1
|
Hou Y, Ge Y, Mulati A, Yang Y, Wang J. Ultrasound as a Physical Elicitor to Improve Texture in Blueberry Fruit: Physiological Indicator and Transcriptomic Analysis. Foods 2024; 13:3246. [PMID: 39456309 PMCID: PMC11508173 DOI: 10.3390/foods13203246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Ultrasound (US) washing has been verified to improve the quality of postharvest blueberry fruit. However, its physiological and molecular mechanisms remain largely unknown. In the present study, an US with a frequency of 25 kHz and a power density of 400 W for 2 min was performed to investigate its role in impacting the quality of blueberries. The results showed that US washing improved the quality of blueberries, with a higher firmness and lignin content (p < 0.05) than the control. Moreover, US washing inhibited the levels of superoxide radical (O2·-) production rate and hydrogen peroxide (H2O2) content while stimulating the superoxide dismutase (SOD) and catalase (CAT) activities of the blueberry fruit. Transcriptomic analysis screened 163 differentially expressed genes (DEGs), and the key DEGs were mainly enriched in phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant-pathogen interaction pathways. Furthermore, the transcription factors and the structural genes associated with lignin biosynthesis were also identified from the DEGs. More importantly, the correlation analysis revealed that firmness and lignin content were positively correlated with the expression of C4H, COMT1, and POD52 in blueberry fruit, indicating that these genes might be involved in the regulation of US-mediated lignin synthesis. The findings provide new insight into the US-enhanced quality of blueberry fruits.
Collapse
Affiliation(s)
| | | | | | | | - Jiayi Wang
- National Demonstration Center for Experimental Biology Education, Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; (Y.H.); (Y.G.); (A.M.); (Y.Y.)
| |
Collapse
|
2
|
Ma H, Pei J, Zhuo J, Tang Q, Hou D, Lin X. The CONSTANS-LIKE gene PeCOL13 regulates flowering through intron-retained alternative splicing in Phyllostachys edulis. Int J Biol Macromol 2024; 274:133393. [PMID: 38917922 DOI: 10.1016/j.ijbiomac.2024.133393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Woody bamboo exhibits a unique flowering characteristic with a lengthy flowering cycle, often followed by death. In many plant species, alternative splicing (AS) is a common phenomenon involved in controlling flowering. In this study, a PeCOL13 gene in moso bamboo (Phyllostachys edulis) was characterized. It produced two isoforms: PeCOL13α and PeCOL13β, due to an intron-retained AS. The PeCOL13α expressed in the vegetative phase and the reproductive phase, but the PeCOL13β didn't express during the vegetative phase and showed only a weak expression from F1 to F3 during the reproductive phase. Overexpression of PeCOL13α in rice (Oryza sativa) resulted in a delayed heading time through inhibiting the expressions of Hd3a, OsFTL1, and Ehd1 and activating the expressions of Ghd7 and RCN1. However, the PeCOL13β-overexpressed rice didn't show any significant differences in flowering compared with wild-type (WT), and the expressions of downstream flowering genes had no notable changes. Further analysis revealed that both PeCOL13α and PeCOL13β can bind to the PeFT promoter. Meanwhile, PeCOL13α can inhibit the transcription of PeFT, but PeCOL13β showed no effect. When PeCOL13α and PeCOL13β coexist, the inhibitory effect of PeCOL13α on PeFT transcription was weakened by PeCOL13β. This study provides new insights into the mechanism of bamboo flowering research.
Collapse
Affiliation(s)
- Hongjia Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China
| | - Juan Zhuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China
| | - Qingyun Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China.
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China.
| |
Collapse
|
3
|
Zhao X, Song W, Chen S, Xu G, Long Z, Yang H, Cao Y, Hu S. Identification of the Key Gene DfCCoAOMT1 through Comparative Analysis of Lignification in Dendrocalamus farinosus XK4 and ZPX Bamboo Shoots during Cold Storage. Int J Mol Sci 2024; 25:8065. [PMID: 39125636 PMCID: PMC11311333 DOI: 10.3390/ijms25158065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Dendrocalamus farinosus bamboo shoots, a species with rich nutritional value, are important in Southwest China. Lignin is an important factor affecting the postharvest flavor quality of bamboo shoots; however, the underlying mechanism of lignin deposition in D. farinosus bamboo shoots during cold storage is still not fully understood. In this study, the mutant D. farinosus XK4 with low lignin content at 3.11% and the cultivated variety ZPX at 4.47% were used as experimental materials. The lignin content of D. farinosus XK4 and ZPX, as well as the gene expression differences between them, were compared and analyzed during cold storage using transcriptomic and physiological methods. Our analysis revealed several key genes and found that D. farinosus CCoAOMT1 plays a key role in the regulatory network of bamboo shoots during cold storage. Tobacco heterologous transformation experiments demonstrated that overexpression of DfCCoAOMT1 significantly increases lignin content. This study provides a novel foundation for future research aimed at improving the postharvest quality and flavor of D. farinosus bamboo shoots through targeted genetic manipulation during cold storage.
Collapse
Affiliation(s)
- Xin Zhao
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wenjuan Song
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Sen Chen
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Gang Xu
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhijian Long
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Heyi Yang
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
| | - Ying Cao
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shanglian Hu
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
4
|
Lin Y, Zhou C, Li D, Wu Y, Dong Q, Jia Y, Yu H, Miao P, Pan C. Integrated non-targeted and targeted metabolomics analysis reveals the mechanism of inhibiting lignification and optimizing the quality of pea sprouts by combined application of nano-selenium and lentinans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5096-5107. [PMID: 36974656 DOI: 10.1002/jsfa.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lignification causes a detrimental impact on the quality of edible sprouts. However, the mechanism of inhibition of lignification of edible sprouts by nano-selenium and lentinans remains unclear. RESULTS To reveal the mechanism of lignification regulation of sprouts by nano-selenium and lentinans, this study investigated the changes in antioxidant indicators, phytohormones, polyphenols, and metabolites in the lignin biosynthesis in pea sprouts following sprays of nano-selenium or/and lentinans twice. There was an overall increase in the aforementioned indices following treatment. In particular, the combined application of 5 mg L-1 nano-selenium and 20 mg L-1 lentinans was more effective than their individual applications in enhancing peroxidase, catalase, DPPH free-radical scavenging rate, luteolin, and sinapic acid, as well as inhibiting malondialdehyde generation and lignin accumulation. Combined with the results from correlation analysis, nano-selenium and lentinans may inhibit lignification by enhancing antioxidant systems, inducing phytohormone-mediated signaling, and enriching precursor metabolites (caffeyl alcohol, sinapyl alcohol, 4-coumaryl alcohol). In terms of the results of non-targeted metabolomics, the combined application of 5 mg L-1 nano-selenium and 20 mg L-1 lentinans mainly affected biosynthesis of plant secondary metabolites, biosynthesis of phenylpropanoids, phenylpropanoid biosynthesis, arginine and proline metabolism, and linoleic acid metabolism pathways, which supported and complemented results from targeted screenings. CONCLUSION Overall, the combined sprays of nano-selenium and lentinans showed synergistic effects in delaying lignification and optimizing the quality of pea sprouts. This study provides a novel and practicable technology for delaying lignification in the cultivation of edible sprouts. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongxi Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Huan Yu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Peijuan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Zhu C, Yuan T, Yang K, Liu Y, Li Y, Gao Z. Identification and characterization of CircRNA-associated CeRNA networks in moso bamboo under nitrogen stress. BMC PLANT BIOLOGY 2023; 23:142. [PMID: 36918810 PMCID: PMC10012455 DOI: 10.1186/s12870-023-04155-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Nitrogen is a macronutrient element for plant growth and development. Circular RNAs (circRNAs) serve as pivotal regulators for the coordination between nutrient supply and plant demand. Moso bamboo (Phyllostachys edulis) is an excellent plant with fast growth, and the mechanism of the circRNA-target module in response to nitrogen remains unclear. RESULTS Deep small RNA sequencing results of moso bamboo seedlings under different concentrations of KNO3 (N0 = 0 mM, N6 = 6 mM, N18 = 18 mM) were used to identify circRNAs. A total of 549 circRNAs were obtained, of which 309 were generated from corresponding parental coding genes including 66 new ones. A total of 536 circRNA-parent genes were unevenly distributed in 24 scaffolds and were associated with root growth and development. Furthermore, 52 differentially expressed circRNAs (DECs) were obtained, including 24, 33 and 15 DECs from three comparisons of N0 vs. N6, N0 vs. N18 and N6 vs. N18, respectively. Based on integrative analyses of the identified DECs, differentially expressed mRNAs (DEGs), and miRNAs (DEMs), a competitive endogenous RNA (ceRNA) network was constructed, including five DECs, eight DEMs and 32 DEGs. A regulatory module of PeSca_6:12,316,320|12,372,905-novel_miR156-PH02Gene35622 was further verified by qPCR and dual-luciferase reporter assays. CONCLUSION The results indicated that circRNAs could participate in multiple biological processes as miRNA sponges, including organ nitrogen compound biosynthesis and metabolic process regulation in moso bamboo. Our results provide valuable information for further study of circRNAs in moso bamboo under fluctuating nitrogen conditions.
Collapse
Affiliation(s)
- Chenglei Zhu
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China
| | - Tingting Yuan
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China
| | - Kebin Yang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China
| | - Yan Liu
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China
| | - Ying Li
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China
| | - Zhimin Gao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China.
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China.
| |
Collapse
|
6
|
Zhang C, Ren H, Yao X, Wang K, Chang J, Shao W. Metabolomics and Transcriptomics Analyses Reveal Regulatory Networks Associated with Fatty Acid Accumulation in Pecan Kernels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16010-16020. [PMID: 36472227 DOI: 10.1021/acs.jafc.2c06947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pecans are a globally important tree nut crop. Pecan nuts are rich in fatty acids (FAs), proteins, and flavonoids in addition to thiamine and numerous micronutrients. Although several of these nutriments have been studied in this plant, the comprehensive metabolite variations and molecular mechanisms associated with them have not been fully elucidated. In this study, untargeted metabolomics and transcriptomics were integrated to reveal the metabolite accumulation patterns and their associated molecular mechanisms during pecan kernel development. In total, 4260 (under positive mode) and 2726 (under negative mode) high quality features were retained. Overall, 163 differentially accumulated metabolites were identified. Most components were classified into the categories "organic acids and derivatives" and "lipids and lipid-like molecules." The accumulation patterns of amino acids, FAs, carbohydrates, organic acids, vitamins, flavonoids, and phenylpropanoids alongside embryo development were determined. Furthermore, transcriptomes from four pecan kernel developmental stages were used to assess transcript expression levels. Coexpression analyses were performed between FAs and their related genes. This study provides a comprehensive overview of the metabolic changes and regulations during pecan kernel development. We believe that the identification of nutriment accumulation trends and hub genes associated with the biosynthesis of the components will be valuable for genetically improving this plant.
Collapse
Affiliation(s)
- Chengcai Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, Zhejiang Province 311400, China
| | - Huadong Ren
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, Zhejiang Province 311400, China
| | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, Zhejiang Province 311400, China
| | - Kailiang Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, Zhejiang Province 311400, China
| | - Jun Chang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, Zhejiang Province 311400, China
| | - Weizhong Shao
- Forestry Bureau of Jiande, Jiande, Zhejiang Province 311600, China
| |
Collapse
|
7
|
Yu W, Li S, Zheng B, Wang Y, Yu Y, Wang Y, Zheng X, Liu J, Zhang Z, Xue Z. Transcriptome analysis reveals the potential mechanism of polyethylene packing delaying lignification of Pleurotus eryngii. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 5:100117. [PMID: 35845151 PMCID: PMC9278076 DOI: 10.1016/j.fochms.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/02/2022] [Accepted: 07/03/2022] [Indexed: 11/30/2022]
Abstract
Transcriptomics analysis of polyethylene (PE) on lignification of P. eryngii. Differentially expressed genes are enriched in process of lignin decomposition. PE delayed lignification by regulation of gene related to lignin metabolism. Visualization of lignin changes in P. eryngii by confocal Raman microspectroscopy.
Transcriptome analysis is important for the quality improvement of edible fungi, however, the effect of polyethylene (PE) packaging on the preservation of Pleurotus eryngii at the transcriptome level still needs to be further investigated. In order to elucidate the effect of PE on delaying lignification of P. eryngii, this study focused on exploring effects of PE on enzymes and genes involved in lignification. The results showed that PE packaging delayed the deterioration of phenotype, color difference and weight loss rate of P. eryngii, inhibited lignin and H2O2 content and maintained firmness and cellulose content. The activities of PAL, POD, 4-CL were inhibited, and more laccase expression was activated. Fifty-five differentially expressed genes associated with laccase, multifunctional peroxidase (VP), POD and 4-CL were screened from 10 d, 20 d and 30 d transcriptome data. These results show that PE could inhibit lignification of P. eryngii by up-regulating laccase and VP related genes involved in lignin decomposition and down-regulating the expression of genes involved in lignin synthesis. Meanwhile, we employed Confocal Raman microspectroscopy (CRM) to realize lignin cell level visualization and PE could reduce lignin deposition and weaken the lignin signal bands formed. Therefore, PE can alleviate the lignification of P. eryngii during storage by regulating the expression of specific genes, advancing the understanding of lignification in postharvest P. eryngii at the molecular level, and CRM has the potential to detect the changes of P. eryngii cell wall.
Collapse
Affiliation(s)
- Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, 300384 Tianjin, China
| | - Shihao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bowen Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yuqi Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, Guangdong, China
| | - Yue Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yumeng Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xu Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiping Liu
- Robert Holley Center, US Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY 14853, USA
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, 300384 Tianjin, China
- Corresponding authors.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Corresponding authors.
| |
Collapse
|
8
|
Wang Z, Liu S, Huo W, Chen M, Zhang Y, Jiang S. Transcriptome and metabolome analyses reveal phenotype formation differences between russet and non-russet apples. FRONTIERS IN PLANT SCIENCE 2022; 13:1057226. [PMID: 36426145 PMCID: PMC9678910 DOI: 10.3389/fpls.2022.1057226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The apple is an economically important fruit, and fruit russeting is not conducive to its appearance. Although studies have examined fruit russeting, its mechanism remains unclear. Two apple strains of the F1 hybrid population derived from 'Fuji' and 'Golden Delicious' were used in this study. We found that the skin of russet apples was rough and fissured, while that of non-russet apples was smooth and waxy. Chemical staining, LC- and GC-MS showed that both lignin and suberin were increased in russet apple skin. Meanwhile, genes involved in lignin and suberin synthetic pathways were upregulated in russet apple skin. Additionally, we found many differentially expressed genes (DEGs1) involved in hormone biosynthesis and signaling and stress responses in the two apple strains. We found that WRKY13 may influence russeting by regulating lignin synthesis. Our study identified several candidate metabolites and genes, which will provide a good foundation for further research.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Shasha Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Wenping Huo
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Min Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Shenghui Jiang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| |
Collapse
|
9
|
Li Z, Xu X, Yang K, Zhu C, Liu Y, Gao Z. Multifaceted analyses reveal carbohydrate metabolism mainly affecting the quality of postharvest bamboo shoots. FRONTIERS IN PLANT SCIENCE 2022; 13:1021161. [PMID: 36212302 PMCID: PMC9535365 DOI: 10.3389/fpls.2022.1021161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Bamboo shoot is one of nutritious vegetables in China. However, the edible quality of fresh bamboo shoots deteriorates easily after harvest. Here, morphological, physiological, transcriptomic and microRNA sequencing analyses were conducted to investigate the postharvest characteristics of moso bamboo (Phyllostachys edulis) shoots. Rapid decreases of soluble sugars, structural polysaccharides and hydrolyzed tannins, and increases of lignin and condensed tannins were observed in the postharvest bamboo shoots. Differentially expressed genes (DEGs) and miRNAs with opposite trends were mainly enriched in structural polysaccharide metabolism, starch and sucrose metabolism and glycolysis pathways, which were consistent with the changes of carbohydrates. A co-expression network of carbohydrate metabolism was constructed, which was verified by qPCR and yeast one-hybrid (Y1H) assay. Furthermore, the function of one hub glycosyltransferase gene was validated in Arabidopsis, which confirmed that it was involved in xylan biosynthesis. These results are of great significance for revealing the carbohydrate metabolism mechanisms of postharvest bamboo shoots and provide a potential candidate gene for molecular breeding related to xylan in the future.
Collapse
Affiliation(s)
- Zhen Li
- International Centre for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Xiurong Xu
- International Centre for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
- Zhejiang Academy of Forestry, Hangzhou, China
| | - Kebin Yang
- International Centre for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Chenglei Zhu
- International Centre for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Yan Liu
- International Centre for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| | - Zhimin Gao
- International Centre for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
| |
Collapse
|
10
|
Yuan T, Zhu C, Li G, Liu Y, Yang K, Li Z, Song X, Gao Z. An Integrated Regulatory Network of mRNAs, microRNAs, and lncRNAs Involved in Nitrogen Metabolism of Moso Bamboo. Front Genet 2022; 13:854346. [PMID: 35651936 PMCID: PMC9149284 DOI: 10.3389/fgene.2022.854346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Nitrogen is a key macronutrient essential for plant growth and development, and its availability has a strong influence on biological processes. Nitrogen fertilizer has been widely applied in bamboo forests in recent decades; however, the mechanism of nitrogen metabolism in bamboo is not fully elucidated. Here, we characterized the morphological, physiological, and transcriptome changes of moso bamboo in response to different schemes for nitrogen addition to illuminate the regulation mechanism of nitrogen metabolism. The appropriate addition of nitrogen improved the chlorophyll content and Pn (net photosynthetic rate) of leaves, the nitrogen and ammonium contents of the seedling roots, the biomass of the whole seedling, the number of lateral roots, and the activity of enzymes involved in nitrogen metabolism in the roots. Based on the whole transcriptome data of the roots, a total of 8,632 differentially expressed mRNAs (DEGs) were identified under different nitrogen additions, such as 52 nitrate transporter genes, 6 nitrate reductase genes, 2 nitrite reductase genes, 2 glutamine synthase genes, 2 glutamate synthase genes (GOGAT), 3 glutamate dehydrogenase genes, and 431 TFs belonging to 23 families. Meanwhile, 123 differentially expressed miRNAs (DEMs) and 396 differentially expressed lncRNAs (DELs) were characterized as nitrogen responsive, respectively. Furthermore, 94 DEM-DEG pairs and 23 DEL-DEG pairs involved in nitrogen metabolism were identified. Finally, a predicted regulatory network of nitrogen metabolism was initially constructed, which included 17 nitrogen metabolic pathway genes, 15 TFs, 4 miRNAs, and 10 lncRNAs by conjoint analysis of DEGs, DEMs, and DELs and their regulatory relationships, which was supported by RNA-seq data and qPCR results. The lncRNA-miRNA-mRNA network provides new insights into the regulation mechanism of nitrogen metabolism in bamboo, which facilitates further genetic improvement for bamboo to adapt to the fluctuating nitrogen environment.
Collapse
Affiliation(s)
- Tingting Yuan
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Chenglei Zhu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Guangzhu Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Yan Liu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Kebin Yang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Zhen Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| |
Collapse
|
11
|
Wei HT, Hou D, Ashraf MF, Lu HW, Zhuo J, Pei JL, Qian QX. Metabolic Profiling and Transcriptome Analysis Reveal the Key Role of Flavonoids in Internode Coloration of Phyllostachys violascens cv. Viridisulcata. FRONTIERS IN PLANT SCIENCE 2022; 12:788895. [PMID: 35154183 PMCID: PMC8832037 DOI: 10.3389/fpls.2021.788895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Bamboo, being an ornamental plant, has myriad aesthetic and economic significance. Particularly, Phyllostachys violascens cv. Viridisulcata contains an internode color phenotype in variation in green and yellow color between the sulcus and culm, respectively. This color variation is unique, but the underlying regulatory mechanism is still unknown. In this study, we used metabolomic and transcriptomic strategies to reveal the underlying mechanism of variation in internode color. A total of 81 metabolites were identified, and among those, prunin as a flavanone and rhoifolin as a flavone were discovered at a high level in the culm. We also found 424 differentially expressed genes and investigated three genes (PvGL, PvUF7GT, and PvC12RT1) that might be involved in prunin or rhoifolin biosynthesis. Their validation by qRT-PCR confirmed high transcript levels in the culm. The results revealed that PvGL, PvUF7GT, and PvC12RT1 might promote the accumulation of prunin and rhoifolin which were responsible for the variation in internode color of P. violascens. Our study also provides a glimpse into phenotypic coloration and is also a valuable resource for future studies.
Collapse
Affiliation(s)
- Han-tian Wei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’An, China
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’An, China
| | - Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’An, China
| | - Hai-Wen Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’An, China
| | - Juan Zhuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’An, China
| | - Jia-long Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’An, China
| | - Qi-xia Qian
- College of Landscape Architecture, Zhejiang A&F University, Lin’An, China
| |
Collapse
|
12
|
Ashraf MF, Hou D, Hussain Q, Imran M, Pei J, Ali M, Shehzad A, Anwar M, Noman A, Waseem M, Lin X. Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance. Int J Mol Sci 2022; 23:651. [PMID: 35054836 PMCID: PMC8775971 DOI: 10.3390/ijms23020651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Crop production is a serious challenge to provide food for the 10 billion individuals forecasted to live across the globe in 2050. The scientists' emphasize establishing an equilibrium among diversity and quality of crops by enhancing yield to fulfill the increasing demand for food supply sustainably. The exploitation of genetic resources using genomics and metabolomics strategies can help generate resilient plants against stressors in the future. The innovation of the next-generation sequencing (NGS) strategies laid the foundation to unveil various plants' genetic potential and help us to understand the domestication process to unmask the genetic potential among wild-type plants to utilize for crop improvement. Nowadays, NGS is generating massive genomic resources using wild-type and domesticated plants grown under normal and harsh environments to explore the stress regulatory factors and determine the key metabolites. Improved food nutritional value is also the key to eradicating malnutrition problems around the globe, which could be attained by employing the knowledge gained through NGS and metabolomics to achieve suitability in crop yield. Advanced technologies can further enhance our understanding in defining the strategy to obtain a specific phenotype of a crop. Integration among bioinformatic tools and molecular techniques, such as marker-assisted, QTLs mapping, creation of reference genome, de novo genome assembly, pan- and/or super-pan-genomes, etc., will boost breeding programs. The current article provides sequential progress in NGS technologies, a broad application of NGS, enhancement of genetic manipulation resources, and understanding the crop response to stress by producing plant metabolites. The NGS and metabolomics utilization in generating stress-tolerant plants/crops without deteriorating a natural ecosystem is considered a sustainable way to improve agriculture production. This highlighted knowledge also provides useful research that explores the suitable resources for agriculture sustainability.
Collapse
Affiliation(s)
- Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Muhammad Imran
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Mohsin Ali
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Aamar Shehzad
- Maize Research Station, AARI, Faisalabad 38000, Pakistan;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Waseem
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| |
Collapse
|