni L. Role of roasting in the formation of characteristic aroma of wuyi rock tea. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Insights into Characteristic Volatiles in Wuyi Rock Teas with Different Cultivars by Chemometrics and Gas Chromatography Olfactometry/Mass Spectrometry. Foods 2022; 11:foods11244109. [PMID: 36553850 PMCID: PMC9777755 DOI: 10.3390/foods11244109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Wuyi rock tea (WRT) is one of the most famous subcategories of oolong tea, exhibiting distinct aroma characteristics with the application of different cultivars. However, a comprehensive comparison of the characteristic volatiles among WRTs with different cultivars has rarely been carried out. In this study, non-targeted analyses of volatile fragrant compounds (VFCs) and targeted aroma-active compounds in WRTs from four different cultivars were performed using chemometrics and gas chromatography olfactometry/mass spectrometry (GC-O/MS). A total of 166, 169, 166, and 169 VFCs were identified for Dahongpao (DHP), Rougui (RG), Shuixian (SX), and Jinfo (JF), respectively; and 40 components were considered as the key differential VFCs among WRTs by multivariate statistical analysis. Furthermore, 56 aroma-active compounds were recognized with predominant performances in "floral & fruity", "green & fresh", "roasted and caramel", "sweet", and "herbal" attributes. The comprehensive analysis of the chemometrics and GC-O/MS results indicated that methyl salicylate, p-cymene, 2,5-dimethylpyrazine, and 1-furfurylpyrrole in DHP; phenylethyl alcohol, phenethyl acetate, indole, and (E)-β-famesene in RG; linalool, phenethyl butyrate, hexyl hexanoate, and dihydroactinidiolide in JF; and naphthalene in SX were the characteristic volatiles for each type of WRT. The obtained results provide a fundamental basis for distinguishing tea cultivars, recombination, and simulation of the WRT aroma.
Collapse
|
36
|
Zhang C, Zhou C, Xu K, Tian C, Zhang M, Lu L, Zhu C, Lai Z, Guo Y. A Comprehensive Investigation of Macro-Composition and Volatile Compounds in Spring-Picked and Autumn-Picked White Tea. Foods 2022; 11:foods11223628. [PMID: 36429222 PMCID: PMC9688969 DOI: 10.3390/foods11223628] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The flavour of white tea can be influenced by the season in which the fresh leaves are picked. In this study, the sensory evaluation results indicated that spring-picked white tea (SPWT) was stronger than autumn-picked white tea (APWT) in terms of the taste of umami, smoothness, astringency, and thickness as well as the aromas of flower and fresh. To explore key factors of sensory differences, a combination of biochemical composition determination, widely targeted volatilomics (WTV) analysis, multivariate statistical analysis, and odour activity value (OAV) analysis was employed. The phytochemical analysis showed that the free amino acid, tea polyphenol, and caffeine contents of SPWTs were significantly higher than those of APWTs, which may explain the higher umami, smoothness, thickness, and astringency scores of SPWTs than those of APWTs. The sabinene, (2E, 4E)-2, 4-octadienal, (-)-cis-rose oxide, caramel furanone, trans-rose oxide, and rose oxide contents were significantly higher in SPWTs than in APWTs, which may result in stronger flowery, fresh, and sweet aromas in SPWTs than in APWTs. Among these, (2E,4E)-2,4-octadienal and (-)-cis-rose oxide can be identified as key volatiles. This study provides an objective and accurate basis for classifying SPWTs and APWTs at the metabolite level.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengcong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
37
|
Chen M, Fang D, Gou H, Wang S, Yue W. Quantitative Measurement Reveals Dynamic Volatile Changes and Potential Biochemical Mechanisms during Green Tea Spreading Treatment. ACS OMEGA 2022; 7:40009-40020. [PMID: 36385841 PMCID: PMC9647863 DOI: 10.1021/acsomega.2c04654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Quantitative data provide clues for biochemical reactions or regulations. The absolute quantification of volatile compounds in tea is complicated by their low abundance, volatility, thermal liability, matrix complexity, and instrumental sensitivity. Here, by integrating solvent-assisted flavor evaporation extraction with a gas chromatography-triple quadrupole mass spectrometry platform, we successfully established a method based on multiple reaction monitoring (MRM). The method was validated by multiple parameters, including the linear range, limit of detection, limit of quantification, precision, repeatability, stability, and accuracy. This method was then applied to measure temporal changes of endogenous volatiles during green tea spreading treatment. In total, 38 endogenous volatiles were quantitatively measured, which are derived from the shikimic acid pathway, mevalonate pathway, 2-C-methylerythritol-4-phosphate pathway, and fatty acid derivative pathway. Hierarchical clustering and heat-map analysis demonstrated four different changing patterns during green tea spreading treatment. Pathway analysis was then conducted to explore the potential biochemistry underpinning these dynamic change patterns. Our data demonstrated that the established MRM method showed high selectivity and sensitivity for quantitative tea volatile measurement and offered novel insights about volatile formation during green tea spreading.
Collapse
Affiliation(s)
- Mingjie Chen
- College
of Life Sciences, Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Dongsheng Fang
- College
of Life Sciences, Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Huan Gou
- College
of Life Sciences, Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shiya Wang
- College
of Life Sciences, Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Wenjie Yue
- Jinshan
College, Fujian Agriculture and Forestry
University, Fuzhou, Fujian 350002, China
| |
Collapse
|
38
|
Wang M, Li J, Liu X, Liu C, Qian J, Yang J, Zhou X, Jia Y, Tang J, Zeng L. Characterization of Key Odorants in Lingtou Dancong Oolong Tea and Their Differences Induced by Environmental Conditions from Different Altitudes. Metabolites 2022; 12:1063. [PMID: 36355146 PMCID: PMC9695488 DOI: 10.3390/metabo12111063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 10/08/2023] Open
Abstract
Lingtou Dancong oolong tea is a famous Chinese oolong tea due to its special honey-like aroma. However, little is known about its specific aroma profile and key contributors. Furthermore, whether the aroma characteristics of Lingtou Dancong oolong tea are affected by the environmental conditions at different altitudes is unknown. In this study, the aromas in Lingtou Dancong oolong tea were extracted and analyzed by stir-bar sorptive extraction (SBSE) combined with gas chromatography-olfactometry (GC-O) and GC-mass spectrometry (GC-MS), and the aroma profiles of tea plants grown at different altitudes were compared. We detected 59 odor compounds in Lingtou Dancong oolong tea. Eight compounds with honey and floral odors were identified as key components on the basis of GC-O, GC-MS, odor activity value, and flavor dilution analyses. Differences in the contents of precursor geranyl diphosphate and transcript levels of structural genes were found to be responsible for the differential accumulation of linalool and hotrienol among plants grown at different altitudes. This is the first report on the aroma characteristics and key contributors of Lingtou Dancong oolong tea and their differences, as affected by altitude. These results provide details of the chemical basis of the aroma quality of Lingtou Dancong oolong tea.
Collapse
Affiliation(s)
- Miao Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Xiaohui Liu
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Chengshun Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jiajia Qian
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Yongxia Jia
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- South China National Botanical Garden, No. 723 Xingke Road, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
39
|
Stir-frying treatment improves the color, flavor, and polyphenol composition of Flos Sophorae Immaturus tea. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Characteristic fingerprints and change of volatile organic compounds of dark teas during solid-state fermentation with Eurotium cristatum by using HS-GC-IMS, HS-SPME-GC-MS, E-nose and sensory evaluation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
The stress-induced metabolites changes in the flavor formation of oolong tea during enzymatic-catalyzed process: A case study of Zhangping Shuixian tea. Food Chem 2022; 391:133192. [PMID: 35597038 DOI: 10.1016/j.foodchem.2022.133192] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/19/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022]
Abstract
To interpret the environmental stresses induced dynamic changes of volatile and non-volatile constitutes in oolong tea leaves during enzymatic-catalyzed processes (ECP), metabolomic and proteomic studies were carried out using the processed leaf samples collected at the different stages of ECP for Zhangping Shuixian tea manufacture. Non-processed leaves were applied as control. Out of identified 980 non-volatiles and 157 volatiles, 40 non-volatiles and 8 volatiles were screened out as biomarkers, respectively. The integrated analysis on metabolites-proteins showed that phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine metabolism were significantly enriched and highly correlated to the dynamic changes of key metabolites during ECP stage. A biological pathway network was constructed to illuminate the enzymatic-catalyzed production of critical flavoring compounds, including carbohydrates, amino acids, flavonoids, and volatile phenylpropanoids/benzenoids. The electronic-sensory analyses indicated leaf dehydration and mechanical wounding occurred over the sun-withering and turning-over steps are indispensable to form characteristic flavor of Shuixian tea.
Collapse
|
42
|
Yang P, Wang H, Cao Q, Song H, Xu Y, Lin Y. Aroma-active compounds related to Maillard reaction during roasting in Wuyi Rock tea. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Wang J, Li M, Wang H, Huang W, Li F, Wang L, Ho CT, Zhang Y, Zhang L, Zhai X, Wan X. Decoding the Specific Roasty Aroma Wuyi Rock Tea ( Camellia sinensis: Dahongpao) by the Sensomics Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10571-10583. [PMID: 35973132 DOI: 10.1021/acs.jafc.2c02249] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aroma extract dilution analysis was performed on volatile fractions extracted from a freshly prepared Dahongpao (DHP) tea infusion using solvent-assisted flavor evaporation, yielding 65 odor-active domains with flavor dilution factors ranging between 32 and 32,768. In addition, six aromatic substances were captured by headspace analysis. Quantitation of 54 compounds by an internal standard method and stable isotope dilution assays revealed that the concentrations of 32 odorants exceeded their respective orthonasal odor threshold values in tea infusion. The results of odor activity values (OAVs) suggested that 2-metylbutanal (malty) and γ-hexalactone (coconut-like) had the highest OAVs (248 and 154). Eight odorants including γ-hexalactone (OAV 154), methyl 2-methylbutanoate (59), phenylacetic acid (7.2), acetylpyrazine (5.7), 2-methoxyphenol (3.4), p-cresol (2.7), 2,6-diethylpyrazine (2.7), and vanillin (1.8) were newly identified as key odorants in DHP tea infusion. An aroma recombination model in a non-volatile matrix extracted from tea infusion satisfactorily mimicked the overall aroma of DHP tea infusion, thereby confirming the identification and quantitative experiments. Omission experiments verified the obvious significance of 6-methyl-5-hepten-2-one (OAV 91), 2-ethyl-3,5-dimethylpyrazine (19), 4-hydroxy-2,5-dimethylfuran-3(2H)-one (13), and acetylpyrazine (5.7) as key odorants for the special roasty and caramel-like aroma of DHP tea.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mengru Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Hui Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Wenjing Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Fang Li
- Wuyistar Tea Industrial Co., Limited, Wuyishan 354301, China
| | - Lili Wang
- Wuyistar Tea Industrial Co., Limited, Wuyishan 354301, China
| | - Chi-Tang Ho
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Yanyan Zhang
- Department of Flavor Chemistry, University of Hohenheim, Fruwirthstr. 12, Verfügungsgebäude, Stuttgart 70599, Germany
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
44
|
Liu L, Shi J, Yuan Y, Yue T. Changes in the metabolite composition and enzyme activity of fermented tea during processing. Food Res Int 2022; 158:111428. [DOI: 10.1016/j.foodres.2022.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
45
|
Effects of Drying Methods on the Volatile Compounds of Alliummongolicum Regel. Foods 2022; 11:foods11142080. [PMID: 35885324 PMCID: PMC9317450 DOI: 10.3390/foods11142080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Allium mongolicum Regel (AMR) is a traditional Mongolian food. Various drying methods play an important role in foodstuff flavor. However, the effect of different drying methods on AMR is limited. In this study, freeze drying (FD), vacuum drying (VD), and hot-air drying (HAD) were applied to dry fresh AMR to a moisture content of 8% (wet basis); headspace gas chromatography mass spectrometry was adopted to identify volatile compounds in AMR; and principal component analysis and fingerprint similarity analysis based on the Euclidean distance was used to distinguish the fresh and three dried treatments. In total, 113 peaks were detected and 102 volatile compounds were identified. Drying causes significant changes to the amounts of volatile compounds in AMR, and the drying method plays a key role in determining which volatile compounds appear. Compared to FD, VD and HAD were more appropriate for drying AMR because the volatile compounds after VD and HAD were closer to those of fresh AMR. These findings can provide a scientific basis to help to preserve future seasonal functional food and aid in Mongolian medicine production.
Collapse
|
46
|
Wu DT, Liu W, Yuan Q, Gan RY, Hu YC, Wang SP, Zou L. Dynamic variations in physicochemical characteristics of oolong tea polysaccharides during simulated digestion and fecal fermentation in vitro. Food Chem X 2022; 14:100288. [PMID: 35342881 PMCID: PMC8942832 DOI: 10.1016/j.fochx.2022.100288] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/01/2023] Open
Abstract
Wuyi rock tea polysaccharides (WYP) were slightly degraded after in vitro digestion. The indigestible WYP could be degraded and utilized during the fecal fermentation. Dynamic variations in physicochemical profiles of WYP were revealed. Beneficial bacteria, such as Lactococcus and Bifidobacterium, increased. Acetic, propionic, and n-butyric acids increased during fecal fermentation.
In this study, dynamic variations in physicochemical characteristics of polysaccharides from ‘Wuyi rock’ tea (WYP) at different simulated digestion and fecal fermentation stages in vitro were studied. Results revealed that physicochemical characteristics of WYP were slightly altered after the simulated digestion in vitro, and its digestibility was about 8.38%. Conversely, physicochemical characteristics of the indigestible WYP, including reducing sugar, chemical composition, constituent monosaccharide, molecular weight, and FT-IR spectrum, were obviously altered after the fecal fermentation in vitro, and its fermentability was about 42.18%. Notably, the indigestible WYP could remarkably modulate the microbial composition via promoting the proliferation of profitable intestinal microbes, such as Bacteroides, Lactococcus, and Bifidobacterium. Moreover, it could also enhance the generation of short-chain fatty acids. The results showed that WYP was slightly digested in the gastrointestinal tract in vitro, but could be obviously utilized by intestinal microbiota, and might possess the potential to improve intestinal health.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qin Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.,Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
47
|
Xu K, Tian C, Zhou C, Zhu C, Weng J, Sun Y, Lin Y, Lai Z, Guo Y. Non-Targeted Metabolomics Analysis Revealed the Characteristic Non-Volatile and Volatile Metabolites in the Rougui Wuyi Rock Tea ( Camellia sinensis) from Different Culturing Regions. Foods 2022; 11:foods11121694. [PMID: 35741892 PMCID: PMC9222269 DOI: 10.3390/foods11121694] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
Rougui Wuyi Rock tea (WRT) with special flavor can be affected by multiple factors that are closely related to the culturing regions of tea plants. The present research adopted non-targeted metabolomics based on liquid chromatography–mass spectrometry (LC-MS) and gas chromatography–mass spectrometry (GC-MS), aroma activity value method (OAV), and chemometrics to analyze the characteristic metabolites of three Rougui WRTs from different culturing regions. The results of sensory evaluation showed that the three Rougui Wuyi Rock teas had significantly different flavor qualities, especially in taste and aroma. Rougui (RG) had a heavy and mellow taste, while cinnamon-like odor Rougui (GPRG) and floral and fruity odor Rougui (HGRG) had a thick, sweet, and fresh taste. The cinnamon-like odor was more obvious and persistent in GPRG than in RG and HGRG. HGRG had floral and fruity characteristics such as clean and lasting, gentle, and heavy, which was more obvious than in RG and GPRG. The results of principal component analysis (PCA) showed that there were significant metabolic differences among the three Rougui WRTs. According to the projection value of variable importance (VIP) of the partial least squares discriminant analysis (PLS–DA), 24 differential non-volatile metabolites were identified. The PLSR analysis results showed that rutin, silibinin, arginine, lysine, dihydrocapsaicin, etc. may be the characteristic non-volatiles that form the different taste outlines of Rougui WRT. A total of 90 volatiles, including aldehydes, alcohols, esters, and hydrocarbons, were identified from the three flavors of Rougui WRT by using GC-MS. Based on OAV values and PLS-DA analysis, a total of 16 characteristic volatiles were identified. The PLSR analysis results showed that 1-penten-3-ol, α-pinene, 2-carene, β-Pinene, dehydrolinalool, adipaldehyde, D-limonene, saffron aldehyde, and 6-methyl-5-hepten-2-one may be the characteristic volatiles that form the different aroma profile of Rougui WRT. These results provide the theoretical basis for understanding the characteristic metabolites that contribute to the distinctive flavors of Rougui WRT.
Collapse
Affiliation(s)
- Kai Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingjing Weng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
48
|
Gharibzahedi SMT, Barba FJ, Zhou J, Wang M, Altintas Z. Electronic Sensor Technologies in Monitoring Quality of Tea: A Review. BIOSENSORS 2022; 12:bios12050356. [PMID: 35624658 PMCID: PMC9138728 DOI: 10.3390/bios12050356] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 05/27/2023]
Abstract
Tea, after water, is the most frequently consumed beverage in the world. The fermentation of tea leaves has a pivotal role in its quality and is usually monitored using the laboratory analytical instruments and olfactory perception of tea tasters. Developing electronic sensing platforms (ESPs), in terms of an electronic nose (e-nose), electronic tongue (e-tongue), and electronic eye (e-eye) equipped with progressive data processing algorithms, not only can accurately accelerate the consumer-based sensory quality assessment of tea, but also can define new standards for this bioactive product, to meet worldwide market demand. Using the complex data sets from electronic signals integrated with multivariate statistics can, thus, contribute to quality prediction and discrimination. The latest achievements and available solutions, to solve future problems and for easy and accurate real-time analysis of the sensory-chemical properties of tea and its products, are reviewed using bio-mimicking ESPs. These advanced sensing technologies, which measure the aroma, taste, and color profiles and input the data into mathematical classification algorithms, can discriminate different teas based on their price, geographical origins, harvest, fermentation, storage times, quality grades, and adulteration ratio. Although voltammetric and fluorescent sensor arrays are emerging for designing e-tongue systems, potentiometric electrodes are more often employed to monitor the taste profiles of tea. The use of a feature-level fusion strategy can significantly improve the efficiency and accuracy of prediction models, accompanied by the pattern recognition associations between the sensory properties and biochemical profiles of tea.
Collapse
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Min Wang
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Zeynep Altintas
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| |
Collapse
|
49
|
Directed Accumulation of Nitrogen Metabolites through Processing Endows Wuyi Rock Tea with Singular Qualities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103264. [PMID: 35630739 PMCID: PMC9147623 DOI: 10.3390/molecules27103264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
The execution of specific processing protocols endows Wuyi rock tea with distinctive qualities produced through signature metabolic processes. In this work, tea leaves were collected before and after each of three processing stages for both targeted and untargeted metabolomic analysis. Metabolic profiles of processing stages through each processing stage of rotation, pan-firing and roasting were studied. Overall, 614 metabolites were significantly altered, predominantly through nitrogen- enriching (N) pathways. Roasting led to the enrichment of 342 N metabolites, including 34 lipids, 17 organic acids, 32 alkaloids and 25 amino acids, as well as secondary derivatives beneficial for tea quality. This distinctive shift towards enrichment of N metabolites strongly supports concluding that this directed accumulation of N metabolites is how each of the three processing stages endows Wuyi rock tea with singular quality.
Collapse
|
50
|
Su WY, Gao SY, Zhan SJ, Wu Q, Chen GM, Han JZ, Lv XC, Rao PF, Ni L. Evaluation of Volatile Profile and In Vitro Antioxidant Activity of Fermented Green Tea Infusion With Pleurotus sajor-caju (Oyster Mushroom). Front Nutr 2022; 9:865991. [PMID: 35495938 PMCID: PMC9047879 DOI: 10.3389/fnut.2022.865991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Green tea has distinct astringency, bitter taste, and typical green flavor because of its post-harvest treatment without withering and enzymatic oxidation. Microbial fermentation has been identified as a promising strategy that could give green tea infusion a special taste flavor. This might be linked to the metabolic transformation ability of microorganisms. In this study, starter culture of edible mushroom Pleurotus sajor-caju (oyster mushroom) was used for submerged fermentation of green tea infusion in order to improve its flavor and taste quality. The volatile profile determined by headspace solid-phase microextraction, coupled with gas chromatography mass spectrometry, showed that the contents of (Z)-2-penten-1-ol and methyl heptadienone in green tea infusion were decreased significantly by the fermentation with the basidiomycete P. sajor-caju (p < 0.01), which would alleviate the herbal and grass flavor of green tea infusion to a certain extent. Meanwhile, the contents of linalool and geraniol were increased 9.3 and 11.3 times, respectively, whereas methyl salicylate was newly produced after fermentation by P. sajor-caju, endowing the fermented tea infusion with a pleasant flower and fruit aroma. In addition, the polyphenol profile was determined using high-performance liquid chromatography equipped with ion trap mass spectrometry, and the results indicated that the contents of most polyphenols in green tea infusion decreased significantly after fermentation by P. sajor-caju. The reduction of catechins and anthocyanins in fermented green tea infusion alleviated the astringency and bitterness. Moreover, the antioxidant activity of fermented green tea infusion was obviously decreased, especially the DPPH-free radical-scavenging ability and the ferric-reducing power. However, it is noteworthy that the ABTS-free radical scavenging ability was improved compared with the unfermented one, indicating that the increased tea pigments and volatile metabolites (such as linalool and geraniol) after fermentation with P. sajor-caju may also contribute to the antioxidant capacity of fermented green tea infusion. Overall, the innovative approach driven by P. sajor-caju fermentation has achieved promising potential to manipulate the green tea flavor.
Collapse
Affiliation(s)
- Wei-Ying Su
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Shu-Yi Gao
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Si-Jia Zhan
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Qi Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Gui-Mei Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jin-Zhi Han
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Fuzhou, China
| | - Xu-Cong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Fuzhou, China
- *Correspondence: Xu-Cong Lv
| | - Ping-Fan Rao
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Fuzhou, China
- Li Ni
| |
Collapse
|