1
|
Wu J, Wang W, Yang Y, Shah M, Peng J, Zhou L, Zhang G, Che Q, Li J, Zhu T, Li D. Phenylhydrazone Alkaloids from the Deep-Sea Cold Seep Derived Fungus Talaromyces amestolkiae HDN21-0307. JOURNAL OF NATURAL PRODUCTS 2024; 87:1407-1415. [PMID: 38662578 DOI: 10.1021/acs.jnatprod.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Alkaloids with a phenylhydrazone architecture are rarely found in nature. Four unusual phenylhydrazone alkaloids named talarohydrazones A-D (1-4) were isolated from the deep-sea cold seep derived fungus Talaromyces amestolkiae HDN21-0307 using the one strain-many compounds (OSMAC) approach and MS/MS-based molecular networking (MN) combined with network annotation propagation (NAP) and the unsupervised substructure annotation method MS2LDA. Their structures were elucidated by spectroscopic data analysis, single-crystal X-ray diffraction, and quantum chemical calculations. Talarohydrazone A (1) possessed an unusual skeleton combining 2,4-pyridinedione and phenylhydrazone. Talarohydrazone B (2) represents the first natural phenylhydrazone-bearing azadophilone. Bioactivity evaluation revealed that compound 1 exhibited cytotoxic activity against NCI-H446 cells with an IC50 value of 4.1 μM. In addition, compound 1 displayed weak antibacterial activity toward Staphylococcus aureus with an MIC value of 32 μg/mL.
Collapse
Affiliation(s)
- Jiajin Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Wenxue Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yuhuan Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mudassir Shah
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Luning Zhou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, People's Republic of China
| | - Qian Che
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jing Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, People's Republic of China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, People's Republic of China
| | - Dehai Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, People's Republic of China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, People's Republic of China
| |
Collapse
|
2
|
Tropea A, Spadaro D, Trocino S, Giuffrida D, Salerno TMG, Ruiz-Sanchez JP, Montañez J, Morales-Oyervides L, Dufossé L, Mondello L, Calogero G. Development of dye-sensitized solar cells using pigment extracts produced by Talaromyces atroroseus GH2. Photochem Photobiol Sci 2024; 23:941-955. [PMID: 38643418 DOI: 10.1007/s43630-024-00566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
The identification of more efficient, clean, secure, and competitive energy supply is necessary to align with the needs of sustainable devices. For this reason, a study for developing innovative dye-sensitized solar cells (DSSCs) based on microbial pigments is reported starting from Talaromyces atroroseus GH2. The fungus was cultivated by fermentation and the extracellular pigment extract was characterized by HPLC-DAD-ESI-MS analyses. The most abundant compound among the 22 azaphilone-type pigments identified was represented by PP-O. The device's behavior was investigated in relation to electrolyte and pH for verifying the stability on time and the photovoltaic performance. Devices obtained were characterized by UV-vis measurements to verify the absorbance intensity and transmittance percentage. Moreover, photovoltaic parameters through photo-electrochemical measurements (I-V curves) and impedance characteristics by Electrochemical Impedance Spectroscopy (EIS) were determined. The best microbial device showed a short-circuit current density (Jsc) of 0.69 mA/cm2, an open-circuit photo-voltage (Voc) of 0.27 V and a Fill Factor (FF) of 0.60. Furthermore, the power conversion efficiency (PCE) of the device was 0.11%. Thus, the present study demonstrated the potential of microbial origin pigments for developing DSSCs.
Collapse
Affiliation(s)
- Alessia Tropea
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci Snc, 98168, Messina, Italy
| | - Donatella Spadaro
- Institute for Chemical and Physical Processes (IPCF)- National Research Council - Messina, Viale Ferdinando Stagno d'Alcontres, N. 37, 98158, Messina, Italy.
| | - Stefano Trocino
- Institute for Advanced Energy Technologies "Nicola Giordano" (ITAE) - National Research Council (CNR), Via Salita S. Lucia Sopra Contesse, N. 5, 98126, Messina, Italy
| | - Daniele Giuffrida
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Tania Maria Grazia Salerno
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci Snc, 98168, Messina, Italy
| | - Juan Pablo Ruiz-Sanchez
- Facultad de Ciencias Quimicas, Universidad Autonoma de Coahuila, Unidad Saltillo, 25280, Saltillo, Coahuila, Mexico
| | - Julio Montañez
- Facultad de Ciencias Quimicas, Universidad Autonoma de Coahuila, Unidad Saltillo, 25280, Saltillo, Coahuila, Mexico
| | - Lourdes Morales-Oyervides
- Facultad de Ciencias Quimicas, Universidad Autonoma de Coahuila, Unidad Saltillo, 25280, Saltillo, Coahuila, Mexico
| | - Laurent Dufossé
- CHEMBIOPRO Laboratoire de Chimie Et Biotechnologie Des Produits Naturels, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, 97400, Saint-Denis, Ile de La Réunion, France
| | - Luigi Mondello
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci Snc, 98168, Messina, Italy
- Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci Snc, 98168, Messina, Italy
| | - Giuseppe Calogero
- Institute for Chemical and Physical Processes (IPCF)- National Research Council - Messina, Viale Ferdinando Stagno d'Alcontres, N. 37, 98158, Messina, Italy
| |
Collapse
|
3
|
Li S, Yan P, Mu B, Kang Y, Wang A. Preparation of Hybrid Nanopigments with Excellent Environmental Stability, Antibacterial and Antioxidant Properties Based on Monascus Red and Sepiolite by One-Step Grinding Process. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111792. [PMID: 37299695 DOI: 10.3390/nano13111792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
This study is focused on the preparation, characterization, and multifunctional properties of intelligent hybrid nanopigments. The hybrid nanopigments with excellent environmental stability and antibacterial and antioxidant properties were fabricated based on natural Monascus red, surfactant, and sepiolite via a facile one-step grinding process. The density functional theory calculations demonstrated that the surfactants loaded on sepiolite were in favor of enhancing the electrostatic, coordination, and hydrogen bonding interactions between Monascus red and sepiolite. Thus, the obtained hybrid nanopigments exhibited excellent antibacterial and antioxidant properties, with an inhibition effect on Gram-positive bacteria that was superior to that of Gram-negative bacteria. In addition, the scavenging activity on DPPH and hydroxyl free radicals as well as the reducing power of hybrid nanopigments were higher than those of hybrid nanopigments prepared without the addition of the surfactant. Inspired by nature, gas-sensitive reversible alochroic superamphiphobic coatings with excellent thermal and chemical stability were successfully designed by combining hybrid nanopigments and fluorinated polysiloxane. Therefore, intelligent multifunctional hybrid nanopigments have great application foreground in related fields.
Collapse
Affiliation(s)
- Shue Li
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penji Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu Province, Hexi University, Zhangye 734000, China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yuru Kang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
4
|
Xue Y, Wang L, Zhang X, Wang Z. Terminal carboxylation of branched carbon chain contributing to acidic stability of azaphilone pigments from a new isolate of Talaromyces amestolkiae. Food Chem 2023; 424:136338. [PMID: 37207602 DOI: 10.1016/j.foodchem.2023.136338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/22/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023]
Abstract
Red Monascus pigments, a series of natural azaphilone alkaloids, have been utilized in China as a traditional food colorant for over 1000 years. However, instability under an acidic condition is its drawback. A new strain of Talaromyces amestolkiae was isolated in the present work, which produced the azaphilone talaromycorubrin and the corresponding azaphilone alkaloid (N-MSG-talaromycorubramine) exhibiting good stability even at pH below 3. The azaphilone alkaloid with acidic stability, an alternative of Chinese traditional red Monascus pigments, is potential for application as natural food colorant in acidic foods. The acidic stability of azaphilone alkaloid also benefits for direct fermentation of N-MSG-talaromycorubramine under a low pH condition. More importantly, correlation relationship between the terminal carboxylation of branched carbon chain of azaphilone and the stability of azaphilone alkaloids under an acidic condition is set up for the first time, which makes designing other acidic stable azaphilone alkaloids via genetic engineering become possible.
Collapse
Affiliation(s)
- Yunxin Xue
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China.
| |
Collapse
|
5
|
Sousa MDB, Pereira ML, Cruz FPN, Romano LH, Albuquerque YR, Correia RO, Oliveira FM, Primo FL, Baptista-Neto Á, Sousa CP, Anibal FF, Moraes LAB, Badino AC. Red biocolorant from endophytic Talaromyces minnesotensis: production, properties, and potential applications. Appl Microbiol Biotechnol 2023; 107:3699-3716. [PMID: 37083969 DOI: 10.1007/s00253-023-12491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/22/2023]
Abstract
Fungal colorants are gradually entering the global color market, given their advantages of being less harmful to human health, as well as having greater stability and biotechnological potential, compared to other natural sources. The present work concerns the isolation and identification of an endophytic filamentous fungus, together with the chemical characterization and assessment of the fluorescence, toxicity, stability, and application potential of its synthesized red colorant. The endophytic fungus was isolated from Hymenaea courbaril, a tree from the Brazilian savannah, and was identified as Talaromyces minnesotensis by phenotypic and genotypic characterization. Submerged cultivation of the fungus resulted in the production of approximately 12 AU500 of a red biocolorant which according to LC-DAD-MS analysis is characterized by being a complex mixture of molecules of the azaphilone class. Regarding cytotoxicity assays, activity against human hepatoblastoma (HepG2) cells was only observed at concentrations above 5.0 g L-1, while antimicrobial effects against pathogenic bacteria and yeast occurred at concentrations above 50.0 g L-1. The biocolorant showed high stability at neutral pH values and low temperatures (10 to 20 °C) and high half-life values (t1/2), which indicates potential versatility for application in different matrices, as observed in tests using detergent, gelatin, enamel, paint, and fabrics. The results demonstrated that the biocolorant synthesized by Talaromyces minnesotensis has potential for future biotechnological applications. KEY POINTS: • An endophytic fungus, which was isolated and identified, synthesize a red colorant. • The colorant showed fluorescence property, low toxicity, and application potential. • The red biocolorant was highly stable at pH 8.0 and temperatures below 20°C.
Collapse
Affiliation(s)
- Marina D B Sousa
- Graduate Program of Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo, 13565-905, Brazil
| | - Murilo L Pereira
- Chemical Engineering Undergraduate Course, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Felipe P N Cruz
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Microbiology and Biomolecules - LaMiB, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Luis H Romano
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Microbiology and Biomolecules - LaMiB, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Yulli R Albuquerque
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Inflammation and Infectious Diseases - LIDI, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Ricardo O Correia
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Inflammation and Infectious Diseases - LIDI, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Fernanda M Oliveira
- Graduate Program of Chemistry, Laboratory of Mass Spectrometry Applied to Natural Products, Chemistry Department, School of Philosophy, Sciences and Languages, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando L Primo
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-903, Brazil
| | - Álvaro Baptista-Neto
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-903, Brazil
| | - Cristina P Sousa
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Microbiology and Biomolecules - LaMiB, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Fernanda F Anibal
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Inflammation and Infectious Diseases - LIDI, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Luiz Alberto B Moraes
- Graduate Program of Chemistry, Laboratory of Mass Spectrometry Applied to Natural Products, Chemistry Department, School of Philosophy, Sciences and Languages, University of São Paulo, Ribeirão Preto, Brazil
| | - Alberto C Badino
- Graduate Program of Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
6
|
Azaphilones produced by Penicillium maximae with their cell death-inducing activity on Adriamycin-treated cancer cell. Genes Environ 2023; 45:5. [PMID: 36658662 PMCID: PMC9850696 DOI: 10.1186/s41021-023-00261-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Heat shock proteins (Hsps) are overexpressed in several tumors and contribute to cell proliferation, metastasis, and anticancer drug resistance. Therefore, Hsp inhibitors have enhanced cytotoxicity as chemotherapeutic agents and may be effective with a reduced dosage for tumor therapy to avoid side effects. RESULTS Four new azaphilones, maximazaphilones I-IV (1-4), and three known compounds (5-7) have been isolated from the airborne-derived fungus Penicillium maximae. Inhibitory effects of isolated compounds against induction of Hsp105 were evaluated by the luciferase assay system using Hsp105 promoter. In this assay, 2-4, 6, and 7 significantly inhibited hsp105 promoter activity without cytotoxicity. In addition, all isolated compounds except for 5 significantly induced the death of Adriamycin (ADR)-treated HeLa cells. Interestingly, 1-4, 6, and 7 didn't show anti-proliferative and cell death-inducing activity without ADR. CONCLUSION This study revealed the chemical structures of maximazaphilones I-IV (1-4) and the potency of azaphilones may be useful for cancer treatment and reducing the dose of anticancer agents. In addition, one of the mechanisms of cell death-inducing activity for 2-4, 6, and 7 was suggested to be inhibitory effects of Hsp105 expression.
Collapse
|
7
|
Dos Reis BD, de Oliveira F, Santos-Ebinuma VC, Filletti ÉR, de Baptista Neto Á. Assessment of artificial neural networks to predict red colorant production by Talaromyces amestolkiae. Bioprocess Biosyst Eng 2023; 46:147-156. [PMID: 36437377 DOI: 10.1007/s00449-022-02819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
Abstract
Consumer choice is typically influenced by color, leading to an increase in the use of artificial colorants by industry. However, several artificial colorants have been banned due to their harmful effects on human health and the environment, leading to increased interest in colorants from natural sources. Natural colorants can be found in plants, insects, and microorganisms. The importance of evaluating the technical and cost feasibility for the production of natural colorants are important factors for the replacement of artificial counterpart. Therefore, it is highly beneficial to predict the productivity of microbial colorants. The use of statistical methods that generate polynomial models through multiple regressions can provide information of interest about a bioprocess. However, modeling and control of biological processes require complex systems models, because they are nonlinear and non-deterministic systems. In this regard, artificial neural networks are suitable for estimating bioprocess variables with systems modeling. In this work, two different strategies were developed to predict the production of red colorants by Talaromyces amestolkiae, namely simulation by artificial neural networks (ANN) and response surface methodology (RSM). The results showed that the colorant concentration predicted by ANN is closer to the experimental data than that predicted by polynomial models fitted by multiple regression. Thus, this work suggests that the use of ANN can identify the initial conditions of the culture parameters that have the greatest influence on colorant production and can be a tool to be employed to improve the production of biotechnological products, such as microbial colorants.
Collapse
Affiliation(s)
- Bianca Dalbem Dos Reis
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Rodovia Araraquara- Jau Km. 01, Araraquara, SP, 14801-902, Brazil
| | - Fernanda de Oliveira
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Rodovia Araraquara- Jau Km. 01, Araraquara, SP, 14801-902, Brazil
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, 12602-810, Brazil
| | - Valéria C Santos-Ebinuma
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Rodovia Araraquara- Jau Km. 01, Araraquara, SP, 14801-902, Brazil
| | - Érica Regina Filletti
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, Universidade Estadual Paulista, Rodovia Araraquara- Jau Km. 01, SP, 14800-903, Araraquara, Brazil
| | - Álvaro de Baptista Neto
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Rodovia Araraquara- Jau Km. 01, Araraquara, SP, 14801-902, Brazil.
| |
Collapse
|
8
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
9
|
New Meroterpenoid and Isocoumarins from the Fungus Talaromyces amestolkiae MST1-15 Collected from Coal Area. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238223. [PMID: 36500326 PMCID: PMC9741378 DOI: 10.3390/molecules27238223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Three new compounds including a meroterpenoid (1) and two isocoumarins (8 and 9), together with thirteen known compounds (2-7, 10-16) were isolated from the metabolites of Talaromyces amestolkiae MST1-15. Their structures were identified by a combination of spectroscopic analysis. The absolute configuration of compound 1 was elucidated on the basis of experimental and electronic circular dichroism calculation, and compounds 8 and 9 were determined by Mo2(OAc)4-induced circular dichroism experiments. Compounds 7-16 showed weak antibacterial activities against Stenotrophomonas maltophilia with MIC values ranging from 128 to 512 μg/mL (MICs of ceftriaxone sodium and levofloxacin were 128 and 0.25 μg/mL, respectively).
Collapse
|
10
|
Mussagy CU, Oshiro A, Lima CA, Amantino CF, Primo FL, Santos-Ebinuma VC, Herculano RD. Natural fluorescent red colorants produced by Talaromyces amestolkiae as promising coloring agents for custom-made latex gloves. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Veríssismo NV, Nakamura CN, Oliveira FD, Kuhn BL, Frizzo CP, Pereira JF, Santos-Ebinuma VC. Effect of amphiphilic ionic liquids on the colorimetric properties of polyketides colorants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Mussagy CU, Silva PG, Amantino CF, Burkert JF, Primo FL, Pessoa A, Santos-Ebinuma VC. Production of natural astaxanthin by Phaffia rhodozyma and its potential application in textile dyeing. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Barbieri GS, Bento HBS, de Oliveira F, Picheli FP, Dias LM, Masarin F, Santos-Ebinuma VC. Xylanase Production by Talaromyces amestolkiae Valuing Agroindustrial Byproducts. BIOTECH 2022; 11:biotech11020015. [PMID: 35822788 PMCID: PMC9264394 DOI: 10.3390/biotech11020015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
In general, agroindustrial byproducts can be easily assimilated by several microorganisms due to their composition, which is rich in carbohydrates. Therefore, they could be appropriate for use as raw materials in a sustainable refinery concept, including the production of hydrolytic enzymes with industrial applicability. In this work, xylanase production by the filamentous fungi Talaromyces amestolkiae in submerged culture was evaluated using five agroindustrial byproducts, namely, wheat bran, citrus pulp, rice bran, peanut skin, and peanut shell. Firstly, the aforementioned byproducts were characterized in terms of cellulose, xylan, lignin, and extractives. Next, production studies were performed, and wheat bran generated the highest enzymatic activity (5.4 U·mL−1), probably because of its large amount of xylan. Subsequently, a factorial design was performed to evaluate the independent variables yeast extract, wheat bran, K2HPO4, and pH, aiming to improve the variable response, xylanase activity. The condition that promoted the highest production, 13.02 U·mL−1 (141% higher than the initial condition), was 20 g·L−1 wheat bran, 2.5 g·L−1 yeast extract, 3 g·L−1 K2HPO4, and pH 7. Thus, industrial byproducts with a high content of xylan can be used as a culture medium to produce xylanase enzymes with a Talaromyces strain through an economical and sustainable approach.
Collapse
|
14
|
Liu L, Wang Z. Azaphilone alkaloids: prospective source of natural food pigments. Appl Microbiol Biotechnol 2021; 106:469-484. [PMID: 34921328 DOI: 10.1007/s00253-021-11729-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/19/2023]
Abstract
Azaphilone, biosynthesized by polyketide synthase, is a class of fungal metabolites. In this review, after brief introduction of the natural azaphilone diversity, we in detail discussed azaphilic addition reaction involving conversion of natural azaphilone into the corresponding azaphilone alkaloid. Then, setting red Monascus pigments (a traditional food colorant in China) as example, we presented a new strategy, i.e., interfacing azaphilic addition reaction with living microbial metabolism in a one-pot process, to produce azaphilone alkaloid with a specified amine residue (red Monascus pigments) during submerged culture. Benefit from the red Monascus pigments with a specified amine residue, the influence of primary amine on characteristics of the food colorant was highlighted. Finally, the progress for screening of alternative azaphilone alkaloids (production from interfacing azaphilic addition reaction with submerged culture of Talaromyces sp. or Penicillium sp.) as natural food colorant was reviewed. KEY POINTS: • Azaphilic addition reaction of natural azaphilone is biocompatible • Red Monascus pigment is a classic example of azaphilone alkaloids • Azaphilone alkaloids are alterative natural food colorant.
Collapse
Affiliation(s)
- Lujie Liu
- State Key Laboratory of Microbial Metabolism, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|