1
|
Yu M, Li Y, Chu Y, Bi H. Direct analysis and identification of the intestinal microflora of shrimps for their geographical traceability via mass spectrometry and bacterial library searching. Analyst 2025. [PMID: 39876755 DOI: 10.1039/d4an01447b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The expansion of the seafood market has led to an increased probability of food fraud. The development of rapid and reliable traceability methods for aquatic food products is of utmost importance. In this study, direct analysis and identification of the intestinal microbiota of aquatic foods were conducted. The validity of using BacteriaMS database searching for the identification of bacteria was assessed and demonstrated through analyzing prepared bacterial mixtures. We focused on shrimp as a model for aquatic food products and utilized matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze the intestinal microflora of Chinese shrimp (Fenneropenaeus chinensis) collected from three different aquaculture farms in China. It was found that the most dominant bacteria found in shrimps' intestines could serve as a basis for distinguishing shrimps' geographical origin. The most dominant bacteria in the intestines varied among shrimps from different origins but remained identical for shrimps from the same origin. The reliability of the method in tracing the geographic origin of aquatic products was further validated by analysis of black tiger shrimp (Penaeus monodon) from different origins. The findings show that the utilization of MALDI-TOF MS for the analysis of the microbial community in the intestines of shrimp samples combined with bacterial library searching can offer a rapid, accurate, and feasible method that can be employed for determining shrimps' geographical origin. The present protocol was successfully utilized for the traceability of origins of Chinese shrimp (Fenneropenaeus chinensis) and black tiger shrimp (Penaeus monodon). It is promising to extend the present protocol to other aquatic products with regional characteristics to help combat food fraud in the aquatic product market.
Collapse
Affiliation(s)
- Mingyue Yu
- College of Food Science and Technology, Shanghai Ocean University (SHOU), 999 Hucheng Ring Road, Pudong New District, 201306 Shanghai, China.
| | - Yunxing Li
- College of Food Science and Technology, Shanghai Ocean University (SHOU), 999 Hucheng Ring Road, Pudong New District, 201306 Shanghai, China.
| | - Yuean Chu
- College of Food Science and Technology, Shanghai Ocean University (SHOU), 999 Hucheng Ring Road, Pudong New District, 201306 Shanghai, China.
| | - Hongyan Bi
- College of Food Science and Technology, Shanghai Ocean University (SHOU), 999 Hucheng Ring Road, Pudong New District, 201306 Shanghai, China.
| |
Collapse
|
2
|
Costa MJ, Sousa I, Pinto Moura A, Teixeira JA, Cunha LM. Food Fraud Conceptualization: An Exploratory Study with Portuguese Consumers. J Food Prot 2024; 87:100301. [PMID: 38740141 DOI: 10.1016/j.jfp.2024.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Food fraud refers to deceptive practices conducted for economic gain, and incidents of such fraud are often reported in the media and scientific literature. However, little is known about how European consumers perceive food fraud. To address this gap, a study explored Portuguese consumers' knowledge and perceptions of food fraud using qualitative methods such as free word association and semi-structured interviews. For this research, 340 participants were recruited, providing 911 valid words, classified into categories, major categories, and dimensions. Differences between consumers' previous exposure to food fraud and sociodemographic characteristics were explored. Additionally, other thirty-six participants were selected and interviewed, following a semi-structured guide. Interviews were transcribed, coded, and analyzed using a thematic analysis procedure. The results suggest that Portuguese consumers view food fraud as a morally reprehensible deception and are aware of its causes and impacts. However, not all consumers know the different forms of food fraud or the types of products vulnerable to fraud. Among the most repeated words were "deception", "expiration date", and "falsification". Despite this food fraud awareness, most consumers believed they were not exposed to food fraud and stated that they do not conduct daily practices to reduce exposure to it. Following the chi-square and Mann-Whitney tests, significant differences (p ≤ 0.05) were identified between participants exposed and not exposed to food fraud. The study also found that consumers with higher education and self-reported exposure to food fraud had a better understanding of the issue. This study provides insights for quantitative research on consumer perceptions and beliefs about food fraud to explore further vulnerable food categories and types of food fraud in real-world scenarios.
Collapse
Affiliation(s)
- Maria João Costa
- GreenUPorto- Sustainable Agrifood Production Research Centre/INOV4Agro, University of Porto, Porto, Portugal; DGAOT, Faculty of Sciences, University of Porto, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Isabel Sousa
- GreenUPorto- Sustainable Agrifood Production Research Centre/INOV4Agro, University of Porto, Porto, Portugal; DGAOT, Faculty of Sciences, University of Porto, Porto, Portugal; CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associated Laboratory, Braga, Guimarães, Portugal
| | - Ana Pinto Moura
- GreenUPorto- Sustainable Agrifood Production Research Centre/INOV4Agro, University of Porto, Porto, Portugal; DCeT, Universidade Aberta, Porto, Portugal
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associated Laboratory, Braga, Guimarães, Portugal
| | - Luís Miguel Cunha
- GreenUPorto- Sustainable Agrifood Production Research Centre/INOV4Agro, University of Porto, Porto, Portugal; DGAOT, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
3
|
Su G, Yu C, Liang S, Wang W, Wang H. Multi-omics in food safety and authenticity in terms of food components. Food Chem 2024; 437:137943. [PMID: 37948800 DOI: 10.1016/j.foodchem.2023.137943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
One of the main goals of food science is to ensure the high quality and safety of food. The inspection technology for known hazards has matured, and the identification of unknown and potential food safety hazards, as well as the identification of their composition and origin, is a challenge faced by food safety. Food safety and authenticity require multi-omics methods to support the implementation of qualitative discrimination to precise quantitative analysis, from targeted screening to non-target detection, and from multi component to full component analysis to address these challenges. The present review aims to provide characterizations, advantages, the latest progress, and prospects of using omics (including genomics, proteomics, and metabonomics) in food safety and authenticity. Multi omics strategies used to detect and verify different standard biomarkers of food will contribute to understanding the basic relationship between raw materials, processing, foods, nutrition, food safety, and human health.
Collapse
Affiliation(s)
- Guangyue Su
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR of China
| | - Chong Yu
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shuwen Liang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wei Wang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Haifeng Wang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
4
|
Hong Y, Birse N, Quinn B, Li Y, Jia W, van Ruth S, Elliott CT. MALDI-ToF MS and chemometric analysis as a tool for identifying wild and farmed salmon. Food Chem 2024; 432:137279. [PMID: 37657341 DOI: 10.1016/j.foodchem.2023.137279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
In this study, the difference between wild and farmed salmon production was successfully profiled and differentiated by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-ToF MS) combined with chemometric analysis. The established method based on multivariate analysis mainly involved principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and orthogonal partial least squares-discriminant analysis (OPLS-DA) as the screening and verifying tools to provide insights into the distinctive features found in wild and farmed salmon products, respectively. The discrimination between farmed and wild salmon was accomplished with 100% classification accuracy using chemometric models, 100% identification accuracy was also achieved in distinguishing wild Salmo salar and Oncorhynchus nerka samples. The results of the present work suggest that the proposed method could serve as a reference for detecting salmon fraud relating to wild or farmed production and expand the application of MALDI-ToF technology further into food authenticity applications.
Collapse
Affiliation(s)
- Yunhe Hong
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - Nicholas Birse
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, United Kingdom.
| | - Brian Quinn
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - Yicong Li
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - Wenyang Jia
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - Saskia van Ruth
- Food Quality and Design Group, Wageningen University and Research, Wageningen, Netherlands; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Christopher T Elliott
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, United Kingdom; School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
5
|
Zhang Z, Li Y, Zhao S, Qie M, Bai L, Gao Z, Liang K, Zhao Y. Rapid analysis technologies with chemometrics for food authenticity field: A review. Curr Res Food Sci 2024; 8:100676. [PMID: 38303999 PMCID: PMC10830540 DOI: 10.1016/j.crfs.2024.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024] Open
Abstract
In recent years, the problem of food adulteration has become increasingly rampant, seriously hindering the development of food production, consumption, and management. The common analytical methods used to determine food authenticity present challenges, such as complicated analysis processes and time-consuming procedures, necessitating the development of rapid, efficient analysis technology for food authentication. Spectroscopic techniques, ambient ionization mass spectrometry (AIMS), electronic sensors, and DNA-based technology have gradually been applied for food authentication due to advantages such as rapid analysis and simple operation. This paper summarizes the current research on rapid food authenticity analysis technology from three perspectives, including breeds or species determination, quality fraud detection, and geographical origin identification, and introduces chemometrics method adapted to rapid analysis techniques. It aims to promote the development of rapid analysis technology in the food authenticity field.
Collapse
Affiliation(s)
- Zixuan Zhang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Li
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengjie Qie
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Bai
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhiwei Gao
- Hangzhou Nutritome Biotech Co., Ltd., Hangzhou, China
| | - Kehong Liang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Hassoun A, Anusha Siddiqui S, Smaoui S, Ucak İ, Arshad RN, Bhat ZF, Bhat HF, Carpena M, Prieto MA, Aït-Kaddour A, Pereira JA, Zacometti C, Tata A, Ibrahim SA, Ozogul F, Camara JS. Emerging Technological Advances in Improving the Safety of Muscle Foods: Framing in the Context of the Food Revolution 4.0. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2149776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdo Hassoun
- Univ. Littoral Côte d’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - İ̇lknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUASTof Jammu, Jammu, Kashmir, India
| | - Hina F. Bhat
- Division of Animal Biotechnology, SKUASTof Kashmir, Kashmir, India
| | - María Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, Bragança, Portugal
| | | | - Jorge A.M. Pereira
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Carmela Zacometti
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Alessandra Tata
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - José S. Camara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
7
|
|
8
|
Seafood Processing, Preservation, and Analytical Techniques in the Age of Industry 4.0. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fish and other seafood products are essential dietary components that are highly appreciated and consumed worldwide. However, the high perishability of these products has driven the development of a wide range of processing, preservation, and analytical techniques. This development has been accelerated in recent years with the advent of the fourth industrial revolution (Industry 4.0) technologies, digitally transforming almost every industry, including the food and seafood industry. The purpose of this review paper is to provide an updated overview of recent thermal and nonthermal processing and preservation technologies, as well as advanced analytical techniques used in the seafood industry. A special focus will be given to the role of different Industry 4.0 technologies to achieve smart seafood manufacturing, with high automation and digitalization. The literature discussed in this work showed that emerging technologies (e.g., ohmic heating, pulsed electric field, high pressure processing, nanotechnology, advanced mass spectrometry and spectroscopic techniques, and hyperspectral imaging sensors) are key elements in industrial revolutions not only in the seafood industry but also in all food industry sectors. More research is still needed to explore how to harness the Industry 4.0 innovations in order to achieve a green transition toward more profitable and sustainable food production systems.
Collapse
|