1
|
Chen MS, Jia XY, Hou DJ, Xie QY, Ke DW, Tu ZC, Zhang L. Fabrication of Rubus chingii Hu ellagitannins-loaded W/O and O/W emulsion gels: Structure, stability, in vitro digestion and in vivo metabolism. Int J Biol Macromol 2025; 295:139656. [PMID: 39793811 DOI: 10.1016/j.ijbiomac.2025.139656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Tannin is the main naturally occurring phytochemicals in Rubus chingii Hu with poor digestive stability and low bioavailability. In this study, oil-in-water (O/W) and water-in-oil (W/O) emulsion gels encapsulating Rubus chingii Hu ellagitannins (RCHT) were fabricated and their structure, rheology, stability, in vitro digestion and in vivo metabolism were characterized. The W/O emulsion gel showed smaller particle size, better pH stability, thermal stability, centrifugal stability and storage stability. Regarding rheology, two emulsion gels exhibited characteristics of non-Newtonian fluids. The encapsulation efficiency of W/O emulsion gel was higher, reaching 95.46 %. The lower release rate and higher bioaccessibility of RCHT were also observed in the W/O emulsion gel. In vitro fermentation results indicated that W/O emulsion gel could promote the growth of intestinal beneficial bacteria and inhibit the growth of harmful bacteria. Metabolic kinetics in rats showed that the embedding of W/O emulsion gel greatly promoted the absorption and transformation of ellagitannins to urolithins in vivo. Thus, the W/O emulsion gel was quite suitable for the delivery of RCHT.
Collapse
Affiliation(s)
- Ming-Shun Chen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xiao-Yan Jia
- National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Dong-Jun Hou
- National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Quan-Yuan Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Dai-Wei Ke
- National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Lu Zhang
- National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
2
|
Pan L, Li Z, Liu J, Geng T, Liu X, Dong D, Guo L, Yuan C, Cui B, Liu H. Fabrication of oil-in-water high internal phase emulsions with enhanced antioxidative properties by modified starch/polyphenol mixtures: Effect of EGCG concentration, NaCl concentration, and temperature. Int J Biol Macromol 2025; 295:139585. [PMID: 39788252 DOI: 10.1016/j.ijbiomac.2025.139585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
In this study, oil-in-water (O/W) high internal phase emulsions (HIPEs) with enhanced antioxidative properties stabilized by octenyl succinic anhydride modified starch (OSAS)/(-)-Epigallocatechin-3-gallate (EGCG) mixtures were prepared. The influence of EGCG concentration (0-0.2 %, w/v), NaCl concentration (0-400 mmol/L), and temperature (25-90 °C) on the stability of the HIPEs was evaluated. The formation of O/W HIPEs, and OSAS/EGCG mixtures formed a thicker barrier on the surface of the oil droplets was confirmed using confocal laser scanning microscopy (CLSM) and cryo-scanning electron microscopy (Cro-SEM), respectively. The results indicated the HIPEs stabilized by OSAS/EGCG mixtures exhibited good environmental stability. All HIPEs displayed excellent antioxidant properties. As the concentration of EGCG in the OSAS/EGCG mixtures was increased from 0 to 0.2 % (w/v), the lipid hydroperoxide (LH) content was reduced from 534.89 mmol/kg oil to 453.77 mmol/kg oil, and malondialdehyde (MDA) content was reduced from 10.15 mmol/kg oil to 6.07 mmol/kg oil. Combined with the effect of NaCl, the oxidative stability was improved further. This study provided a new formulation of food-grade O/W HIPEs with strong antioxidant properties could be a potential solid fat substitute for future foods.
Collapse
Affiliation(s)
- Lidan Pan
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zimei Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jiayi Liu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Tenglong Geng
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaorui Liu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Die Dong
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Li Guo
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Chao Yuan
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Bo Cui
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Haiyan Liu
- Qingdao Bright Moon Seaweed Bio-Health Technology Group Co., Ltd, Qingdao 266400, China
| |
Collapse
|
3
|
Pan X, Zong Q, Liu C, Wu H, Fu B, Wang Y, Sun W, Zhai Y. Konjac glucomannan exerts regulatory effects on macrophages and its applications in biomedical engineering. Carbohydr Polym 2024; 345:122571. [PMID: 39227106 DOI: 10.1016/j.carbpol.2024.122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
Konjac glucomannan (KGM) molecular chains contain a small amount of acetyl groups and a large number of hydroxyl groups, thereby exhibiting exceptional water retention and gel-forming properties. To meet diverse requirements, KGM undergoes modification processes such as oxidation, acetylation, grafting, and cationization, which reduce its viscosity, enhance its mechanical strength, and improve its water solubility. Researchers have found that KGM and its derivatives can regulate the polarization of macrophages, inducing their transformation into classically activated M1-type macrophages or alternatively activated M2-type macrophages, and even facilitating the interconversion between M1 and M2 phenotypes. Concurrently, the modulation of macrophage polarization states holds significant importance for chronic wound healing, inflammatory bowel disease (IBD), antitumor therapy, tissue engineering scaffolds, oral vaccines, pulmonary delivery, and probiotics. Therefore, KGM has the advantages of both immunomodulatory effects (biological activity) and gel-forming properties (physicochemical properties), giving it significant advantages in a variety of biomedical engineering applications.
Collapse
Affiliation(s)
- Xi Pan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qida Zong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Liu
- Hainan Institute for Drug Control, Haikou 570311, China
| | - Huiying Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bo Fu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Sun
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Liu S, Liu Y, Li Q, Song Y, Zhang L, Peng F, Ma C. Oleanolic acid nanoparticles-stabilized W/O Pickering emulsions: Fabrication, characterization, and delivery application. Food Chem 2024; 444:138598. [PMID: 38310780 DOI: 10.1016/j.foodchem.2024.138598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
Water-in-oil (W/O) Pickering emulsions have wide applications in the food industries. However, the existing W/O Pickering particles have disadvantages such as lack of bioactivity and poor stability. In this study, naturally occurring bioactive oleanolic acid (OA) was used as a novel emulsifier for W/O emulsions. Results revealed that rod-like OA could formulate into spherical nanoparticles by self-assembly, and then be anchored onto the oil-water interface to stabilize the emulsions. Besides, both OA concentration and internal water fraction (φ) had significant effect on the properties of emulsions. Furthermore, the resulted emulsions exhibited potential application as carriers for epigallocatechin-3-gallate (EGCG), which significantly improved its UV and thermal stability. Meanwhile, it could effectively protect EGCG from gastric digestion, and controlled release in the intestine. This work demonstrated the successful application of OA as a stabilizer for W/O emulsions, and provided valuable insight into its potential as delivery system for hydrophilic instable compounds.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - Yuxuan Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Li
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Yuyang Song
- International Division, The Second High School Attached to Beijing Normal University, Beijing 100192, China
| | - Lulu Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chao Ma
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Wang Y, Guo Y, Dong P, Lin K, Du P, Cao J, Cheng Y, Cheng F, Yun S, Feng C. Water-in-oil Pickering emulsion using ergosterol as an emulsifier solely. Food Res Int 2024; 186:114374. [PMID: 38729731 DOI: 10.1016/j.foodres.2024.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
As a crucial component of the fungal cell membranes, ergosterol has been demonstrated to possess surface activity attributed to its hydrophobic region and polar group. However, further investigation is required to explore its emulsification behavior upon migration to the oil-water interface. Therefore, this study was conducted to analyze the interface properties of ergosterol as a stabilizer for water in oil (W/O) emulsion. Moreover, the emulsion prepared under the optimal conditions was utilized to load the water-soluble bioactive substance with the chlorogenic acid as the model molecules. Our results showed that the contact angle of ergosterol was 117.017°, and its dynamic interfacial tension was obviously lower than that of a pure water-oil system. When the ratio of water to oil was 4: 6, and the content of ergosterol was 3.5 % (ergosterol/oil phase, w/w), the W/O emulsion had smaller particle size (438 nm), higher apparent viscosity, and better stability. Meanwhile, the stability of loaded chlorogenic acid was improved under unfavorable conditions (pH 1.2, 90 °C, ultraviolet irradiation, and oxidation), which were 73.87 %, 59.53 %, 62.53 %, and 69.73 %, respectively. Additionally, the bioaccessibility of chlorogenic acid (38.75 %) and ergosterol (33.69 %), and the scavenging rates of the emulsion on DPPH radicals (81.00 %) and hydroxyl radicals (82.30 %) were also enhanced. Therefore, a novel W/O Pickering emulsion was prepared in this work using ergosterol as an emulsifier solely, which has great potential for application in oil-based food and nutraceutical formulations.
Collapse
Affiliation(s)
- Yaxin Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yuanhao Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Pengfei Dong
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Kai Lin
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Pengya Du
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China.
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
6
|
Han J, Choi S, Hong J, Gang D, Lee S, Shin K, Ko J, Kim JU, Hwang NS, An YH, Gu M, Kim SH. Superoxide Dismutase-Mimetic Polyphenol-Based Carbon Dots for Multimodal Bioimaging and Treatment of Atopic Dermatitis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38686704 DOI: 10.1021/acsami.4c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Polyphenols have been investigated for their potential to mitigate inflammation in the context of atopic dermatitis (AD). In this study, epigallocatechin-3-gallate (EGCG)-based carbon dots (EGCG@CDs) were developed to enhance transdermal penetration, reduce inflammation, recapitulate superoxide dismutase (SOD) activity, and provide antimicrobial effects for AD treatment. The water-soluble EGCG@CDs in a few nanometers size exhibit a negative zeta potential, making them suitable for effective transdermal penetration. The fluorescence properties, including an upconversion effect, make EGCG@CDs suitable imaging probes for both in vitro and in vivo applications. By mimicking the SOD enzyme, EGCG@CDs scavenge reactive oxygen species (ROS) and actively produce hydrogen peroxide through a highly catalytic capability toward the oxygen reduction reaction, resulting in the inhibition of bacterial growth. The enhanced antioxidant properties, high charge mobility, and various functional groups of EGCG@CDs prove effective in reducing intracellular ROS in an in vitro AD model. In the mouse AD model, EGCG@CDs incorporated into a hydrogel actively penetrated the epidermal layer, leading to ROS scavenging, reduced mast cell activation, and histological recovery of skin barriers. This research represents the versatile potential of EGCG@CDs in addressing AD and advancing tissue engineering.
Collapse
Affiliation(s)
- Jeongmin Han
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Sumi Choi
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Jinwoo Hong
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Dayeong Gang
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Seunghoon Lee
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
- Department of Chemistry, Dong-A University, Busan 49315, Republic of Korea
| | - Kwangsoo Shin
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio, Institute of Bioengineering, Institute of Engineering Research, Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio, Institute of Bioengineering, Institute of Engineering Research, Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsu Gu
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Su-Hwan Kim
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
7
|
Zhang Y, Tong C, Chen Y, Xia X, Jiang S, Qiu C, Pang J. Advances in the construction and application of konjac glucomannan-based delivery systems. Int J Biol Macromol 2024; 262:129940. [PMID: 38320637 DOI: 10.1016/j.ijbiomac.2024.129940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Konjac glucomannan (KGM) has been widely used to deliver bioactive components due to its naturalness, non-toxicity, excellent biodegradability, biocompatibility, and other characteristics. This review presents an overview of konjac glucomannan as a matrix, and the types of konjac glucomannan-based delivery systems (such as hydrogels, food packaging films, microencapsulation, emulsions, nanomicelles) and their construction methods are introduced in detail. Furthermore, taking polyphenol compounds, probiotics, flavor substances, fatty acids, and other components as representatives, the applied research progress of konjac glucomannan-based delivery systems in food are summarized. Finally, the prospects for research directions in konjac glucomannan-based delivery systems are examined, thereby providing a theoretical basis for expanding the application of konjac glucomannan in other industries, such as food and medicine.
Collapse
Affiliation(s)
- Yanting Zhang
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Cailing Tong
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Yuanyuan Chen
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Xiaolu Xia
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Shizhong Jiang
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, 214122, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China.
| |
Collapse
|
8
|
Yu J, Zhang Y, Zhang R, Gao Y, Mao L. Stabilization of oil-in-water high internal phase emulsions with octenyl succinic acid starch and beeswax oleogel. Int J Biol Macromol 2024; 254:127815. [PMID: 37918613 DOI: 10.1016/j.ijbiomac.2023.127815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
High internal phase emulsions (HIPEs) based on beeswax (BW) oleogels and octenyl succinic acid starch (OSA starch) were prepared by a facile one-step method. Effects of the oleogelation of internal phase on the formation, stability and functionality of the HIPEs were investigated. OSA starch absorbed at the interface allowed high surface charge (|ζ| > 25 mV) of the droplets, and small droplet size (d ≈ 5 m). Microstructural observation suggested that the HIPEs were of O/W type with droplets packed tightly. With the increase in BW content (0-4 %), the particle size (4-7 μm) and ζ-potential (-25 ~ -30 mV) of the HIPEs were first decreased and then increased. Stability analysis revealed that the addition of BW effectively improved emulsion stability against centrifugation, freeze-thawing, changes in pH and ionic strength, and the HIPE with 2 % BW presented the best stability. Rheological tests indicated that the HIPEs with higher content of BW exhibited higher storage modulus, solid-like properties, and shear thinning behaviors. Creep-recovery results implied that the oleogelation enhanced the structure of HIPEs and improved the deformation resistance of the systems. When subjected to light and heat, oleogel-in-water HIPEs showed advantages in protecting β-carotene from degradation, and β-carotene in the HIPEs with 2 % BW had the lowest degradation rate. These findings suggested that gelation of oil phase could improve the stability of HIPEs and the encapsulation capability, which would be meaningful for the development of novel healthy food.
Collapse
Affiliation(s)
- Jingjing Yu
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanhui Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruoning Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
Zhang L, Yu Y. Improving the Stability of Water-in-Oil Emulsions with Medium Internal Phase by the Introduction of Gelatin. Foods 2023; 12:2863. [PMID: 37569131 PMCID: PMC10417489 DOI: 10.3390/foods12152863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The water-in-oil (W/O) emulsion with a medium aqueous phase may be limited in food and cosmetics due to its poor stability and high cost. Herein, this work proposed a facile strategy to improve the W/O emulsion stability by introducing gelatin. The influence of different gelatin concentrations (0, 0.5%, 1.0%, 2.0%, and 4.0%) on the stability and properties of W/O emulsions was mainly investigated. Results showed that the obtained emulsions still belonged to W/O emulsions after adding gelatin to the aqueous phase. As the gelatin concentration increased (0~4.0%), the interfacial tension decreased, which is conducive to promoting the interface adsorption of polyglycerol polyricinoleate (PGPR). Furthermore, introducing gelatin also improved the water-holding capacity (WHC) (33.50~6.32%) and viscosity of W/O emulsions and reduced the droplet size (37.47~8.75 μm) of emulsions. The enhanced interfacial adsorption and aqueous gelation induced by gelatin addition promoted the formation of a tight overall emulsion network structure by the interaction between the interfacial adsorbed PGPR, as well as PGPR and gelatin in the aqueous phase. The enhancement of the overall network effectively improved the storage stability (35 d), thermal stability (20 min, 80 °C), and freeze-thaw stability (10 cycles) of emulsions, especially at 4.0% gelatin concentration. Hence, this study can provide guidance for the improvement and regulation of the stabilities of W/O emulsions.
Collapse
Affiliation(s)
- Lei Zhang
- Chongqing Science and Technology Bureau, Chongqing 400715, China;
| | - Yong Yu
- Chongqing Science and Technology Bureau, Chongqing 400715, China;
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Liu J, Yu Z, Xie W, Yang L, Zhang M, Li C, Shao JH. Effects of tetrasodium pyrophosphate coupled with soy protein isolate on the emulsion gel properties of oxidative myofibrillar protein. Food Chem 2023; 408:135208. [PMID: 36525730 DOI: 10.1016/j.foodchem.2022.135208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
The effects of protein oxidation on the emulsion gel properties of myofibrillar protein (MP) in the presence of tetrasodium pyrophosphate (TSPP) and soybean protein isolate (SPI) were investigated from the perspective of interfacial protein interactions. The results showed that the emulsifying activity and emulsion stability of MP increased by 35.2 %-181.6 % with elevated H2O2 concentrations (1-20 mM), while the gel strength and water holding capacity of MP emulsions first increased to a maximum at 5 mM H2O2 and then decreased. TSPP and SPI further reinforced the effects caused by oxidation. The emulsifying properties of MP and its emulsion gel properties were closely related to surface hydrophobicity/hydrogen bonds/hydrophobic interactions and disulfide bonds among interfacial proteins, respectively. However, these correlations became difficult to define when TSPP and SPI were introduced. The study provides a theoretical basis for the strategy development to reduce protein oxidation damage on meat product quality.
Collapse
Affiliation(s)
- Jun Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ze Yu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wenru Xie
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lu Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mingyun Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chunqiang Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
11
|
Insight into interfacial adsorption behavior of high-density lipoprotein hydrolysates regulated by carboxymethyl dextrin and in vitro digestibility of curcumin loaded high internal phase emulsions. Food Chem 2023; 400:134006. [DOI: 10.1016/j.foodchem.2022.134006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022]
|
12
|
Zhang Y, Sun G, Li D, Xu J, McClements DJ, Li Y. Advances in emulsion-based delivery systems for nutraceuticals: Utilization of interfacial engineering approaches to control bioavailability. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:139-178. [DOI: 10.1016/bs.afnr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Pascual-Silva C, Alemán A, López-Caballero ME, Montero MP, Gómez-Guillén MDC. Physical and Oxidative Water-in-Oil Emulsion Stability by the Addition of Liposomes from Shrimp Waste Oil with Antioxidant and Anti-Inflammatory Properties. Antioxidants (Basel) 2022; 11:2236. [PMID: 36421422 PMCID: PMC9686809 DOI: 10.3390/antiox11112236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 08/05/2023] Open
Abstract
Liposomes made of partially purified phospholipids (PL) from Argentine red shrimp waste oil were loaded with two antioxidant lipid co-extracts (hexane-soluble, Hx and acetone-soluble, Ac) to provide a higher content of omega-3 fatty acids. The physical properties of the liposomes were characterized by Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and Differential Scanning Calorimetry (DSC). The antioxidant and anti-inflammatory activity of the lipid extracts and liposomal suspensions were evaluated in terms of Superoxide and ABTS radical scavenging capacities and TNF-α inhibition. Uni-lamellar spherical liposomes (z-average ≈ 145 nm) with strong negative ζ potential (≈ -67 mV) were obtained in all cases. The high content of neutral lipids in the Hx extract caused structural changes in the bilayer membrane and decreased entrapment efficiency regarding astaxanthin and EPA + DHA contents. The liposomes loaded with the Hx/Ac extracts showed higher antioxidant and anti-inflammatory activity compared with empty liposomes. The liposomal dispersions improved the physical and oxidative stability of water-in-oil emulsions as compared with the PL extract, inducing pronounced close packing of water droplets. The liposomes decreased hydroperoxide formation in freshly made emulsions and prevented thio-barbituric acid-reactive substances (TBARS) accumulation during chilled storage. Liposomes from shrimp waste could be valuable nanocarriers and stabilizers in functional food emulsions.
Collapse
|
14
|
Gao H, Huang X, Xie Y, Fang S, Chen W, Zhang K, Chen X, Zou L, Liu W. Improving the gastrointestinal activity of probiotics through encapsulation within biphasic gel water-in-oil emulsions. Food Funct 2022; 13:11455-11466. [PMID: 36148831 DOI: 10.1039/d2fo01939f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of probiotics encapsulation strategies has always been a hot topic due to the high sensitivity of probiotics to processing, storage and the gastrointestinal environment. In this study, water in oil (W/O) emulsions of single-phase or dual-phase gels were constructed through the water phase, oil phase alone or all gels. And the W/O emulsions were used to encapsulate Bifidobacterium lactis V9. The effects of water, oil and biphasic gels on the physicochemical properties of the emulsion and the probiotic activity were investigated. Water, oil and biphasic gels contribute to the stability of emulsions. Oil-phase gels make the emulsion form a solid-like texture, while water-phase gels have no significant effect on the liquidity of the emulsion. The microscopic image shows that the probiotics were completely encapsulated in the internal aqueous phase due to the excellent water affinity of probiotic powder. In addition, all W/O emulsions retain higher probiotic activity, which is attributed to good physical isolation during the gastric phase, while oil-phase and biphasic gel emulsions have high probiotic activity after intestinal digestion due to reduced lipid digestion by oil-phase gels. A liquid or solid-state encapsulated probiotic emulsion has been developed and can be used as a coating sauce, solid fat, etc., which can provide additional ideas for probiotic encapsulation systems and functional food development.
Collapse
Affiliation(s)
- Hongxia Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Xin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Youfa Xie
- Jiangzhong Pharmaceutical Co. LTD, Nanchang, 330041, Jiangxi, PR China
| | - Suqiong Fang
- Sirio Pharma Co., Ltd., Shantou, Guangdong 515041, China
| | - Wenrong Chen
- Sirio Pharma Co., Ltd., Shantou, Guangdong 515041, China
| | - Kui Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China. .,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
15
|
Iqbal S, Zhang P, Wu P, Yin Q, Hidayat K, Chen XD. Modulation of viscosity, microstructure and lipolysis of W/O emulsions by cellulose ethers during in vitro digestion in the dynamic and semi-dynamic gastrointestinal models. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Wang YL, Liang P, Wu JN, Zheng T, Xie JH, Pang J. Blackening and blackening control of litopenaeus vannamei during storage at low temperature. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2021.2021994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ya Li Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutriton, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Liang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutriton, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Na Wu
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen, China
| | - Ting Zheng
- Antibiotic Laboratory, Fujian Institute for Food and Drug Quality Control, Fuzhou, China
| | - Jian Hua Xie
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou, China
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutriton, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Niknam SM, Kashaninejad M, Escudero I, Sanz MT, Beltrán S, Benito JM. Preparation of Water-in-Oil Nanoemulsions Loaded with Phenolic-Rich Olive Cake Extract Using Response Surface Methodology Approach. Foods 2022; 11:279. [PMID: 35159431 PMCID: PMC8834604 DOI: 10.3390/foods11030279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
In this study, we aimed to prepare stable water-in-oil (W/O) nanoemulsions loaded with a phenolic-rich aqueous phase from olive cake extract by applying the response surface methodology and using two methods: rotor-stator mixing and ultrasonic homogenization. The optimal nanoemulsion formulation was 7.4% (w/w) of olive cake extract as the dispersed phase, and 11.2% (w/w) of a surfactant mixture of polyglycerol polyricinoleate (97%) and Tween 80 (3%) in Miglyol oil as the continuous phase. Optimum results were obtained by ultrasonication for 15 min at 20% amplitude, yielding W/O nanoemulsion droplets of 104.9 ± 6.7 nm in diameter and with a polydispersity index (PDI) of 0.156 ± 0.085. Furthermore, an optimal nanoemulsion with a droplet size of 105.8 ± 10.3 nm and a PDI of 0.255 ± 0.045 was prepared using a rotor-stator mixer for 10.1 min at 20,000 rpm. High levels of retention of antioxidant activity (90.2%) and phenolics (83.1-87.2%) were reached after 30 days of storage at room temperature. Both W/O nanoemulsions showed good physical stability during this storage period.
Collapse
Affiliation(s)
| | | | | | | | | | - José M. Benito
- Department of Biotechnology and Food Science (Chemical Engineering Section), University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (S.M.N.); (M.K.); (I.E.); (M.T.S.); (S.B.)
| |
Collapse
|