1
|
Gao F, Ye S, Huang L, Gu Z. A nanoparticle-assisted signal-enhancement technique for lateral flow immunoassays. J Mater Chem B 2024; 12:6735-6756. [PMID: 38920348 DOI: 10.1039/d4tb00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Lateral flow immunoassay (LFIA), an affordable and rapid paper-based detection technology, is employed extensively in clinical diagnosis, environmental monitoring, and food safety analysis. The COVID-19 pandemic underscored the validity and adoption of LFIA in performing large-scale clinical and public health testing. The unprecedented demand for prompt diagnostic responses and advances in nanotechnology have fueled the rise of next-generation LFIA technologies. The utilization of nanoparticles to amplify signals represents an innovative approach aimed at augmenting LFIA sensitivity. This review probes the nanoparticle-assisted amplification strategies in LFIA applications to secure low detection limits and expedited response rates. Emphasis is placed on comprehending the correlation between the physicochemical properties of nanoparticles and LFIA performance. Lastly, we shed light on the challenges and opportunities in this prolific field.
Collapse
Affiliation(s)
- Fang Gao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shaonian Ye
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
2
|
Li H, Yang J, Han R, Wang Y, Han X, Wang S, Pan M. Magnetic-fluorescent immunosensing platform applying AuNPs heterogeneous MIL-53(Al) composite for efficient detection of zearalenone. Food Chem 2024; 433:137369. [PMID: 37683484 DOI: 10.1016/j.foodchem.2023.137369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Rapid, sensitive, specific and stable detection of mycotoxin in food remains an extremely crucial issue. Herein, a magnetic-fluorescent immunosensing platform for the detection of zearalenone (ZEN) was proposed. The platform utilized Au nanoparticles (AuNPs) heterogeneous fluorescent metal-organic framework (MIL-53(Al)@AuNPs) labeled with ZEN-bovine serum albumin (ZEN-BSA) as signal probe and ZEN mono-antibodies coupled with magnetic NPs (MNPs-mAbs) as capture probe. Specifically, the heterogenization of AuNPs on the MIL-53(Al) surface improved its biocompatibility, and facilitated the loading of ZEN-BSA conjugates. The MNPs-mAbs could rapidly capture the target ZEN, simplify the immunoassay process and further improve the detection efficiency. The established competitive magnetic-fluorescent immunosensing platform had a wider linear response to ZEN in the range of 0.001-100 ng/mL with a lower limit of detection (LOD) at 0.0035 ng/mL, and could finish the whole detection process within 20 min, showing great potential for rapid and sensitive detection of food contaminants.
Collapse
Affiliation(s)
- Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Ran Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China.
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China.
| |
Collapse
|
3
|
Chen J, Yang Z, Zhang J, Shen X, Xu Z, Li X, Lei H. High Bioaffinity Controllable Assembly Nanocarrier UiO-66-NH 2@Quantum Dot-Based Immunochromatographic Assay for Simultaneous Detection of Five Mycotoxins in Cereals and Feed. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16797-16806. [PMID: 37876184 DOI: 10.1021/acs.jafc.3c04563] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Herein, the UiO-66-NH2@quantum dot (NU66@QD) was synthesized with excellent fluorescence intensity and biocompatibility, which was used to develop a multiple immunochromatographic assay (ICA) for the detection of aflatoxin B1 (AFB1), fumonisin B1 (FB1), deoxynivalenol (DON), T-2 toxins (T-2), and zearalenone (ZEN) in cereals and feed. Five monoclonal antibodies and NU66@QD were efficiently labeled by a one-step mixed method to form a multiple detection probe. The limits of detection of the proposed NU66@QD-ICA for AFB1/FB1/DON/T-2/ZEN were 0.04/0.28/0.25/0.09/0.08 μg/kg. The recoveries ranged from 82.83-117.44%, with the coefficient of variation from 2.88-11.80%. A parallel analysis in 35 naturally contaminated cereal and feed samples was confirmed by LC-MS/MS, and the results showed a good correlation (R2 > 0.9), indicating the practical reliability of the multiple NU66@QD-ICA. Overall, the introduction of the novel nanomaterial NU66@QD provides a highly sensitive and efficient multiplex detection strategy for the development of ICA.
Collapse
Affiliation(s)
- Jiayi Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zehao Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianpeng Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Wang M, Liu H, Fan K. Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. SMALL METHODS 2023; 7:e2301049. [PMID: 37817364 DOI: 10.1002/smtd.202301049] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Nanozymes show great promise in enhancing disease biomarker sensing by leveraging their physicochemical properties and enzymatic activities. These qualities facilitate signal amplification and matrix effects reduction, thus boosting biomarker sensing performance. In this review, recent studies from the last five years, concentrating on disease biomarker detection improvement through nanozyme-based biosensing are examined. This enhancement primarily involves the modulations of the size, morphology, doping, modification, electromagnetic mechanisms, electron conduction efficiency, and surface plasmon resonance effects of nanozymes for increased sensitivity. In addition, a comprehensive description of the synthesis and tuning strategies employed for nanozymes has been provided. This includes a detailed elucidation of their catalytic mechanisms in alignment with the fundamental principles of enhanced sensing technology, accompanied by the presentation of quantitatively analyzed results. Moreover, the diverse applications of nanozymes in strip sensing, colorimetric sensing, electrochemical sensing, and surface-enhanced Raman scattering have been outlined. Additionally, the limitations, challenges, and corresponding recommendations concerning the application of nanozymes in biosensing have been summarized. Furthermore, insights have been offered into the future development and outlook of nanozymes for biosensing. This review aims to serve not only as a reference for enhancing the sensitivity of nanozyme-based biosensors but also as a catalyst for exploring nanozyme properties and their broader applications in biosensing.
Collapse
Affiliation(s)
- Mengting Wang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
5
|
Pan M, Li H, Yang J, Wang Y, Wang Y, Han X, Wang S. Review: Synthesis of metal organic framework-based composites for application as immunosensors in food safety. Anal Chim Acta 2023; 1266:341331. [PMID: 37244661 DOI: 10.1016/j.aca.2023.341331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/29/2023]
Abstract
Ensuring food safety continues to be one of the major global challenges. For effective food safety monitoring, fast, sensitive, portable, and efficient food safety detection strategies must be devised. Metal organic frameworks (MOFs) are porous crystalline materials that have attracted attention for use in high-performance sensors for food safety detection owing to their advantages such as high porosity, large specific surface area, adjustable structure, and easy surface functional modification. Immunoassay strategies based on antigen-antibody specific binding are one of the important means for accurate and rapid detection of trace contaminants in food. Emerging MOFs and their composites with excellent properties are being synthesized, providing new ideas for immunoassays. This article summarizes the synthesis strategies of MOFs and MOF-based composites and their applications in the immunoassays of food contaminants. The challenges and prospects of the preparation and immunoassay applications of MOF-based composites are also presented. The findings of this study will contribute to the development and application of novel MOF-based composites with excellent properties and provide insights into advanced and efficient strategies for developing immunoassays.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yixin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
6
|
Dong Q, Ling C, Zhao S, Tang X, Zhang Y, Xing Y, Yu H, Huang K, Zou Z, Xiong X. One-step rapid synthesis of Ni 0.5Co 0.5-CPO-27 nanorod array with oxygen vacancies based on DBD microplasma: As an effective non-enzymatic glucose sensor for beverage and human serum. Food Chem 2023; 407:135144. [PMID: 36493474 DOI: 10.1016/j.foodchem.2022.135144] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
The rational design of high-efficiency catalysts for non-enzymatic glucose sensing is extremely important for the timely and effective monitoring of glucose content in beverages and human blood. A 3D bimetallic organic framework (Coordination Polymer of Oslo, CPO) nanorod array with oxygen vacancies was green fabricated on carbon cloth (Ni0.5Co0.5-CPO-27 NRA/CC) using dielectric barrier discharge (DBD) microplasma for the first time. Density functional theory (DFT) calculations demonstrated that the oxygen vacancy of Ni0.5Co0.5-CPO-27 can be effectively induced under DBD microplasma conditions. Based on the 3D nanorod arrays with rich oxygen vacancies and bimetallic synergistic effects, as a non-enzyme glucose sensor, the Ni0.5Co0.5-CPO-27 electrode exhibited a sensitivity of 8499.5 μA L/mmol cm-2 and 3239.2 μA L/mmol cm-2 and a limit of detection (LOD) of 0.16 μmol/L (S/N = 3). It has been successfully applied to the determination of glucose levels in real samples such as cola, green tea and human serum.
Collapse
Affiliation(s)
- Qiaoyan Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Chengshuang Ling
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Shan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Xin Tang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Yu Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Yun Xing
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Huimin Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Ke Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Zhirong Zou
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Xiaoli Xiong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| |
Collapse
|
7
|
Zhong Y, Zheng XT, Li QL, Loh XJ, Su X, Zhao S. Antibody conjugated Au/Ir@Cu/Zn-MOF probe for bacterial lateral flow immunoassay and precise synergistic antibacterial treatment. Biosens Bioelectron 2023; 224:115033. [PMID: 36621082 DOI: 10.1016/j.bios.2022.115033] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus is one of the most prevalent threats to public health. Rapid detection with high sensitivity and targeted killing is crucial to curb its spread. Herein, a metal-bearing nanocomposite, consisting of a bimetallic nanoparticle and a metal-organic framework (Au/Ir@Cu/Zn-MOF) was constructed. Upon conjugation with anti-S. aureus antibody, this nanocomposite (Ab-Au/Ir@Cu/Zn-MOF) was exploited for its dual functions, i.e. as a reporting probe in a lateral flow immunoassay and a high efficiency antibacterial reagent. Benefiting from the enrichment of Au/Ir NPs by the Cu/Zn-MOF, the Au/Ir@Cu/Zn-MOF-based lateral flow immunoassay sensor exhibited a visual limit of detection of 103 CFU/mL, which was100 times more sensitive than Au/Ir-based sensor. Moreover, the Ab-Au/Ir@Cu/Zn-MOF probe possessed synergistic photothermal-chemodynamic bactericidal effect that specifically targeted against S. aureus. Under a co-treatment by H2O2 (0.4 mM) and 808 nm near infrared irradiation (1 W/cm2, 5 min), complete sterilization of 5 × 105-106 CFU/mL S. aureus was achieved at a nanocomposite concentration as low as 6.25 μg/mL. The superior antibacterial efficiency was attributable to the three-fold properties of the Ab-Au/Ir@Cu/Zn-MOF probe: (1) enhanced multi-enzyme mimicking activities that promote reactive oxygen species generation, (2) high photothermal activity (efficiency of 53.70%), and (3) bacteria targeting ability via the antibody coating. By changing the antibody, this nanocomposite can be tailored to target a wide range of bacteria species, for detection and for precise antibacterial treatment.
Collapse
Affiliation(s)
- Yingying Zhong
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China; Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634, Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634, Singapore
| | - Qing-Lan Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634, Singapore.
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634, Singapore; Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive 3, 117543, Singapore.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
8
|
Liang J, Liu Z, Fang Y, Shen X, Xu Z, Lei H, Huang X, Li X. Two kinds of lateral flow immunoassays based on multifunctional magnetic prussian blue nanoenzyme and colloidal gold for the detection of 38 β-agonists in swine urine and pork. Food Chem 2023; 417:135897. [PMID: 36924717 DOI: 10.1016/j.foodchem.2023.135897] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Herein, novel multifunctional magnetic prussian blue nanoenzymes (MPBNs) and colloidal gold (CG) were synthesized and used to develop two kinds of lateral flow immunoassays (LFIAs) for the detection of 38 β-agonists. Since MPBNs has a unique three-in-one function of colorimetric magnetic catalytic activities, the signal intensity and coupling ratio are 2 and 8-fold higher than that of the CG. The cut-off values of the CG-LFIA and MPBNs-LFIA for swine urine and pork are 5/5 and 0.3/0.5 μg/kg, the limits of detection are 0.19/0.29 and 0.02/0.03 μg/kg, respectively. The sensitivity of MPBNs-LFIA is 10-fold higher than that of CG-LFIA, and up to 200-fold higher than that of the reported LFIAs. The recoveries of the LFIAs are 80.0%-116.7%, with coefficients of variation of 1.4%-14.3%. Our study proved that the MPBNs have more advantages than CG, and can offer a promising signal label for ultrasensitive immunoassay techniques.
Collapse
Affiliation(s)
- Jinxuan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhiwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yalin Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xianhui Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Liu X, Cheng Y, Guan B, Xia F, Fan L, Gao X, Sun X, Li X, Zhu L. Quantum Dot Nanobeads as Multicolor Labels for Simultaneous Multiplex Immunochromatographic Detection of Four Nitrofuran Metabolites in Aquatic Products. Molecules 2022; 27:molecules27238324. [PMID: 36500416 PMCID: PMC9737793 DOI: 10.3390/molecules27238324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
A multicolor immunochromatographic assay platform based on quantum dot nanobeads (QBs) for the rapid and simultaneous detection of nitrofuran metabolites in different aquatic products is documented. These metabolites include 3-amino-2-oxazolidinone (AOZ), 1-aminohydantoin (AHD), semicarbazide (SEM), and 3-amino-5-morpholino-methyl-1,3-oxazolidinone (AMOZ). QBs with emission colors of red, yellow, green, and orange were employed and functionalized with the corresponding antibodies to each analyte to develop a multicolor channel. The visual detection limits (cutoff values) of our method for AOZ, AHD, SEM, and AMOZ reached up to 50 ng/mL, which were 2, 20, 20, and 20 times lower than those of traditional colloidal gold test strips, respectively. The test strip is capable of detection within 10 min in real samples while still achieving good stability and specificity. These results demonstrate that the developed multicolor immunochromatographic assay platform is a promising technique for multiplex, highly sensitive, and on-site detection of nitrofuran metabolites.
Collapse
Affiliation(s)
- Xiuying Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- Correspondence: (X.L.); (L.Z.); Tel.: +86-416-3400870 (X.L. & L.Z.)
| | - Yuanyuan Cheng
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Binbin Guan
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Fei Xia
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Ling Fan
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xue Gao
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Xiaofei Sun
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Lijie Zhu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
- Correspondence: (X.L.); (L.Z.); Tel.: +86-416-3400870 (X.L. & L.Z.)
| |
Collapse
|
10
|
Application of thermal alkaline hydrolysis technology to improve the loading and in-vitro release of gallic acid in UiO-66. Food Chem 2022; 391:133238. [DOI: 10.1016/j.foodchem.2022.133238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/12/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022]
|
11
|
Lelouche SNK, Biglione C, Horcajada P. Advances in plasmonic-based MOF composites, their bio-applications and perspectives in this field. Expert Opin Drug Deliv 2022; 19:1417-1434. [PMID: 36176048 DOI: 10.1080/17425247.2022.2130245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Nanomaterials have been used for bio-applications since the late 20st century. In an attempt to tailor and optimize their properties, and by extension their efficiency, composites have attracted considerable attention. In this regard, recent studies on plasmonic nanoparticles and metal-organic framework (NP@MOF) composites suggested these materials show great promise in this field. AREAS COVERED This review focused on the more recent scientific advances in the synthetic strategies to optimize plasmonic MOF nanocomposites currently available, as well as their bio-application, particularly as biosensors and therapy. EXPERT OPINION Plasmonic MOF nanocomposites have shown great potential as they combine the properties of both materials with proven efficiency in bio-application. On the one hand, nanoMOFs have proven their potential particularly as drug nanocarriers, owing to their exceptional porosity and tunability. On the other hand, plasmonic nanoparticles have been an asset for imaging and phototherapy. Different strategies have been reported to develop these nanocomposites, mainly including core-shell, encapsulation, and in situ reduction. In addition, advanced composite structures should be considered, such as mixed metal nanoparticles, hollow structures or the combination of several approaches. Specifically, plasmonic MOF nanocomposites prove to be attractive stimuli responsive drug delivery systems, phototherapeutic agents as well as highly sensitive biosensors.
Collapse
Affiliation(s)
- Sorraya N K Lelouche
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Catalina Biglione
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
12
|
Jia J, Zhang H, Qu J, Wang Y, Xu N. Immunosensor of Nitrofuran Antibiotics and Their Metabolites in Animal-Derived Foods: A Review. Front Chem 2022; 10:813666. [PMID: 35721001 PMCID: PMC9198595 DOI: 10.3389/fchem.2022.813666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Nitrofuran antibiotics have been widely used in the prevention and treatment of animal diseases due to the bactericidal effect. However, the residual and accumulation of their metabolites in vivo can pose serious health hazards to both humans and animals. Although their usage in feeding and process of food-derived animals have been banned in many countries, their metabolic residues are still frequently detected in materials and products of animal-derived food. Many sensitive and effective detection methods have been developed to deal with the problem. In this work, we summarized various immunological methods for the detection of four nitrofuran metabolites based on different types of detection principles and signal molecules. Furthermore, the development trend of detection technology in animal-derived food is prospected.
Collapse
Affiliation(s)
| | | | | | - Yuanfeng Wang
- Institute of Engineering Food, College of Life Science, Shanghai Normal Uniersity, Shanghai, China
| | - Naifeng Xu
- Institute of Engineering Food, College of Life Science, Shanghai Normal Uniersity, Shanghai, China
| |
Collapse
|
13
|
Liang JF, Peng C, Li P, Ye QX, Wang Y, Yi YT, Yao ZS, Chen GY, Zhang BB, Lin JJ, Luo Q, Chen X. A Review of Detection of Antibiotic Residues in Food by Surface-Enhanced Raman Spectroscopy. Bioinorg Chem Appl 2021; 2021:8180154. [PMID: 34777490 PMCID: PMC8589529 DOI: 10.1155/2021/8180154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Antibiotics, as veterinary drugs, have made extremely important contributions to disease prevention and treatment in the animal breeding industry. However, the accumulation of antibiotics in animal food due to their overuse during animal feeding is a frequent occurrence, which in turn would cause serious harm to public health when they are consumed by humans. Antibiotic residues in food have become one of the central issues in global food safety. As a safety measure, rapid and effective analytical approaches for detecting these residues must be implemented to prevent contaminated products from reaching the consumers. Traditional analytical methods, such as liquid chromatography, liquid chromatography mass spectrometry, and capillary electrophoresis, involve time-consuming sample preparation and complicated operation and require expensive instrumentation. By comparison, surface-enhanced Raman spectroscopy (SERS) has excellent sensitivity and remarkably enhanced target recognition. Thus, SERS has become a promising alternative analytical method for detecting antibiotic residues, as it can provide an ultrasensitive fingerprint spectrum for the rapid and noninvasive detection of trace analytes. In this study, we comprehensively review the recent progress and advances that have been achieved in the use of SERS in antibiotic residue detection. We introduce and discuss the basic principles of SERS. We then present the prospects and challenges in the use of SERS in the detection of antibiotics in food. Finally, we summarize and discuss the current problems and future trends in the detection of antibiotics in food.
Collapse
Affiliation(s)
- Jun-Fa Liang
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Cheng Peng
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Peiyu Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qiu-Xiong Ye
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Yun-Ting Yi
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Zi-Sheng Yao
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Gui-Yun Chen
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Bin-Bin Zhang
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Jia-Jian Lin
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Qizhi Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|