1
|
Zhao R, Chang C, He Y, Jiang C, Bao Z, Wang C. Effects of mixing ratio on physicochemical, structural properties and application in lycopene-loaded emulsions of blends of whey protein and pea protein. Food Chem 2025; 463:141062. [PMID: 39236389 DOI: 10.1016/j.foodchem.2024.141062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Physicochemical, structural properties and application in lycopene-loaded emulsions of blends of whey protein isolate (WPI) and pea protein isolate (PPI) at varying mass ratios (100/0, 75/25, 50/50, 25/75, 0/100) were investigated. Data indicated that the mass ratios affected the physical, chemical and storage stability of the emulsion by influencing the particle size, zeta-potential, surface hydrophobicity, free sulfhydryl content, and secondary structure of the blends. Particularly, emulsion with a mixing ratio of 75/25 exhibited superior physical stability against salt concentrations (200 and 500 mM), better chemical stability against UV light and heat, and maintained stability over a 30-day storage period. Emulsions stabilized by blends of different ratios exhibited similar digestion behavior, with no significant differences observed in lycopene's transformation stability and bio-accessibility. Data indicated that substitution of whey protein by pea protein is effective in term of emulsifier application and replacement ratio is an important factor need to be considered.
Collapse
Affiliation(s)
- Ru Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chuyu Chang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yuxin He
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chuanrui Jiang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhaoxue Bao
- Hinggan League Mengyuan Technology Testing Service Co., Ltd, Ulanhot 137400, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Li Z, Zhang L, Shan Y, Zhao Y, Dai L, Wang Y, Sun Q, McClements DJ, Cheng Y, Xu X. Fabrication of high internal phase emulsions (HIPEs) using pea protein isolate-hyaluronic acid-tannic acid complexes: Application of curcumin-loaded HIPEs as edible inks for 3D food printing. Food Chem 2024; 460:140402. [PMID: 39059330 DOI: 10.1016/j.foodchem.2024.140402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024]
Abstract
Pea protein isolate (PPI)-hyaluronic acid (HA)-tannic acid (TA) ternary complexes were assembled using non-covalent interactions, their potential application in 3D printing and delivery of curcumin were investigated. As the HA-to-TA ratio in the complexes changed from 1:0 to 0:1, the oil-water interfacial tension first decreased and then increased, and the secondary structure of the proteins changed. The composition of the complexes (HA-to-TA ratio) was optimized to produce high internal phase emulsions (HIPEs) containing small uniform oil droplets with good storage and thermal stability. When the HA to TA ratio is 7:1 (P-H7-T1), HIPEs exhibited better viscosity, viscoelasticity, and thixotropy, which contributed to its preferable 3D printing. Moreover, curcumin-loaded HIPEs stabilized by P-H7-T1 showed a high lipid digestibility (≈101%) and curcumin bioaccessibility (≈79%). In summary, the PPI-HA-TA-stabilized HIPEs have good potential to be 3D-printable materials that could be loaded with bioactive components.
Collapse
Affiliation(s)
- Zhiying Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Liwen Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Yuehan Shan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Yue Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China
| | | | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong, 266109, China; Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Wang L, Wei Z, Xue C. Co-encapsulation of curcumin and fucoxanthin in solid-in-oil-in-water multilayer emulsions: Characterization, stability and programmed sequential release. Food Chem 2024; 456:139975. [PMID: 38852456 DOI: 10.1016/j.foodchem.2024.139975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
To enhance the bioavailability of bioactives with varying efficacy in the gastrointestinal tract (GIT), a co-delivery system of solid-in-oil-in-water (S/O/W) emulsion was designed for the co-encapsulation of two bioactives in this paper. S/O/W emulsions were fabricated utilizing fucoxanthin (FUC)-loaded nanoparticles (NPs) as the solid phase, coconut oil containing curcumin (Cur) as the oil phase, and carboxymethyl starch (CMS)/propylene glycol alginate (PGA) complex as the aqueous phase. The high entrapment efficiency of Cur (82.3-91.3%) and FUC (96.0-96.1%) was found in the CMS/PGA complex-stabilized S/O/W emulsions. Encapsulation of Cur and FUC within S/O/W emulsions enhanced their UV and thermal stabilities. In addition, S/O/W emulsions prepared with CMS/PGA complexes displayed good stability. More importantly, the formed S/O/W emulsion possessed programmed sequential release characteristics, delivering Cur and FUC to the small intestine and colon, respectively. These results contributed to designing co-delivery systems for the programmed sequential release of two hydrophobic nutrients in the GIT.
Collapse
Affiliation(s)
- Luhui Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
4
|
Zhan S, He M, Wu Y, Ouyang J. Improved light and ultraviolet stability of curcumin encapsulated in emulsion gels prepared with corn starch, OSA-starch and whey protein isolate. Food Chem 2024; 446:138803. [PMID: 38412810 DOI: 10.1016/j.foodchem.2024.138803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The objective of this study was to enhance the bioavailability and stability of curcumin (Cur) by encapsulating it in corn starch (CS)/octenylsuccinic acid modified (OSA)-starch-whey protein isolate (WPI) emulsion gels (EGs). As the volume fraction of the oil phase increased, the droplet size and ζ- potential of the EGs decreased. The encapsulation efficiency and bioavailability of Cur in CS/OSA-starch-WPI EGs with a 60% oil ratio were 96.0% and 67.3%, respectively. The release rate of free fatty acid and the bioavailability of Cur from the EGs after digestion were significantly higher compared to Cur dissolved in oil. EGs with an oil phase volume fraction of 75% and 80% demonstrated greater protection against light irradiation but were less effective against UV irradiation compared to EGs with a 60% oil phase volume fraction. Encapsulation in EGs proved to be an effective method for enhancing the bioavailability and stability of Cur.
Collapse
Affiliation(s)
- Siyuan Zhan
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Mohe He
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Hu Y, Wang L, Julian McClements D. Design, characterization and digestibility of β-carotene-loaded emulsion system stabilized by whey protein with chitosan and potato starch addition. Food Chem 2024; 440:138131. [PMID: 38103502 DOI: 10.1016/j.foodchem.2023.138131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
The physicochemical properties and gastrointestinal fate of β-carotene-loaded emulsions and emulsion gels were examined. The emulsion was emulsified by whey protein isolate and incorporated with chitosan, then the emulsion gels were produced by gelatinizing potato starch in the aqueous phase. The rheology properties, water distribution, and microstructure of emulsions and emulsion gels were modulated by chitosan combination. A standardized INFOGEST method was employed to track the gastrointestinal fate of emulsion systems. Significant changes in droplet size, zeta-potential, and aggregation state were detected during in vitro digestion, including simulated oral, stomach, and small intestine phases. The presence of chitosan led to a significantly reduced free fatty acids release in emulsion, whereas a slightly increasing released amount in the emulsion gel. β-carotene bioaccessibility was significantly improved by hydrogel formation and chitosan addition. These results could be used to formulate advanced emulsion systems to improve the gastrointestinal fate of hydrophobic nutraceuticals.
Collapse
Affiliation(s)
- Yuying Hu
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Lufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | | |
Collapse
|
6
|
Buecker S, Gibis M, Bartmann L, Bussler S, Weiss J. Improving the colloidal stability of pectin-phycocyanin complexes by increasing the mixing ratio. J Food Sci 2024; 89:1086-1097. [PMID: 38224172 DOI: 10.1111/1750-3841.16917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
In the food industry, the phycobiliprotein phycocyanin acts as a color pigment or the functional part of the superfood "Spirulina." It is industrially extracted from Arthrospira platensis. Current scientific research is focusing on finding complex partners with the potential to stabilize phycocyanin against its sensitivity toward heating and pH changes. Less attention is paid to the factors that influence complexation. This study focuses on the mixing ratio of phycocyanin with pectin. Phycocyanin concentration was fixed, and the mixing ratios ranged from 0.67 to 2.50 (pectin:phycocyanin). All samples were analyzed for their color, size, microscopic structure, zeta potential, and sedimentation stability before and after heating at 85°C. It was found that increasing the pectin content fostered the initial interactions with the protein and chromophore, resulting in a color shift from blue to turquoise. The size of the complexes decreased from several micrometers to nanometers with increasing pectin concentration. Those smaller complexes that were formed at a mixing ratio of 2.5 showed a higher colloidal stability over a period of ∼2 days. It is suggested that at a low mixing ratio (0.67), phycocyanin cannot be completely entrapped within the complexes and attaches to the complex surface as well. This results in aggregation and precipitation of the complexes upon heating. With increasing aggregation and consequently size as well as density of the complexes, sedimentation was accelerated. PRACTICAL APPLICATION: Under acidic conditions, as found in many foods and beverages (e.g., soft drinks, hard candy), phycocyanin tends to agglomerate and lose its color. Specifically heating, triggers denaturation, causing phycocyanin to aggregate and lose vital protein-chromophore interactions necessary to maintain a blue color. To prevent precipitation of the phycocyanin-pectin complexes, increasing the amount of pectin to a ratio of at least 2.0 is effective. This illustrates how adjusting the mixing ratio improves stability. Conversely, lower mixing ratios induce color precipitation, valuable in purification processes. Thus, practical use of biopolymer-complexes, requires determination of the optimal mixing ratio for the desired effect.
Collapse
Affiliation(s)
- Stephan Buecker
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Monika Gibis
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Laura Bartmann
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | | | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
7
|
Meng Q, Xu M, Chen L, Xu S, Li J, Li Y, Fan L, Shi G, Ding Z. Emulsion for stabilizing β-carotene and curcumin prepared directly using a continuous phase of polysaccharide-rich Schizophyllum commune fermentation broth. Int J Biol Macromol 2024; 254:127730. [PMID: 38287588 DOI: 10.1016/j.ijbiomac.2023.127730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
In this study, we examined the effect of Schizophyllum commune fermentation broth (SCFB) rich in polysaccharides (SCFP) on the stability and bioaccessibility of β-carotene and curcumin. An SCFB-stabilized oil-in-water (o/w) emulsion (SCFBe) was prepared using SCFB as the continuous phase, and then evaluated for storage stability using an SCFP-based emulsion (SCFPe) as the control. The findings revealed that SCFBe is more stable at 60 °C than SCFPe, and stratification or droplet size varied at differing pH levels (3-9) and concentrations of Na+ (0.1-0.5 M) and Ca2+ (0.01-0.05 M). Since the absolute value of the zeta potential of SCFBe is much lower at 60 °C than that at 4 °C and 25 °C, a higher temperature (60 °C) may enhance the reactivity of polysaccharides and proteins in SCFB to improve the stability of SCFBe. Both the protective impact of SCFB on functional food molecules and their capacity to block lipid oxidation increased as polysaccharide content improved. The bioaccessibility of β-carotene after in vitro simulated gastrointestinal digestion is 11.18 %-12.28 %, whereas that of curcumin is 31.64 %-33.00 %. By fermenting edible and medicinal fungi in liquid, we created a unique and environmentally friendly approach for getting food-grade emulsifiers without extraction.
Collapse
Affiliation(s)
- Qi Meng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Chen Y, Chen Y, Fang Y, Pei Z, Zhang W. Coconut milk treated by atmospheric cold plasma: Effect on quality and stability. Food Chem 2024; 430:137045. [PMID: 37541035 DOI: 10.1016/j.foodchem.2023.137045] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Commercial sterilization plays an important role in extending the shelf-life of coconut milk. However, thermal sterilization affects the quality of coconut milk. This study was initiated to evaluate the effects of atmospheric cold plasma (ACP) treatment on some important quality parameters of coconut milk. ACP treatment had a slight effect on physicochemical characteristics and nutritional ingredients while it obviously reduced the colony count. Furthermore, ACP treatment obviously promoted the formation of lactone, an indispensable volatile substance in coconut milk. Insufficient or moderate ACP treatment had subtle effect on the sensory quality. Notably, moderate ACP treatment reduced the droplet size from 28.0 μm to 18.6 μm, and improved the stability during storage and centrifugation, especially at 60 kV 60 s. Overall, sterilization of coconut milk by ACP at 60 kV 60 s was the most ideal. This study can provide theoretical guidance for the application of ACP in liquid food.
Collapse
Affiliation(s)
- Yang Chen
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Yile Chen
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Yajing Fang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Zhisheng Pei
- School of Food Science and Engineering, Hainan University, Hainan 570228, China; School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China.
| |
Collapse
|
9
|
Lv D, Chen F, Yin L, Zhang P, Rashid MT, Yu J. Wheat bran arabinoxylan-soybean protein isolate emulsion-filled gels as a β-carotene delivery carrier: Effect of polysaccharide content on textural and rheological properties. Int J Biol Macromol 2023; 253:126465. [PMID: 37619689 DOI: 10.1016/j.ijbiomac.2023.126465] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
This study aimed to investigate the effects of different wheat bran arabinoxylan (WBAX) concentrations (1, 2, 3, and 4 wt%) on the structural and physicochemical properties of WBAX-soybean protein isolate (SPI) emulsion-filled gels (EFGs) prepared using laccase and heat treatment. The properties of the various gels as well as their microstructure, rheology, and in vitro digestion behaviors were investigated. Results showed that WBAX-SPI EFGs with a 3 wt% WBAX concentration had a smooth and uniform appearance, high water holding capacity (98.5 ± 0.2 %), and enhanced mechanical properties. Rheological experiments suggested that a stronger and closer gel network was formed at 3 wt% WBAX concentration. Fourier transform infrared spectroscopy showed that laccase and heat treatment not only catalyzed the intramolecular crosslinking of WBAX and SPI, respectively, but also promoted the interaction between WBAX and SPI. Confocal laser scanning microscopy revealed that the WBAX gel network was interspersed within the SPI network. The interactions contributing to the gelation analysis revealed that chemical (disulfide bond) and physical (hydrogen bond and hydrophobic) interactions promoted the formation of denser EFGs. Furthermore, the WBAX-SPI EFGs provided a β-carotene bioaccessibility of 21.8 ± 0.6 %. Therefore, our study suggests that WBAX-SPI EFGs hold promising potential for industrial applications in the delivery of β-carotene.
Collapse
Affiliation(s)
- Dingyang Lv
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Lijun Yin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Penglong Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Muhammad Tayyab Rashid
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Jingyan Yu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
10
|
Hou Y, Sun Y, Zhang P, Wang H, Tan M. Development and characterization of emulsion gels prepared via gliadin-based colloidal particles and gellan gum with tunable rheological properties for 3D printed dysphagia diet. Int J Biol Macromol 2023; 253:126839. [PMID: 37696376 DOI: 10.1016/j.ijbiomac.2023.126839] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Dysphagia, a condition characterized by difficulty swallowing, has emerged as a threat to health. Herein, we investigated the feasibility of preparing a novel 3D-printed dysphagia diet using emulsions and gellan gum. A gel network was facilitated by the inclusion of gellan gum, which also helped to reduce the size of the oil droplets. Emulsion gels (with 0.3 %-0.5 % gellan gum) were stable at 25 °C for 30 days and tolerated a high ionic concentration of 800 mmol L-1. Emulsion gels remained stable after heat treatment and centrifugation. The excellent stability of the emulsion gels was related to the three-dimensional network developed by the gellan gum. The rheological results validated the solid-state behavior, shear thinning behavior and structural recovery of emulsion gels. Emulsion gels with 0.3 %-0.5 % gellan gum were suitable for 3D printing since they had high printing accuracy, self-support, and smooth surface texture. International Diet Standardization Initiative (IDDIS) tests have shown that emulsion gels can be classified as a level 3-5 dysphagia diet. In addition, the bioaccessibility of astaxanthin increased 1.7 times after being encapsulated by emulsion gels. Overall, these results demonstrate the potential of emulsion gels in the development of novel 3D-printed diets for dysphagia and bioactive protection.
Collapse
Affiliation(s)
- Yitong Hou
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yuanda Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Pengjing Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Haitao Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
11
|
Wu Z, Tang X, Liu S, Li S, Zhao X, Wang Y, Wang X, Li H. Mechanism underlying joint loading and controlled release of β-carotene and curcumin by octenylsuccinated Gastrodia elata starch aggregates. Food Res Int 2023; 172:113136. [PMID: 37689900 DOI: 10.1016/j.foodres.2023.113136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/20/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023]
Abstract
This study aimed to fabricate a novel codelivery system to simultaneously load β-carotene and curcumin in a controlled and synergistic manner. We hypothesized that the aggregates of octenylsuccinated Gastrodia elata starch (OSGES) could efficiently load and control the release of β-carotene and curcumin in combination. Mechanisms underlying the self-assembly of OSGES, coloading, and corelease of β-carotene and curcumin by relevant aggregates were studied. The OSGES could form aggregates with a size of 120.2 nm containing hydrophobic domains surrounded by hydrophilic domains. For coloading, the increased solubilities were attributed to favorable interactions between β-carotene and curcumin as well as interactions with octenyl and starch moieties via hydrophobic and hydrogen-bond interactions, respectively. The β-carotene and curcumin molecules occupied the interior and periphery of hydrophobic domains of OSGES aggregates, respectively, and they did not exist in isolation but interacted with each other. The β-carotene and curcumin combination-loaded OSGES aggregates with a size of 310.5 nm presented a more compact structure than β-carotene-only and curcumin-only loaded OSGES aggregates with sizes of 463.5 and 202.9 nm respectively, suggesting that a transition from a loose cluster to a compact cluster was accompanied by coloading. During in vitro digestion, the joint effect of β-carotene and curcumin prolonged their release and increased their bioaccessibility due to competition between favorable hydrophobic and hydrogen-bond interactions and the unfavorable structure erosion and relaxation of the loaded aggregates. Therefore, OSGES aggregates were designed for the codelivery of β-carotene and curcumin, indicating their potential to be applied in functional foods and dietary supplements.
Collapse
Affiliation(s)
- Zhen Wu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China.
| | - Xin Tang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Simei Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China
| | - Sheng Li
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Xiaowan Zhao
- College of Light Industry and Materials, Chengdu Textile College, Chengdu 611731, PR China
| | - Yongde Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Xiaogang Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Hong Li
- National Key Laboratory of Market Supervision (Condiment Supervision Technology), Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China.
| |
Collapse
|
12
|
Bērziņa L, Mieriņa I. Antiradical and Antioxidant Activity of Compounds Containing 1,3-Dicarbonyl Moiety: An Overview. Molecules 2023; 28:6203. [PMID: 37687032 PMCID: PMC10488980 DOI: 10.3390/molecules28176203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Free radicals and oxidants may cause various damages both to the lifeworld and different products. A typical solution for the prophylaxis of oxidation-caused conditions is the usage of various antioxidants. Among them, various classes are found-polyphenols, conjugated polyalkenes, and some sulfur and nitrogen derivatives. Regarding the active site in the molecules, a widely discussed group of compounds are 1,3-dicarbonyl compounds. Among them are natural (e.g., curcumin and pulvinic acids) and synthetic (e.g., 4-hydroxy coumarins, substituted Meldrum's acids) compounds. Herein, information about various compounds containing the 1,3-dicarbonyl moiety is covered, and their antiradical and antioxidant activity, depending on the structure, is discussed.
Collapse
Affiliation(s)
| | - Inese Mieriņa
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia;
| |
Collapse
|
13
|
Xu X, Li L, Ma C, Li D, Yang Y, Bian X, Fan J, Zhang N, Zuo F. Soy protein isolate-citrus pectin-gallic acid ternary composite high internal phase Pickering emulsion for delivery of β-carotene: Physicochemical, structural and digestive properties. Food Res Int 2023; 169:112910. [PMID: 37254348 DOI: 10.1016/j.foodres.2023.112910] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
The structure properties, stability and β-carotene slow-release mechanism of soybean protein isolate-citrus pectin-gallic acid complex (SPI-CP-GA) stabilized high-internal phase Pickering emulsion (HIPPE) were investigated. The results showed that compared with the SPI-CP binary complex, the turbidity of the SPI-CP-GA ternary complex increased from 2.174 ± 0.001 to 3.027 ± 0.001, the surface wettability was increased, the infrared peaks was blue-shifted, changed from hydrophilic to hydrophobic, and the equilibrium interfacial tension of particles increased from 10.77 ± 0.02 mN/m to 13.46 ± 0.03 mN/m, the complex was more stable. When the GA was 2.0 mg/mL, the encapsulation efficiency of β-carotene was higher. With increased GA concentration and oil phase volume fraction (φ), the apparent viscosity and viscoelastic behavior of HIPPE performed well, forming a stable gel network structure. After 30 days of storage, there was no oil separation in the sample group with GA concentration of 2.0 mg/mL and φ = 0.7, and the stability was strong. After gastrointestinal digestion, the particle size of the HIPPE decreased from 13.51 ± 0.86 μm to 7.70 ± 0.68 μm, the free fatty acid (FFA) release rate was 22.03%, and the bioaccessibility of β-carotene was 6.67 ± 0.19%, and the sustained-release effect was obvious. These results indicated that the SPI-CP-GA ternary complex is a potential stabilizer for HIPPE, and providing theoretical guidance for the design of protein-polysaccharide-polyphenol stabilized HIPPE.
Collapse
Affiliation(s)
- Xinyu Xu
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China; Heilongjiang Bayi Agricultural University Food College, Daqing, Heilongjiang 163319, China
| | - Lin Li
- Heilongjiang Bayi Agricultural University Food College, Daqing, Heilongjiang 163319, China; Heilongjiang Bayi Agricultural University National Cereals Engineering Technology Research Center, Daqing, Heilongjiang 163319, China
| | - Chunmin Ma
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China
| | - Dan Li
- Heilongjiang Bayi Agricultural University Food College, Daqing, Heilongjiang 163319, China; Heilongjiang Bayi Agricultural University National Cereals Engineering Technology Research Center, Daqing, Heilongjiang 163319, China
| | - Yang Yang
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China
| | - Xin Bian
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China
| | - Jing Fan
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China
| | - Na Zhang
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China.
| | - Feng Zuo
- Heilongjiang Bayi Agricultural University Food College, Daqing, Heilongjiang 163319, China; Heilongjiang Bayi Agricultural University National Cereals Engineering Technology Research Center, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
14
|
Wijekoon MMJO, Mahmood K, Ariffin F, Nafchi AM, Zulkurnain M. Recent advances in encapsulation of fat-soluble vitamins using polysaccharides, proteins, and lipids: A review on delivery systems, formulation, and industrial applications. Int J Biol Macromol 2023; 241:124539. [PMID: 37085081 DOI: 10.1016/j.ijbiomac.2023.124539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Fat-soluble vitamins (FSVs) offer a range of beneficial properties as important nutrients in human nutrition. However, the high susceptibility to environmental conditions such as high temperature, light, and oxygen leads to the degradation of these compounds. This review highlights the different formulations underlying the encapsulation of FSVs in biopolymer (polysaccharide and protein) and lipid-based micro or nanocarriers for potential applications in food and pharmaceutical industries. In particular, the function of these carrier systems in terms of encapsulation efficiency, stability, bioavailability, and bio-accessibility is critically discussed. Recently, tremendous attention has been paid to encapsulating FSVs in commercial applications. According to the chemical nature of the active compound, the vigilant selection of delivery formulation, method of encapsulation, and final application (type of food) are the key important factors to be considered in the encapsulation of FSVs to ensure a high loading capacity, stability, bioavailability, and bio-accessibility. Future studies are recommended on the effect of different vitamin types and micro and nano encapsulate sizes on bioaccessibility and biocompatibility through in vitro/in vivo studies. Moreover, the toxicity and safety evaluation of encapsulated FSVs in human health should be evaluated before commercial application in food and pharmaceuticals.
Collapse
Affiliation(s)
- M M Jeevani Osadee Wijekoon
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kaiser Mahmood
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Fazilah Ariffin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Musfirah Zulkurnain
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
15
|
Zhao Q, Fan L, Li J. High internal phase emulsion gels stabilized by phosphorylated perilla protein isolate for protecting hydrophobic nutrients: Adjusting emulsion performance by incorporating chitosan-protocatechuic acid conjugate. Int J Biol Macromol 2023; 239:124101. [PMID: 36958452 DOI: 10.1016/j.ijbiomac.2023.124101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
The delivery vehicles based on protein-polysaccharide-polyphenol are promising methods to encapsulate bioactive components with the aim of improving their solubility and bioavailability. In this study, chitosan-protocatechuic acid (CSPA) conjugate interacted with phosphorylated perilla protein isolate (LZPI) to engineer a composite antioxidant interfacial architecture to delay lipid oxidation and regulate the stability and digestion profiles of β-carotene loaded in high internal phase emulsions (HIPEs). Compared to LZPI, the LZPI-CSPA complexes formed by hydrogen bond and electrostatic interaction showed improved wettability and reduced interfacial tension, which facilitated their adsorption at the interface. Furthermore, the addition of CSPA conjugate promoted the formation of interconnected network structure of LZPI-stabilized HIPEs, thereby endowing them with excellent viscoelasticity and storage stability. Moreover, the denser interfacial film based on LZPI-CSPA complexes effectively decreased the contents of lipid hydroperoxide and malondialdehyde in HIPEs, thus improving their oxidation stability. The encapsulation of β-carotene by LZPI-CSPA complex-stabilized HIPEs could further enhance its retention rate against different environmental stresses. After in vitro simulated digestion, the bioaccessibility of β-carotene also improved, reaching the highest value in HIPEs containing 1.5 % CSPA conjugate. These findings will give a reference for the fabrication of delivery vehicles to enhance the stability and bioaccessibility of bioactive components.
Collapse
Affiliation(s)
- Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
16
|
Cheng H, Chen W, Jiang J, Khan MA, Wusigale, Liang L. A comprehensive review of protein-based carriers with simple structures for the co-encapsulation of bioactive agents. Compr Rev Food Sci Food Saf 2023; 22:2017-2042. [PMID: 36938993 DOI: 10.1111/1541-4337.13139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/28/2023] [Accepted: 02/21/2023] [Indexed: 03/21/2023]
Abstract
The rational design and fabrication of edible codelivery carriers are important to develop functional foods fortified with a plurality of bioactive agents, which may produce synergistic effects in increasing bioactivity and functionality to target specific health benefits. Food proteins possess considerable functional attributes that make them suitable for the delivery of a single bioactive agent in a wide range of platforms. Among the different types of protein-based carriers, protein-ligand nanocomplexes, micro/nanoparticles, and oil-in-water (O/W) emulsions have increasingly attracted attention in the codelivery of multiple bioactive agents, due to the simple and convenient preparation procedure, high stability, matrix compatibility, and dosage flexibility. However, the successful codelivery of bioactive agents with diverse physicochemical properties by using these simple-structure carriers is a daunting task. In this review, some effective strategies such as combined functional properties of proteins, self-assembly, composite, layer-by-layer, and interfacial engineering are introduced to redesign the carrier structure and explore the encapsulation of multiple bioactive agents. It then highlights success stories and challenges in the co-encapsulation of multiple bioactive agents within protein-based carriers with a simple structure. The partition, protection, and release of bioactive agents in these protein-based codelivery carriers are considered and discussed. Finally, safety and application as well as challenges of co-encapsulated bioactive agents in the food industry are also discussed. This work provides a state-of-the-art overview of protein-based particles and O/W emulsions in co-encapsulating bioactive agents, which is essential for the design and development of novel functional foods containing multiple bioactive agents.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanwen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiang Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Wusigale
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Complexation of anthocyanins, betalains and carotenoids with biopolymers: An approach to complexation techniques and evaluation of binding parameters. Food Res Int 2023; 163:112277. [PMID: 36596187 DOI: 10.1016/j.foodres.2022.112277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Natural pigments are bioactive compounds that can present health-promoting bioactivities in the human body. Due to their strong coloring properties, these compounds have been widely used as color additives as an alternative to artificial colorants. However, since these pigments are unstable under certain conditions, such as the presence of light, oxygen, and heat, the use of complexation and encapsulation techniques with biopolymers is in demand. Moreover, some functional properties can be achieved by using natural pigments-biopolymers complexes in food matrices. The complexation and encapsulation of natural pigments with biopolymers consist of forming a complex with the aim to make these compounds less susceptible to oxidative and degrading agents, and can also be used to improve their solubility in different media. This review aims to discuss different techniques that have been used over the last years to create natural pigment-biopolymers complexes, as well as the recent advances, limitations, effects, and possible applications of these complexes in foods. Moreover, the understanding of thermodynamic parameters between natural pigments and biopolymers is very important regarding the complex formation and their use in food systems. In this sense, thermodynamic techniques that can be used to determine binding parameters between natural pigments and potential wall materials, as well as their applications, advantages, and limitations are presented in this work. Several studies have shown an improvement in many aspects regarding the use of these complexes, including increased thermal and storage stability. Nonetheless, data regarding the biological effects on the human body and the sensory acceptance of natural pigments-biopolymers complexes in food systems are scarce in the literature.
Collapse
|
18
|
Pickering emulsion stabilized by gliadin nanoparticles for astaxanthin delivery. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Miletić S, Nikolić-Kokić A, Jovanović D, Žerađanin A, Joksimović K, Avdalović J, Spasić S. Investigation of the Antioxidant Role of Acidic and Alkaline Hydrolysates of Pectin Isolated from Quince (Cydonia oblonga). RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Wang B, Wang P, Xu X, Zhou G. Structural transformation of egg white protein particles modified by preheating combined with pH-shifting: Mechanism of enhancing heat stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Zhang M, Chen H, Feng Z, An T, Liu F. A stable peony seed oil emulsion that enhances the stability, antioxidant activity, and bioaccessibility of curcumin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Sun M, Chen H, Geng F, Zhou Q, Hao Q, Zhang S, Chen Y, Deng Q. Fabrication and Characterization of Botanical-Based Double-Layered Emulsion: Protection of DHA and Astaxanthin Based on Interface Remodeling. Foods 2022; 11:foods11223557. [PMID: 36429149 PMCID: PMC9689186 DOI: 10.3390/foods11223557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Both DHA and astaxanthin, with multiple conjugated double bonds, are considered as health-promoting molecules. However, their utilizations into food systems are restricted due to their poor water solubility and high oxidizability, plus their certain off-smell. In this study, the interactions between perilla protein isolate (PPI) and flaxseed gum (FG) were firstly investigated using multiple spectroscopies, suggesting that hydrophobic, electrostatic force and hydrogen bonds played important roles. Additionally, double-layer emulsion was constructed by layer-by-layer deposition technology and exhibited preferable effects on masking the fishy smell of algae oil. Calcium ions also showed an improving effect on the elasticity modulus of O/W emulsions and was managed to significantly protect the stability of co-delivered astaxanthin and DHA, without additional antioxidants during storage for 21 days. The vegan system produced in this study may, therefore, be suitable for effective delivery of both ω-3 fatty acid and carotenoids for their further incorporation into food systems, such as plant-based yoghourt, etc.
Collapse
Affiliation(s)
- Mengjia Sun
- Key Laboratory of Oilseeds Processing, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
| | - Hongjian Chen
- Key Laboratory of Oilseeds Processing, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Qi Zhou
- Key Laboratory of Oilseeds Processing, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
| | - Qian Hao
- College of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Shan Zhang
- Key Laboratory of Oilseeds Processing, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
- Correspondence: (Y.C.); (Q.D.); Tel.: +86-18696198198 (Q.D.)
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
- Correspondence: (Y.C.); (Q.D.); Tel.: +86-18696198198 (Q.D.)
| |
Collapse
|
23
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
24
|
Zhang L, Liao W, Tong Z, Wang Y, Liu J, Mao L, Yuan F, Gao Y. Impact of biopolymer-surfactant interactions on the particle aggregation inhibition of β-carotene in high loaded microcapsules: Spontaneous dispersibility and in vitro digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Najafi Z, Bildik F, Şahin-Yeşilçubuk N, Altay F. Enhancing oxidative stability of encapsulated echium oil by incorporation of saffron extract loaded nanoliposomes into electrospun pullulan-pea protein isolate-pectin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Altunay N, Tuzen M, Lanjwani MF, Mogaddam MRA. Optimization of a rapid and sensitive ultrasound-assisted liquid–liquid microextraction using switchable hydrophilicity solvent for extraction of β-carotene in fruit juices and vegetables. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
27
|
Zhao Q, Hong X, Fan L, Liu Y, Li J. Freeze-thaw stability and rheological properties of high internal phase emulsions stabilized by phosphorylated perilla protein isolate: Effect of tea saponin concentration. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Sivabalan S, Sablani S. Design of β-Carotene Encapsulated Emulsions for Thermal Processing and Storage. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|