1
|
Mubango E, Fu Z, Dou P, Tan Y, Luo Y, Chen L, Wu K, Hong H. Dual function antioxidant and anti-inflammatory fish maw peptides: Isolation and structure-activity analysis via tandem molecular docking and quantum chemical calculation. Food Chem 2025; 465:141970. [PMID: 39546995 DOI: 10.1016/j.foodchem.2024.141970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The structure-function relationship of gastrointestinal tract digestion-derived fish maw peptides remains largely unknown. This study aims to elucidate the active sites and cellular bioactivities of these peptides through molecular docking (MD), density functional theory (DFT) computations, in silico bioinformatic analysis, and in cellulo Caco-2 cell studies. In silico screening identified 29 non-toxic, non-allergenic, and water-soluble peptides. Seven peptides exhibited favorable binding to the Keap1-Kelch (2FLU) and TNF-α (2AZ5) proteins. Specifically, peptides WIDPNQG, GFPGER, and FLLFRQ demonstrated the highest electron affinities and smallest HOMO-LUMO energy gaps, suggesting strong free-radical scavenging potential. Both DFT and ex situ MD confirmed the active sites of the seven peptides. The guanidinium group was the dominant active site on six peptides. The isolated peptides improved cellular redox balance, reduced malonaldehyde, and suppressed inflammatory cytokines. This study confirmed DFT computations as a novel tool for elucidating the structure-function relationship of food-derived peptides.
Collapse
Affiliation(s)
- Elliot Mubango
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zixin Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peipei Dou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Chen
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Kefeng Wu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Hui Hong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Lemus-Conejo A, Villanueva-Lazo A, Martin ME, Millan F, Millan-Linares MC. Sacha Inchi ( Plukenetia volubilis L.) Protein Hydrolysate as a New Ingredient of Functional Foods. Foods 2024; 13:2045. [PMID: 38998552 PMCID: PMC11241537 DOI: 10.3390/foods13132045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Sacha inchi (Plukenetia volubilis L.) is an under-exploited crop with great potential due to its nutritional and medicinal characteristics. A Sacha inchi protein isolate (SII), obtained from defatted Sacha inchi flour (SIF), was hydrolyzed by Bioprotease LA 660 under specific conditions. The hydrolysates were characterized chemically, and their digestibility and antioxidant capacity were evaluated by in vitro cell-free experiments to select the hydrolysate with major antioxidant activity. Sacha inchi protein hydrolysate at 20 min (SIH20B) was selected, and the anti-inflammatory capacity was evaluated by RT-qPCR and ELISA techniques, using two different doses in monocytes THP-1 stimulated with lipopolysaccharide (LPS). The results obtained showed that the in vitro administration of SIH20B down-regulated the TNF-α gene and reduced the release of this cytokine, whereas the anti-inflammatory cytokines IL-10 and IL-4 were up-regulated in LPS-stimulated monocytes and co-administrated with SIH20B. The peptides contained in SIH20B were identified, and the 20 more relatively abundant peptides with a mass by 1 kDa were subjected to in silico analysis to hypothesize those that could be responsible for the bioactivity reported in the hydrolysate. From the identified peptides, the peptides AAGALKKFL and LGVKFKGGL, among others, are proposed as the most biologically actives. In conclusion, SIH20B is a novel, natural source of high-value-added biopeptides that could be used as an ingredient in formulations of food or nutraceutical compounds.
Collapse
Affiliation(s)
- Ana Lemus-Conejo
- Foundation Centre for Research and Development of Functional Food-CIDAF, Avda del Conocimiento 37, 18100 Granade, Spain
| | - Alvaro Villanueva-Lazo
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Francisco Millan
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| | - Maria C Millan-Linares
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| |
Collapse
|
3
|
Chen Q, Nie X, Huang W, Wang C, Lai R, Lu Q, He Q, Yu X. Unlocking the potential of chicken liver byproducts: Identification of antioxidant peptides through in silico approaches and anti-aging effects of a selected peptide in Caenorhabditis elegans. Int J Biol Macromol 2024; 272:132833. [PMID: 38834112 DOI: 10.1016/j.ijbiomac.2024.132833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/28/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Chicken meat processing generates a substantial number of byproducts, which are either underutilized or improperly disposed. In this study, we employed in silico approaches to identify antioxidant peptides in chicken liver byproducts. Notably, the peptide WYR exhibited remarkable 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity with an IC50 of 0.13 ± 0.01 mg/mL and demonstrated stability under various conditions, including thermal, pH, NaCl, and simulated gastrointestinal digestion. Molecular docking analysis revealed significant hydrogen bonding interactions, while molecular dynamics showed differential stability with ABTS and 2,2-Diphenyl-1-picrylhydrazyl (DPPH). WYR exhibited improved stress resistance, decreased levels of reactive oxygen species (ROS), elevated the activities of superoxide dismutase (SOD) and catalase (CAT), and modulated the expression of crucial genes through the insulin/insulin-like growth factor (IIS) signaling pathway, mitogen-activated protein kinase (MAPK), and heat shock transcription factor-1 (HSF-1) pathways. These effects collectively contributed to the extension of Caenorhabditis elegans' lifespan. This study not only provides an effective method for antioxidant peptide analysis but also highlights the potential for enhancing the utilization of poultry byproducts.
Collapse
Affiliation(s)
- Qianzi Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xuekui Nie
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Wangxiang Huang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Chen Wang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China
| | - Qiyi He
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| | - Xiaodong Yu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
4
|
Zhao Y, Liu X, Zhang S, Wang Z, Tian S, Wu Q. Identification and Free Radical Scavenging Activity of Oligopeptides from Mixed-Distillate Fermented Baijiu Grains and Soy Sauce Residue. Metabolites 2024; 14:298. [PMID: 38921433 PMCID: PMC11205538 DOI: 10.3390/metabo14060298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 06/27/2024] Open
Abstract
This study aimed to explore the potential antioxidant activity and mechanism of oligopeptides from sauce-aroma Baijiu. The oligopeptides of Val-Leu-Pro-Phe (VLPF), Pro-Leu-Phe (PLF), Val-Gly-Phe-Cys (VGFC), Leu-Tyr-Pro (LYP), Leu-Pro-Phe (LPF), and Phe-Thr-Phe (FTF) were identified by liquid chromatography-mass spectrometry (LC-MS) from the mixed-distillate of Baijiu fermented grains and soy sauce residue (MDFS). The antioxidant mechanism of these oligopeptides on scavenging DPPH•, ABTS•+, and hydroxide radicals was investigated, respectively. Among them, VGFC had the strongest potential antioxidant activity, which was responsible for its hydrogen bonds with these radicals with high affinity. The binding energies between VGFC and these radicals were -1.26 kcal/mol, -1.33 kcal/mol, and -1.93 kcal/mol, respectively. Additionally, free radicals prefer to bind the oligopeptide composed of hydrophobic amino acid residues such as Leu, Val, Phe, and Pro, thus being scavenged for exerting antioxidant activity. It provided a new idea for the development and utilization of bioactive oligopeptides in sauce-aroma Baijiu.
Collapse
Affiliation(s)
- Yunhao Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (X.L.); (S.Z.); (Z.W.); (S.T.)
- Hunan Key Laboratory of New Technology and Application of Ecological Brewing, Shaoyang 422000, China
| | - Xiangyue Liu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (X.L.); (S.Z.); (Z.W.); (S.T.)
- Hunan Key Laboratory of New Technology and Application of Ecological Brewing, Shaoyang 422000, China
| | - Sijie Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (X.L.); (S.Z.); (Z.W.); (S.T.)
- Hunan Key Laboratory of New Technology and Application of Ecological Brewing, Shaoyang 422000, China
| | - Zhengwei Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (X.L.); (S.Z.); (Z.W.); (S.T.)
- Hunan Key Laboratory of New Technology and Application of Ecological Brewing, Shaoyang 422000, China
| | - Shanlin Tian
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (X.L.); (S.Z.); (Z.W.); (S.T.)
- Hunan Key Laboratory of New Technology and Application of Ecological Brewing, Shaoyang 422000, China
| | - Qiang Wu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (X.L.); (S.Z.); (Z.W.); (S.T.)
- Hunan Key Laboratory of New Technology and Application of Ecological Brewing, Shaoyang 422000, China
- Shaoyang Engineering Technology Research Center of Functional Fertilizer, Shaoyang 422002, China
| |
Collapse
|
5
|
Igbokwe CJ, Feng Y, Louis H, Benjamin I, Quaisie J, Duan Y, Tuly JA, Cai M, Zhang H. Novel antioxidant peptides identified from coix seed by molecular docking, quantum chemical calculations and invitro study in HepG2 cells. Food Chem 2024; 440:138234. [PMID: 38145582 DOI: 10.1016/j.foodchem.2023.138234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The aim of the study was to identify potent antioxidant peptides sourced from coix seed, analyze the structure-activity relationship through molecular docking and quantum chemical calculation. Molecular docking results showed that among thirteen peptides selected in silico, eight had favourable binding interaction with the Keap1-Kelch domain (2FLU). Promising peptides with significant binding scores were further evaluated using quantum calculation. It was shown that peptide FFDR exhibited exceptional stability, with a high energy gap of 5.24 eV and low Highest Occupied Molecular Orbitals (HOMO) and Lowest Unoccupied Molecular Orbitals (LUMO) values. Furthermore, FFDR displayed the capacity to enhance the expression of Nrf2-Keap1 antioxidant genes (CAT, SOD, GSH-Px) and improved cellular redox balance by increasing reduced glutathione (GSH) while reducing oxidized glutathione (GSSG) and malonaldehyde (MDA) levels. These findings highlight the potential of coix seed peptides in developing novel, effective and stable antioxidant-based functional foods.
Collapse
Affiliation(s)
- Chidimma Juliet Igbokwe
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Department of Food Science and Technology, University of Nigeria Nsukka, Nigeria
| | - Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Janet Quaisie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Chemistry and Nutrition Research Division, Food Research Institute, Accra, Ghana
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Jamila A Tuly
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haihua Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
6
|
Villanueva A, Rivero-Pino F, Martin ME, Gonzalez-de la Rosa T, Montserrat-de la Paz S, Millan-Linares MC. Identification of the Bioavailable Peptidome of Chia Protein Hydrolysate and the In Silico Evaluation of Its Antioxidant and ACE Inhibitory Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3189-3199. [PMID: 38305180 PMCID: PMC10870759 DOI: 10.1021/acs.jafc.3c05331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
The incorporation of novel, functional, and sustainable foods in human diets is increasing because of their beneficial effects and environmental-friendly nature. Chia (Salvia hispanica L.) has proved to be a suitable source of bioactive peptides via enzymatic hydrolysis. These peptides could be responsible for modulating several physiological processes if able to reach the target organ. The bioavailable peptides contained in a hydrolysate obtained with Alcalase, as functional foods, were identified using a transwell system with Caco-2 cell culture as the absorption model. Furthermore, 20 unique peptides with a molecular weight lower than 1000 Da and the higher statistical significance of the peptide-precursor spectrum match (-10 log P) were assessed by in silico tools to suggest which peptides could be those exerting the demonstrated bioactivity. From the characterized peptides, considering the molecular features and the results obtained, the peptides AGDAHWTY, VDAHPIKAM, PNYHPNPR, and ALPPGAVHW are anticipated to be contributing to the antioxidant and/or ACE inhibitor activity of the chia protein hydrolysates.
Collapse
Affiliation(s)
- Alvaro Villanueva
- Department
of Food and Health, Instituto de la Grasa
(IG-CSIC), Ctra. Utrera
Km 1, 41013 Seville, Spain
| | - Fernando Rivero-Pino
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | - Maria E. Martin
- Department
of Cell Biology, Faculty of Biology, University
of Seville, Av. Reina
Mercedes s/n, 41012 Seville, Spain
| | - Teresa Gonzalez-de la Rosa
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | - Maria C. Millan-Linares
- Department
of Food and Health, Instituto de la Grasa
(IG-CSIC), Ctra. Utrera
Km 1, 41013 Seville, Spain
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
7
|
Nutritional composition, ultrastructural characterization, and peptidome profile of antioxidant hemp protein hydrolysates. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
8
|
Identification of novel α-glucosidase inhibitory peptides in rice wine and their antioxidant activities using in silico and in vitro analyses. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Goat milk-derived short chain peptides: Peptide LPYV as species-specific characteristic and their versatility bioactivities by MOF@Fe 3O 4@GO mesoporous magnetic-based peptidomics. Food Res Int 2023; 164:112442. [PMID: 36738007 DOI: 10.1016/j.foodres.2022.112442] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Goat milk as an ideal substitute for human milk has not been sufficiently explored. An in-situ synthesized MOF@Fe3O4@GO was demonstrated as a magnetic mesoporous adsorbent for efficiently enriching short chain peptides (SCPs) in milk compared with the routine solid phase extraction approach with graphite carbon black or C18 as the packing material in terms of the number of enriched SCPs and data stability. A total of 61 and 126 SCPs were identified and quantified in bovine milk (0.09-89.34 μg L-1) and goat milk (10.5-1267.06 μg L-1), respectively, and peptide LPYV can be used as a potential marker for adulteration of goat milk. Relative high expression of chymotrypsin and pepsin by EnzymePredictor analysis could partially elaborate the reason of the abundance of SCPs in goat milk. Compared with bovine milk, further bioinformatics analysis indicated that goat milk could own higher nutritional value because of relative higher concentrations (>1 mg/L) of SCPs (LLV, FL, LVYP) with confirmed bioactivities including angiotensin-converting enzyme (ACE) inhibitor, antioxidant, dipeptidylpeptidase (DPP) III and DPP IV inhibitor, etc. Overall, this study opened a novel avenue for understanding versatility benefit of dairy products from a perspective of SCPs by using a developed MOF@Fe3O4@GO mesoporous magnetic-based peptidomics.
Collapse
|
10
|
Bioactive and Sensory Di- and Tripeptides Generated during Dry-Curing of Pork Meat. Int J Mol Sci 2023; 24:ijms24021574. [PMID: 36675084 PMCID: PMC9866438 DOI: 10.3390/ijms24021574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Dry-cured pork products, such as dry-cured ham, undergo an extensive proteolysis during manufacturing process which determines the organoleptic properties of the final product. As a result of endogenous pork muscle endo- and exopeptidases, many medium- and short-chain peptides are released from muscle proteins. Many of them have been isolated, identified, and characterized, and some peptides have been reported to exert relevant bioactivity with potential benefit for human health. However, little attention has been given to di- and tripeptides, which are far less known, although they have received increasing attention in recent years due to their high potential relevance in terms of bioactivity and role in taste development. This review gathers the current knowledge about di- and tripeptides, regarding their bioactivity and sensory properties and focusing on their generation during long-term processing such as dry-cured pork meats.
Collapse
|
11
|
Identification of Antioxidant Peptides Derived from Tilapia (Oreochromis niloticus) Skin and Their Mechanism of Action by Molecular Docking. Foods 2022; 11:foods11172576. [PMID: 36076761 PMCID: PMC9455858 DOI: 10.3390/foods11172576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Antioxidants, which can activate the body’s antioxidant defence system and reduce oxidative stress damage, are important for maintaining free radical homeostasis between oxidative damage and antioxidant defence. Six antioxidant peptides (P1–P6) were isolated and identified from the enzymatic hydrolysate of tilapia skin by ultrafiltration, reversed-phase high-performance liquid chromatography (RP-HPLC) and liquid chromatography–tandem mass spectrometry (LC–MS/MS). Moreover, the scavenging mechanism of the identified peptides against DPPH (2,2-Diphenyl-1-picrylhydrazyl) and ABTS (2-azido-bis (3-ethylbenzothiazoline-6-sulfonic acid) was studied by molecular docking. It was found that Pro, Ala and Tyr were the characteristic amino acids for scavenging free radicals, and hydrogen bonding and hydrophobic interactions were the main interactions between the free radicals and antioxidant peptides. Among them, the peptide KAPDPGPGPM exhibited the highest DPPH free radical scavenging activity (IC50 = 2.56 ± 0.15 mg/mL), in which the hydrogen bond between the free radical DDPH and Thr-6 was identified as the main interaction, and the hydrophobic interactions between the free radical DDPH and Ala, Gly and Pro were also identified. The peptide GGYDEY presented the highest scavenging activity against ABTS (IC50 = 9.14 ± 0.08 mg/mL). The key structures for the interaction of this peptide with the free radical ABTS were identified as Gly-1 and Glu-5 (hydrogen bond sites), and the amino acids Tyr and Asp provided hydrophobic interactions. Furthermore, it was determined that the screened peptides are suitable for applications as antioxidants in the food industry, exhibit good water solubility and stability, are likely nonallergenic and are nontoxic. In summary, the results of this study provide a theoretical structural basis for examining the mechanism of action of antioxidant peptides and the application of enzymatic hydrolysates from tilapia skin.
Collapse
|
12
|
Jia W, Du A, Fan Z, Wang Y, Shi L. Effects of Short-Chain Peptides on the Flavor Profile of Baijiu by the Density Functional Theory: Peptidomics, Sensomics, Flavor Reconstitution, and Sensory Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9547-9556. [PMID: 35866578 DOI: 10.1021/acs.jafc.2c02549] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The effect of peptides on the flavor profile of Baijiu is unclear as a result of their trace concentrations in the complex matrix, and therefore, the study involving the interaction mechanism between peptides and flavor compounds is limited. In this study, short-chain peptides (amino acid number between 2 and 4, SCPs) associated with the Feng-flavor Baijiu (FFB) were comprehensively analyzed by a dedicated workflow using ultra-high-performance liquid chromatography Q Orbitrap high-resolution mass spectrometry, flavor reconstitution experiments, sensory analysis, and density functional theory (DFT) analysis. The concentrations of 96 SCPs intimately related with six different grades of honey aroma intensity in FFB were quantified (0.12-155.01 μg L-1) after multivariable analysis, Spearman's correlation analysis (ρ ≥ 0.7), and confirmation with synthetic standards, and 32 dominant odorants with an odor activity value of ≥1 in FFB with the highest intensity of honey aroma were quantified by gas chromatography-mass spectrometry and gas chromatography-flame ionization detection analyses. The results of flavor reconstitution experiments and sensory analysis indicated that the SCPs can obviously influence the honey aroma with amplifying the fruity, sweet, and flora flavor odor characters (p < 0.05) while significantly reducing the acidic character (p < 0.001), which could be attributed to the most stable complex structure between SCPs and odor-active compounds calculated by DFT being butanoic acid, followed by β-damascenone, 3-methylbutanal, and ethyl hexanoate, and the multiple sites as a hydrogen bond donor or acceptor in SCPs can form a stable ternary structure with water and ethanol inside the peptide chain or carboxyl terminal of SCPs, consequently improving the stability of the Baijiu system. The results highlighted the important role of SCPs on the volatiles in Baijiu and laid the foundation for further facilitating the sensory quality of Baijiu products.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Yongbo Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| |
Collapse
|
13
|
BIOPEP-UWM Virtual—A Novel Database of Food-Derived Peptides with In Silico-Predicted Biological Activity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The novel BIOPEP-UWM Virtual database is designed as a repository of peptide sequences whose bioactivity or taste information was the result of in silico predictions. It is a tool complementary to the existing BIOPEP-UWM database summarizing the results of experimental data on bioactive peptides. The layout and organization of the new database are identical to those of the existing BIOPEP-UWM database of bioactive peptides. The peptide data record includes the following information: name; sequence and function information (understood as information about the predicted target biomacromolecule); bibliographic data with the reference paper describing the peptide; additional information, including the peptide structure, annotated using chemical codes as well as the specification of the method used for bioactivity prediction; information about other activities discovered experimentally or predicted using computational methods; peptide taste (if available); and a database reference tab providing information about compound annotations in other databases (if available).
Collapse
|
14
|
Zhi T, Li X, Sadiq FA, Mao K, Gao J, Mi S, Liu X, Deng W, Chitrakar B, Sang Y. Novel antioxidant peptides from protein hydrolysates of scallop (Argopecten irradians) mantle using enzymatic and microbial methods: Preparation, purification, identification and characterization. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|