1
|
Gao Y, Li R, Wang J, Xu H, Wang M, Wang H. Development of κ-carrageenan/tourmaline composite for active food packaging applications: Improved mechanical, gas barrier, and antimicrobial. Carbohydr Polym 2025; 354:123304. [PMID: 39978895 DOI: 10.1016/j.carbpol.2025.123304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
In order to solve the environmental pollution problems of traditional food packaging films, a kind of antibacterial packaging film based on κ-carrageenan and tourmaline powder was prepared. The addition of tourmaline powder as an inorganic filler improved the mechanical properties and gas barrier properties of κ-carrageenan films, and tourmaline had the function of spontaneously generating negative ions (NAIs) to give the film the antibacterial effect. With the increase in the amount of tourmaline powder, the water vapor permeability and oxygen permeability decrease, the water contact angle becomes larger, and the thermal degradation temperature increases. When the additional amount of tourmaline powder is 0.75 (%, w/v), the elongation at break and tensile strength can reach 39.356 % and 8.952 MPa. The κ-carrageenan/tourmaline composite film has an inhibitory effect on foodborne S. aureus, the best inhibition rate was obtained at 39.80 %. The weight loss of the figs packaged with this film is reduced, and the decay rate is slower. These results indicated that the κ-carrageenan/tourmaline composite film is promising in the food industry.
Collapse
Affiliation(s)
- Yujie Gao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ruili Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinke Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haoxuan Xu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meiyi Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huashan Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Ma C, Han Y, Liu R, Niu B, Shen C, Chen H, Yin M, Wu W, Gao H. Effects of negative air ion treatment on postharvest storage quality and anthocyanin metabolism of grape. Food Chem 2025; 480:143700. [PMID: 40112727 DOI: 10.1016/j.foodchem.2025.143700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Grapes are rich in anthocyanin but are prone to postharvest quality deterioration. Many studies proved that negative air ion (NAI) preserved horticultural products. We hypothesized that NAI kept postharvest quality and repressed anthocyanin degradation of grape. In this study, NAI delayed grape firmness loss, mitigated rot and shattering gloss. It also preserved quality attributes like total soluble solids, acidity, vitamin C (Vc), phenols, and anthocyanins. Among treatments, NAI3 (treat with NAI every 3 days for 1 h) was most effective. Ultra-high performance liquid chromatography analysis showed NAI3 increased delphinidin, malvidin, paeonidin, petunidin, and pelargonidin levels while reducing cyanidin. NAI3 maintained activities of anthocyanin synthesis-related enzymes and inhibited degradation-related ones. Gene expression analysis showed NAI3 induced synthesis-related genes and inhibited degradation-related genes. Thus, NAI maintained anthocyanin content and composition by regulating activities and gene expressions of enzymes involved in anthocyanin metabolism, playing a crucial role in grape storage.
Collapse
Affiliation(s)
- Chan Ma
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Fruit Processing, Ministry of Agriculture and Rural Affairs, Key laboratory of post-harvest preservation and processing of fruits and vegetables, China National Light Industry, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanchao Han
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Fruit Processing, Ministry of Agriculture and Rural Affairs, Key laboratory of post-harvest preservation and processing of fruits and vegetables, China National Light Industry, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Fruit Processing, Ministry of Agriculture and Rural Affairs, Key laboratory of post-harvest preservation and processing of fruits and vegetables, China National Light Industry, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Fruit Processing, Ministry of Agriculture and Rural Affairs, Key laboratory of post-harvest preservation and processing of fruits and vegetables, China National Light Industry, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chaoyi Shen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Fruit Processing, Ministry of Agriculture and Rural Affairs, Key laboratory of post-harvest preservation and processing of fruits and vegetables, China National Light Industry, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huizhi Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Fruit Processing, Ministry of Agriculture and Rural Affairs, Key laboratory of post-harvest preservation and processing of fruits and vegetables, China National Light Industry, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ming Yin
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Fruit Processing, Ministry of Agriculture and Rural Affairs, Key laboratory of post-harvest preservation and processing of fruits and vegetables, China National Light Industry, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Fruit Processing, Ministry of Agriculture and Rural Affairs, Key laboratory of post-harvest preservation and processing of fruits and vegetables, China National Light Industry, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Fruit Processing, Ministry of Agriculture and Rural Affairs, Key laboratory of post-harvest preservation and processing of fruits and vegetables, China National Light Industry, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Yang Y, Nian S, Yu J, Jing S, Zhu B, Wang K, Shi Y, Bai J, Xu H, Kou L. Exploring the possible mechanisms of X-rays treatment for retention aroma volatiles in shiitake mushrooms during low temperature storage. Food Chem 2025; 464:141595. [PMID: 39396478 DOI: 10.1016/j.foodchem.2024.141595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
X-rays irradiation has been demonstrated to effectively preserve the freshness of edible fungi and delay the loss of aroma during storage. In this study, shiitake mushrooms were irradiated with X-rays dose of 0.5 kGy and stored at 2 °C for 35 days. Non-irradiated mushrooms were recorded as control group. Results indicated that 0.5 kGy X-rays treatment preserved the flavor quality by exhibiting higher volatile substance content in shiitake mushrooms. X-rays treatment promoted the activities of lipoxygenase (LOX) and alcohol dehydrogenase (ADH) and oxidation of linoleic acid. In addition, the degradation of methionine and cysteine was facilitated by X-rays. Higher enzymes activities for γ-glutamyl transpeptidase (GGT) and cystine sulfoxide lyase (CS lyase) were found in 0.5 kGy X-rays irradiated mushrooms. These findings suggest that the retention of mushroom flavor by X-rays treatment is closely related to fatty acid metabolism, sulfur-containing amino acid metabolism, and lentinic acid metabolism.
Collapse
Affiliation(s)
- Yongjia Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shuwei Nian
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technology Co., Ltd., Yangling, Shaanxi 712100, China.
| | - Sai Jing
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bihe Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Kehan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yuwen Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junqing Bai
- Yangling Hesheng Irradiation Technology Co., Ltd., Yangling, Shaanxi 712100, China.
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liping Kou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Zheng Y, Jiang Y, Yang X, Fu Z, Zhao Z, Li X, Yang K, Jia X. Automatic periodical negative air ions reduce postharvest decay and maintain texture and flavor quality of 'Fuji' apple during long-term cold storage. Food Chem X 2024; 24:101972. [PMID: 39582644 PMCID: PMC11582770 DOI: 10.1016/j.fochx.2024.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
The aim of this study was to explore the effect of periodical negative air ions (NAI) on the quality of 'Fuji' apple fruit after treatment at 0, 30, 60, and 90 min every 4 weeks. NAI for 60 min decreased weight loss, mitigated decay, and maintained hardness of the apple fruit during the 40 weeks of storage. Treatment of fruits with NAI for 60 min enhanced the apple defense ability against pathogens by maintaining the cell wall integrity and improving the related-enzyme activities as well as accumulation of total phenols and flavonoids. Reverse-phase HPLC and solid-phase microextraction GC-MS analysis showed that NAI treatment for 60 min increased the levels of fructose, sucrose, sorbitol, malic acid and volatiles, such as 2-hexenal, 2-methylbutyl acetate, hexyl acetate, and ethyl butanoate. Taken together, NAI is promising for improving the quality 'Fuji' apples during the cold storage.
Collapse
Affiliation(s)
- Yanli Zheng
- Institute of Agricultural Products Preservation and Processing Science and Technology, Tianjin Academy of Agricultural Sciences, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, China
| | - Yunbin Jiang
- Shanxi Fruit Industry Cold Chain New Material Co., Ltd, Tongchuan 727199, China
| | - Xiangzheng Yang
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250200, China
| | - Zhiqiang Fu
- Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiyong Zhao
- Instiute of Agro-Products Processing Science and Technology, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Xihong Li
- Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kejing Yang
- Xinjiang Yuanxiang Agricultural Technology Co., Ltd., Hetian 848000, China
| | - Xiaoyu Jia
- Institute of Agricultural Products Preservation and Processing Science and Technology, Tianjin Academy of Agricultural Sciences, National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, China
- Shanxi Fruit Industry Cold Chain New Material Co., Ltd, Tongchuan 727199, China
- Xinjiang Yuanxiang Agricultural Technology Co., Ltd., Hetian 848000, China
| |
Collapse
|
5
|
Jiang X, Liu Y, Liu L, Bai F, Wang J, Xu H, Dong S, Jiang X, Wu J, Zhao Y, Xu X. Mechanism of low-voltage electrostatic field on flavor retention in refrigerated sturgeon caviar: Insights from phospholipids. Food Chem X 2024; 23:101612. [PMID: 39113737 PMCID: PMC11305003 DOI: 10.1016/j.fochx.2024.101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
This study investigated the effect of low-voltage electrostatic field on the flavor quality changes and generation pathways of refrigerated sturgeon caviar. Research has found that after storage for 3-6 weeks, the physicochemical properties of caviar in the LVEF treatment group are better than those in the control group. The results of two-dimensional gas chromatography-time-of-flight mass spectrometry showed that the contents of hexanal, nonanal, (E,Z)-2,6-nonadienal, (E)-2-octenal and 1-octene-3-one related to the characteristic flavor of caviar (sweet, fruity and green) increased significantly. The lipidomics results indicated that the effects of LVEF on caviar mainly involve glycerophospholipid metabolism, linoleic acid metabolism, and α-Linolenic acid metabolism. Methanophosphatidylcholine (15:0/18:1), phosphatidylcholine (18:0/20:5), and phosphatidylcholine (18,1e/22:6) were significantly correlated with odor formation. Therefore, low-voltage electrostatic field treatment preserved the quality and enhanced the flavor of sturgeon caviar. This study provided a new theoretical basis for the preservation of sturgeon caviar.
Collapse
Affiliation(s)
- Xinyu Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yihuan Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Li Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Fan Bai
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Jinlin Wang
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - He Xu
- Lianyungang Baohong Marine Technology Co., Ltd., Lianyungang 222000, China
| | - Shiyuan Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiaoming Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Sanya Oceanographic Institution of Ocean University of China, Sanya 572024, China
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
6
|
Cao Y, Wu L, Xia Q, Yi K, Li Y. Novel Post-Harvest Preservation Techniques for Edible Fungi: A Review. Foods 2024; 13:1554. [PMID: 38790854 PMCID: PMC11120273 DOI: 10.3390/foods13101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Edible fungi are well known for their rich nutrition and unique flavor. However, their post-harvest shelf-life is relatively short, and effective post-harvest preservation techniques are crucial for maintaining their quality. In recent years, many new technologies have been used for the preservation of edible fungi. These technologies include cold plasma treatment, electrostatic field treatment, active packaging, edible coatings, antimicrobial photodynamic therapy, and genetic editing, among others. This paper reviews the new methods for post-harvest preservation of mainstream edible fungi. By comprehensively evaluating the relative advantages and limitations of these new technologies, their potential and challenges in practical applications are inferred. The paper also proposes directions and suggestions for the future development of edible fungi preservation, aiming to provide reference and guidance for improving the quality of edible fungi products and extending their shelf-life.
Collapse
Affiliation(s)
- Yuping Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Li Wu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| | - Qing Xia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Kexin Yi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Yibin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| |
Collapse
|
7
|
Wu Y, Xia Y, Hu A, Xiong G, Wu W, Shi L, Chen L, Guo X, Qiao Y, Liu C, Yin T, Wang L, Chen S. Difference in muscle metabolism caused by metabolism disorder of rainbow trout liver exposed to ammonia stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171576. [PMID: 38461997 DOI: 10.1016/j.scitotenv.2024.171576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Ammonia pollution is an important environmental stress factors in water eutrophication. The intrinsic effects of ammonia stress on liver toxicity and muscle quality of rainbow trout were still unclear. In this study, we focused on investigating difference in muscle metabolism caused by metabolism disorder of rainbow trout liver at exposure times of 0, 3, 6, 9 h at 30 mg/L concentrations. Liver transcriptomic analysis revealed that short-term (3 h) ammonia stress inhibited carbohydrate metabolism and glycerophospholipid production but long-term (9 h) ammonia stress inhibited the biosynthesis and degradation of fatty acids, activated pyrimidine metabolism and mismatch repair, lead to DNA strand breakage and cell death, and ultimately caused liver damage. Metabolomic analysis of muscle revealed that ammonia stress promoted the reaction of glutamic acid and ammonia to synthesize glutamine to alleviate ammonia toxicity, and long-term (9 h) ammonia stress inhibited urea cycle, hindering the alleviation of ammonia toxicity. Moreover, it accelerated the consumption of flavor amino acids such as arginine and aspartic acid, and increased the accumulation of bitter substances (xanthine) and odorous substances (histamine). These findings provide valuable insights into the potential risks and hazards of ammonia in eutrophic water bodies subject to rainbow trout.
Collapse
Affiliation(s)
- Yiwen Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yuting Xia
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Ao Hu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lang Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiaojia Guo
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
8
|
Hou Z, Xia R, Li Y, Xu H, Wang Y, Feng Y, Pan S, Wang Z, Ren H, Qian G, Wang H, Zhu J, Xin G. Key components, formation pathways, affecting factors, and emerging analytical strategies for edible mushrooms aroma: A review. Food Chem 2024; 438:137993. [PMID: 37992603 DOI: 10.1016/j.foodchem.2023.137993] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
Aroma is one of the decisive factors affecting the quality and consumer acceptance of edible mushrooms. This review summarized the key components and formation pathways of edible mushroom aroma. It also elaborated on the affecting factors and emerging analytical strategies of edible mushroom aroma. A total of 1308 volatile organic compounds identified in edible mushrooms, 61 were key components. The formation of these compounds is closely related to fatty acid metabolism, amino acid metabolism, lentinic acid metabolism, and terpenoid metabolism. The aroma profiles of edible mushrooms were affected by genetic background, preharvest factors, and preservation methods. Molecular sensory science and omics techniques are emerging analytical strategies to reveal aroma information of edible mushrooms. This review would provide valuable data and insights for future research on edible mushroom aroma.
Collapse
Affiliation(s)
- Zhenshan Hou
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Rongrong Xia
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Yunting Li
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Heran Xu
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Yafei Wang
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Yao Feng
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Song Pan
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Zijian Wang
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Hongli Ren
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Guanlin Qian
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Huanyu Wang
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Jiayi Zhu
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Guang Xin
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China; Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan 114007, Liaoning, China.
| |
Collapse
|
9
|
Sun J, Wei Y, Li L, Tang B, Yang Y, Xiao Z, Chen J, Lai P. Investigating the Respiratory and Energy Metabolism Mechanisms behind ε-Poly-L-lysine Chitosan Coating's Improved Preservation Effectiveness on Tremella fuciformis. Foods 2024; 13:707. [PMID: 38472821 DOI: 10.3390/foods13050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Freshly harvested Tremella fuciformis contains high water content with an unprotected outer surface and exhibits high respiration rates, which renders it prone to moisture and nutrient loss, leading to decay during storage. Our research utilized ε-poly-L-lysine (ε-PL) and chitosan as a composite coating preservative on fresh T. fuciformis. The findings revealed that the ε-PL + chitosan composite coating preservative effectively delayed the development of diseases and reduced weight loss during storage compared to the control group. Furthermore, this treatment significantly decreased the respiration rate of T. fuciformis and the activity of respiratory metabolism-related enzymes, such as alternative oxidase (AOX), cytochrome c oxidase (CCO), succinic dehydrogenase (SDH), 6-phosphogluconate dehydrogenase, and glucose-6-phosphate dehydrogenase (6-PGDH and G-6-PDH). Additionally, the composite coating preservative also delayed the depletion of ATP and ADP and maintained higher levels of the energy charge while preserving low levels of AMP. It also sustained heightened activities of Mg2+-ATPase, Ca2+-ATPase, and H+-ATPase enzymes. These results demonstrate that utilizing the ε-PL + chitosan composite coating preservative can serve as a sufficiently safe and efficient method for prolonging the shelf life of post-harvest fresh T. fuciformis.
Collapse
Affiliation(s)
- Junzheng Sun
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
| | - Yingying Wei
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Longxiang Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baosha Tang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
| | - Yanrong Yang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
| | - Zheng Xiao
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
| | - Junchen Chen
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
| | - Pufu Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
| |
Collapse
|
10
|
Gao H, Ye S, Liu Y, Fan X, Yin C, Liu Y, Liu J, Qiao Y, Chen X, Yao F, Shi D. Transcriptome analysis provides insight into gamma irradiation delaying quality deterioration of postharvest Lentinula edodes during cold storage. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100172. [PMID: 37213208 PMCID: PMC10199187 DOI: 10.1016/j.fochms.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
To better determine how gamma irradiation (GI) improves abiotic stress resistance, a transcriptome analysis of postharvest L. edodes in response to 1.0 kGy GI was conducted, and further the underlying mechanism of GI in delaying quality deterioration over 20 d of cold storage was explored. The results suggested that GI was involved in multiple metabolic processes in irradiated postharvest L. edodes. In comparison with the control group, the GI group contained 430 differentially expressed genes, including 151 upregulated genes and 279 downregulated genes, which unveiled characteristic expression profiles and pathways. The genes involved in the pentose phosphate pathway were mainly upregulated and the expression level of the gene encoding deoxy-D-gluconate 3-dehydrogenase was 9.151-fold higher. In contrast, the genes related to other energy metabolism pathways were downregulated. Concurrently, GI inhibited the expression of genes associated with delta 9-fatty acid desaturase, ribosomes, and HSP20; thus, GI helped postpone the degradation of lipid components, suppress transcriptional metabolism and regulate the stress response. Additionally, the metabolic behavior of DNA repair induced by GI intensified by noticeable upregulation. These regulatory effects could play a potential and nonnegligible role in delaying the deterioration of L. edodes quality. The results provide new information on the regulatory mechanism of postharvest L. edodes when subjected to 1.0 kGy GI during cold storage.
Collapse
Affiliation(s)
- Hong Gao
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shuang Ye
- School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Yani Liu
- School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Xiuzhi Fan
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chaomin Yin
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyu Liu
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yu Qiao
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xueling Chen
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fen Yao
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Defang Shi
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
11
|
Niu B, Fei Y, Liu R, Chen H, Fang X, Wu W, Mu H, Gao H. Effect of oxyresveratrol on the quality and membrane lipid metabolism of shiitake mushroom (Lentinus edodes) during storage. Food Chem 2023; 427:136700. [PMID: 37356268 DOI: 10.1016/j.foodchem.2023.136700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The effect of oxyresveratrol on postharvest quality and membrane lipid metabolism of shiitake mushroom was investigated. The result exhibited that oxyresveratrol retarded browning, maintained firmness and alleviated occurrence of decay of shiitake mushroom. The oxidation and hydrolysis of membrane phospholipids were suppressed by oxyresveratrol treatment, which was associated with reduced LOX and PLD activities and increased SOD and CAT activities. The membrane lipidomics of shiitake mushroom was determined by LC-MS. 385 lipid species and 13 fatty acids in membrane lipids were identified by multiple reaction monitoring method. Compared with control group, the phospholipic acid and lysophospholipid reduced by 29.24% and 21.29% in oxyresveratrol-treated group, respectively, which alleviated hydrolysis of phospholipid. Meanwhile, oxyresveratrol maintained the unsaturation of fatty acids and alleviated oxidation of phospholipid. These results demonstrated that oxyresveratrol could play a dual role of inhibiting the oxidation and hydrolysis of phospholipids to mitigate cellular damage of shiitake mushroom.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingchang Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honglei Mu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
12
|
Huo J, Zhang M, Wang D, S Mujumdar A, Bhandari B, Zhang L. New preservation and detection technologies for edible mushrooms: A review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3230-3248. [PMID: 36700618 DOI: 10.1002/jsfa.12472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 01/26/2023] [Indexed: 06/17/2023]
Abstract
Edible mushrooms are nutritious, tasty, and have medicinal value, which makes them very popular. Fresh mushrooms have a high water content and a crisp texture. They demonstrate strong metabolic activity after harvesting. However, they are prone to textural changes, microbial infestation, and nutritional and flavor loss, and they therefore require appropriate post-harvest processing and preservation. Important factors affecting safety and quality during their processing and storage include their quality, source, microbial contamination, physical damage, and chemical residues. Thus, these aspects should be tested carefully to ensure safety. In recent years, many new techniques have been used to preserve mushrooms, including electrofluidic drying and cold plasma treatment, as well as new packaging and coating technologies. In terms of detection, many new detection techniques, such as nuclear magnetic resonance (NMR), imaging technology, and spectroscopy can be used as rapid and effective means of detection. This paper reviews the new technological methods for processing and detecting the quality of mainstream edible mushrooms. It mainly introduces their working principles and application, and highlights the future direction of preservation, processing, and quality detection technologies for edible mushrooms. Adopting appropriate post-harvest processing and preservation techniques can maintain the organoleptic properties, nutrition, and flavor of mushrooms effectively. The use of rapid, accurate, and non-destructive testing methods can provide a strong assurance of food safety. At present, these new processing, preservation and testing methods have achieved good results but at the same time there are certain shortcomings. So it is recommended that they also be continuously researched and improved, for example through the use of new technologies and combinations of different technologies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingyi Huo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Dayuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Quebec, Canada
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
| | - Lujun Zhang
- R&D Center, Shandong Qihe Biotechnology Co., Ltd, Zibo, China
| |
Collapse
|
13
|
Xia R, Hou Z, Xu H, Li Y, Sun Y, Wang Y, Zhu J, Wang Z, Pan S, Xin G. Emerging technologies for preservation and quality evaluation of postharvest edible mushrooms: A review. Crit Rev Food Sci Nutr 2023; 64:8445-8463. [PMID: 37083462 DOI: 10.1080/10408398.2023.2200482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Edible mushrooms are the highly demanded foods of which production and consumption have been steadily increasing globally. Owing to the quality loss and short shelf-life in harvested mushrooms, it is necessary for the implementation of effective preservation and intelligent evaluation technologies to alleviate this issue. The aim of this review was to analyze the development and innovation thematic lines, topics, and trends by bibliometric analysis and review of the literature methods. The challenges faced in researching these topics were proposed and the mechanisms of quality loss in mushrooms during storage were updated. This review summarized the effects of chemical processing (antioxidants, ozone, and coatings), physical treatments (non-thermal plasma, packaging and latent thermal storage) and other emerging application on the quality of fresh mushrooms while discussing the efficiency in extending the shelf-life. It also discussed the emerging evaluation techniques based on the various chemometric methods and computer vision system in monitoring the freshness and predicting the shelf-life of mushrooms which have been developed. Preservation technology optimization and dynamic quality evaluation are vital for achieving mushroom quality control. This review can provide a comprehensive research reference for reducing mushroom quality loss and extending shelf-life, along with optimizing efficiency of storage and transportation operations.
Collapse
Affiliation(s)
- Rongrong Xia
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhenshan Hou
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Heran Xu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yunting Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yong Sun
- Beijing Academy of Food Sciences, Beijing, China
| | - Yafei Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jiayi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zijian Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Song Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
14
|
Zong Z, Liu M, Chen H, Farag MA, Wu W, Fang X, Niu B, Gao H. Preparation and characterization of a novel intelligent starch/gelatin binary film containing purple sweet potato anthocyanins for Flammulina velutipes mushroom freshness monitoring. Food Chem 2023; 405:134839. [PMID: 36436235 DOI: 10.1016/j.foodchem.2022.134839] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
In this study, intelligent food package was developed and characterized by loading purple sweet potato polyphenolic extract (SPS) into starch/gelatin film. The application of this film in indicating the freshness of Flammulina velutipes was also determined. The color of SPS buffer changed from red to blue and final yellow when pH increasing from 3 to 10. The blending film with starch/gelatin ratio of 1:1 wt showed a minimum water vapor permeability of 6.26 × 10-11 gs-1 m-1 Pa-1. The value of elongation at break and tensile strength of the starch/gelatin film with starch/gelatin ratio of 1:1 wt increased to 78.89 % and 11.70 MPa. Upon its application to monitor of F. velutipes freshness level, SG11 film color changed from initially green to purplish gray and finally to yellow as F. velutipes deteriorated post storage. Our results suggested that SG11 films could be used as an intelligent packaging material in the future for other food products.
Collapse
Affiliation(s)
- Zihao Zong
- Food Science Institute, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Meng Liu
- College of Food Science and Engineering, Ocean University of China, China
| | - Hangjun Chen
- Food Science Institute, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., Cairo P.O. 11562, Egypt
| | - Weijie Wu
- Food Science Institute, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- Food Science Institute, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- Food Science Institute, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- Food Science Institute, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
15
|
Guo Y, Chen X, Gong P, Long H, Wang J, Deng Z, Wang R, Han A, Qi Z, Yao W, Yang W, Wang J, Li N, Chen F. Characterization of an active film prepared with Lentinus edodes (shiitake) polysaccharide and its effect on post-harvest quality and storage of shiitake. Int J Biol Macromol 2023; 238:123973. [PMID: 36921827 DOI: 10.1016/j.ijbiomac.2023.123973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
The aim of this study was to prepare a film based on shiitake (Lentinus edodes) stalk polysaccharides (LEP) for mushroom preservation. The effects of different LEP concentrations on physical, mechanical, antioxidant, and antimicrobial properties of the prepared film were evaluated. Using scanning electron microscopy, it was revealed that the addition of 1.5 % LEP resulted in homogeneous distribution in the prepared film, as well as greatly improved its antimicrobial properties. Moreover, LEP film resulted in superior mushroom preservation by regulating enzyme activities related to mushroom browning and softening, thereby decaying these processes. In addition, the prepared film maintained mushroom quality by reducing the accumulation of H2O2 and activating the regulatory system against oxidative stress. Collectively, the findings of the present study highlight the potential benefits of LEP films as a strategy to improve mushroom quality and prevent post-harvest spoilage, hence constituting a novel prospect for the development of shiitake by-products.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiating Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhenfang Deng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruotong Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Aoyang Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhuoya Qi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
16
|
Battino M, Belwal T, Prieto MA. Valorization of food products using natural functional compounds for improving organoleptic and functional chemistry. Food Chem 2023. [DOI: 10.1016/j.foodchem.2022.134181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Advances in the Role and Mechanisms of Essential Oils and Plant Extracts as Natural Preservatives to Extend the Postharvest Shelf Life of Edible Mushrooms. Foods 2023; 12:foods12040801. [PMID: 36832876 PMCID: PMC9956186 DOI: 10.3390/foods12040801] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
China has a large variety of edible mushrooms and ranks first in the world in terms of production and variety. Nevertheless, due to their high moisture content and rapid respiration rate, they experience constant quality deterioration, browning of color, loss of moisture, changes in texture, increases in microbial populations, and loss of nutrition and flavor during postharvest storage. Therefore, this paper reviews the effects of essential oils and plant extracts on the preservation of edible mushrooms and summarizes their mechanisms of action to better understand their effects during the storage of mushrooms. The quality degradation process of edible mushrooms is complex and influenced by internal and external factors. Essential oils and plant extracts are considered environmentally friendly preservation methods for better postharvest quality. This review aims to provide a reference for the development of new green and safe preservation and provides research directions for the postharvest processing and product development of edible mushrooms.
Collapse
|
18
|
Gao X, Wu W, Chen H, Niu B, Han Y, Fang X, Chen H, Liu R, Gao H. Nitric oxide treatment delays quality deterioration and enzymatic browning of
Agaricus bisporus
via reactive oxygen metabolism regulation. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Affiliation(s)
- Xiaoqian Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Huizhi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Yanchao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| |
Collapse
|
19
|
Hu Y, Lin X, Liu X, Zhong X, Lin H, Jiang D, Zhang F, Zhong X, Jiang Y, Chen B. Effects of ultrasonic treatment on the surface bacteria of Lyophyllum decastes during storage. Food Res Int 2023; 163:112285. [PMID: 36596191 DOI: 10.1016/j.foodres.2022.112285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
This study explores the relationship between the storage quality and bacterial microflora in the mushroom Lyophyllum decastes. The surface bacteria of L. decastes were separated by combining the traditional culture plate separation and 16S rRNA sequencing method, to study the effects of ultrasonic (US) treatment on the surface bacteria of L. decastes during storage. The results demonstrated that Pantoea agglomerans and Pseudomonas fluorescens were among the 15 culturable bacteria isolated with traditional plate method during storage, belonging to 2 phyla and 7 genera. US treatment could inhibit the growth and significantly increase cell membrane permeability, and contents extravasation in P. agglomerans, though its inhibitory effect on P. fluorescens was less. The 16S rRNA sequencing revealed, bacteria from 9 phyla and 35 genera were isolated, and P. fluorescens was the dominant species throughout the storage time. These results indicated that the composition of mushroom surface microflora of Control (CK) and US groups are similar, and the bacterial microflora networks analysis also showed a positive correlation. The KEGG annotation for the functional classification of the bacteria showed that a total of 328 pathways were acquired at the KEGG l3 level, and the relative abundance of membrane transport, amino acid metabolism, carbohydrate metabolism, and energy metabolism pathway was high. Moreover, the relative abundance of the surface bacteria of L. decastes also decreased. Hence, the US treatment had a better bacteriostatic effect, maintained the whiteness index and firmness, and improved the sensory quality of L. decastes during storage.
Collapse
Affiliation(s)
- Yuxin Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaotong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xinrui Liu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xinyi Zhong
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hailu Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Danxia Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Fangyi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xinlin Zhong
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yuji Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, Fujian, China
| | - Bingzhi Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, Fujian, China.
| |
Collapse
|
20
|
Guo Y, Chen X, Gong P, Guo J, Deng D, He G, Ji C, Wang R, Long H, Wang J, Yao W, Yang W, Chen F. Effect of shiitake mushrooms polysaccharide and chitosan coating on softening and browning of shiitake mushrooms (Lentinus edodes) during postharvest storage. Int J Biol Macromol 2022; 218:816-827. [PMID: 35907449 DOI: 10.1016/j.ijbiomac.2022.07.193] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023]
Abstract
We investigated the browning and softening of fresh Lentinula edodes (LE) coated with polysaccharides (LEP) isolated from LE stalks and stored at 4 °C for 15 days. The results showed that compared to the chitosan-coated and uncoated LE, the LEP-treated mushrooms showed significant improvements in several qualities during storage, such as reduced weight loss, retention of hardness and springiness, improved soluble protein content, and reduced browning, malondialdehyde content, and electrolyte leakage rate. The best results were obtained with 1.5 % LEP. LEP improved the activities of peroxidase, catalase, superoxide dismutase, ascorbate peroxidase, and phenylalanine ammonialyase and significantly reduced the accumulation of hydrogen peroxide during storage compared to the control samples. In addition, the LEP treatment maintained the high antioxidant activity of LE during storage. Notably, LEP inhibited browning-related enzymes (polyphenol oxidase and tyrosinase) to reduce browning. It also maintained high levels of cellulase, chitinase, and β-1,3 glucanase to improve softening during storage. These findings suggest the potential of LEP to improve the post-harvest quality of mushrooms, allowing a storage period of up to 15 days (extending the shelf life by six days) and indirectly suggesting that the polysaccharide component of LEP can act as a self-defense additive to protect against spoilage during storage.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jing Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dan Deng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guanglian He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chenglong Ji
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruotong Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiating Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|