1
|
Xu J, Hou A, Li W, Chen B, Wu H, Tan H, Xiao Z, Wu X, Zhang J. Assisted Fermentation by a Modified Bacillus subtilis Strain Producing Protease Improved the Quality of Sufu. Food Sci Nutr 2025; 13:e4673. [PMID: 39872982 PMCID: PMC11770482 DOI: 10.1002/fsn3.4673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/21/2024] [Accepted: 11/30/2024] [Indexed: 01/30/2025] Open
Abstract
Traditionally fermented sufu is popular because of its flavor, abundance of nutrients, and long shelf life. However, traditional sufu is difficult to produce via industrial processes because of dominant microorganism attenuation during fermentation. Herein, specific protease-producing strains were isolated from traditional sufu. After strain identification, mutation, and domestication, the strains were applied in fermentation. The taste, texture, and nutrient and flavor components of the fermentation products were investigated via organoleptic, textural HPLC and HS-GC-IMS analyses. Results revealed that Bacillus subtilis (DF1) and the derived strains DF1v and DF1vd had increased protease activity relative to other strains. When these strains were applied for sufu fermentation, the production period significantly shortened to 6-8 days for pehtzes and to 20-26 days for postripening. The nutrient and flavor compound composition of both sufu pehtzes and products improved, including increases in water-soluble proteins, amino acids, and substances with beany and umami aromas and decreases in nonbeneficial biogenic amines and moldy odor-imparting substances. Among the strains, DF1vd showed the greatest benefits in sufu-assisted fermentation. In summary, a modified Bacillus subtilis strain (DF1vd) producing protease was isolated, which improved the nutrient profile and flavor of sufu and shortened the production period.
Collapse
Affiliation(s)
- Junfei Xu
- College of Biological and Food Engineering/Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province/Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological FoodHuaihua UniversityHuaihuaChina
| | - Aixiang Hou
- College of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Wenqi Li
- College of Biological and Food Engineering/Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province/Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological FoodHuaihua UniversityHuaihuaChina
| | - Binbin Chen
- College of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Hong Wu
- State Key Laboratory of Utilization of Woody Oil ResourcesHunan Academy of Forestry/Hunan Provincial Key Laboratory of Oils and Fats Molecular Structure and FunctionChangshaChina
| | - Huan Tan
- Agricultural Products Processing InstituteHunan Academy of Agricultural Sciences/Hunan Food Testing and Analysis CenterChangshaChina
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil ResourcesHunan Academy of Forestry/Hunan Provincial Key Laboratory of Oils and Fats Molecular Structure and FunctionChangshaChina
| | - Xianjin Wu
- College of Biological and Food Engineering/Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province/Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological FoodHuaihua UniversityHuaihuaChina
| | - Juzuo Zhang
- College of Biological and Food Engineering/Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province/Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological FoodHuaihua UniversityHuaihuaChina
| |
Collapse
|
2
|
Li A, Liu Y, Yang G, Du M, Song J, Kan J. Impact of salt content on Douchi metabolites: biogenic amines, non-volatile compounds and volatile compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7524-7535. [PMID: 38738583 DOI: 10.1002/jsfa.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND The excessive salt intake associated with Douchi has become a topic of controversy. Addressing this concern and enhancing its market competitiveness necessitates the application of salt reduction fermentation in Douchi. Therefore, to promote the application of salt reduction fermentation in Douchi, a comprehensive study was undertaken aiming to investigate the differences in biogenic amines, volatile compounds and non-volatile compounds in Douchi with varying salt content. RESULTS The findings unequivocally demonstrate that salt hampers the formation of metabolites in Douchi. As the salt content increased, there was a significant decrease (P < 0.05) in the levels of total acid, amino-type nitrogen and free amino acids in Douchi. Notably, when the salt content exceeded 80 g kg-1, there was a substantial reduction (P < 0.05) in putrescine, lactic acid and malic acid levels. Similarly, when the salt content surpassed 40 g kg-1, β-phenethylamine and oxalic acid levels exhibited a significant decline (P < 0.05). Furthermore, the results of E-nose and principal component analysis based on headspace solid phase microextraction gas chromatography-mass spectrometry revealed notable discrepancies in the volatile compound content between Douchi samples with relatively low salt content (40 and 80 g kg-1) and those with relatively high salt content (120, 160 and 200 g kg-1) (P < 0.05). By employing partial least squares discriminant analysis, eight distinct volatile compounds, including o-xylene, benzaldehyde and 1-octen-one, were identified. These compounds exhibited higher concentrations in Douchi samples with relatively low salt content (40 and 80 g kg-1). The sensory results showed that Douchi samples with lower salt content exhibited higher scores in the soy sauce-like and Douchi aroma attributes. CONCLUSION In conclusion, this study significantly enhances our understanding of the impact of salt on metabolites in Douchi and provides invaluable insights for the development of salt reduction fermentation in this context. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aijun Li
- College of Food Science, Southwest University, Chongqing, China
| | - Yuchen Liu
- College of Food Science, Southwest University, Chongqing, China
| | - Gang Yang
- College of Food Science, Southwest University, Chongqing, China
| | - Muying Du
- College of Food Science, Southwest University, Chongqing, China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China
- Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Jun Song
- Shu Xiang Douchi Food Research Institute limited company, Chongqing, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China
- Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| |
Collapse
|
3
|
Elhalis H, Chin XH, Chow Y. Soybean fermentation: Microbial ecology and starter culture technology. Crit Rev Food Sci Nutr 2024; 64:7648-7670. [PMID: 36916137 DOI: 10.1080/10408398.2023.2188951] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Fermented soybean products, including Soya sauce, Tempeh, Miso, and Natto have been consumed for decades, mainly in Asian countries. Beans are processed using either solid-state fermentation, submerged fermentation, or a sequential of both methods. Traditional ways are still used to conduct the fermentation processes, which, depending on the fermented products, might take a few days or even years to complete. Diverse microorganisms were detected during fermentation in various processes with Bacillus species or filamentous fungi being the two main dominant functional groups. Microbial activities were essential to increase the bean's digestibility, nutritional value, and sensory quality, as well as lower its antinutritive factors. The scientific understanding of fermentation microbial communities, their enzymes, and their metabolic activities, however, still requires further development. The use of a starter culture is crucial, to control the fermentation process and ensure product consistency. A broad understanding of the spontaneous fermentation ecology, biochemistry, and the current starter culture technology is essential to facilitate further improvement and meet the needs of the current extending and sustainable economy. This review covers what is currently known about these aspects and reveals the limited available information, along with the possible directions for future starter culture design in soybean fermentation.
Collapse
Affiliation(s)
- Hosam Elhalis
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Singapore
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| | - Xin Hui Chin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Singapore
| | - Yvonne Chow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Singapore
| |
Collapse
|
4
|
Zhao C, Zhang Y, Li S, Lin J, Lin W, Li W, Luo L. Impacts of Aspergillus oryzae 3.042 on the flavor formation pathway in Cantonese soy sauce koji. Food Chem 2024; 441:138396. [PMID: 38218154 DOI: 10.1016/j.foodchem.2024.138396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/09/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
To investigate the mechanism of flavor formation during the traditional preparation Cantonese soy sauce koji (TP), the changes of microorganisms, physicochemical properties, and flavor compounds in TP were comprehensively and dynamically monitored by absolute quantitative methods. Results demonstrated that inoculating Aspergillus oryzae 3.042 in TP was crucial role in enhancing enzyme activity properties. Absolute quantification of flavor combined with multivariate statistical analysis yielded 5 organic acids, 15 amino acids, and 2 volatiles as significantly different flavors of TP. Amplicon sequencing and RT-qPCR revealed that the dominant genera were Staphylococcus, Weissella, Enterobacter, Lactic streptococci, Lactobacillus, and Aspergillus, which exhibited a increasing trend in TP. Correlation analysis exhibited that Staphylococcus and Aspergillus were the pivotal genera contributing to the enzyme activities and flavor of TP. The flavor formation network involved lipid and protein degradation, carbohydrate metabolism and other pathways. Simultaneously, TP can appropriately increase the fermentation time to improve product quality.
Collapse
Affiliation(s)
- Chi Zhao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yuxiang Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Shuangshuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jiayi Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Weifeng Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Weixin Li
- Guangdong Heshan Donggu Flavoring Food Co. Ltd, Heshan 529700, PR China
| | - Lixin Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Zhao C, Lin J, Zhang Y, Wu H, Li W, Lin W, Luo L. Comprehensive analysis of flavor formation mechanisms in the mechanized preparation Cantonese soy sauce koji using absolute quantitative metabolomics and microbiomics approaches. Food Res Int 2024; 180:114079. [PMID: 38395551 DOI: 10.1016/j.foodres.2024.114079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
Based on the widespread application and under-research of mechanized preparation Cantonese soy sauce koji (MP), absolute quantitative approaches were utilized to systematically analyze the flavor formation mechanism in MP. The results indicated that the enzyme activities increased greatly during MP fermentation, and 4 organic acids, 15 amino acids, and 2 volatiles were identified as significantly different flavor actives. The flavor parameters of MP4 were basically identical to those of MP5. Furthermore, microorganisms were dominated by Staphylococcus, Weissella, and Aspergillus in MP, and their biomass demonstrated an increasing trend. A precise enumeration of microorganisms exposed the inaccuracy of relative quantitative data. Concurrently, Staphylococcus and Aspergillus were positively correlated with numerous enzymes and flavor compounds, and targeted strains for enhancing MP quality. The flavor formation network comprises pathways including carbohydrate metabolism, lipid metabolism and oxidation, and protein degradation and amino acid metabolism. In summary, the fermentation period of MP can be substantially shortened without compromising the product quality. These findings lay the groundwork for refining parameters in modern production processes.
Collapse
Affiliation(s)
- Chi Zhao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jiayi Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yuxiang Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Huizhen Wu
- Guangdong Heshan Donggu Flavoring Food Co. Ltd, Heshan 529700, PR China
| | - Weixin Li
- Guangdong Heshan Donggu Flavoring Food Co. Ltd, Heshan 529700, PR China
| | - Weifeng Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Lixin Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Xie J, Gänzle M. Microbiology of fermented soy foods in Asia: Can we learn lessons for production of plant cheese analogues? Int J Food Microbiol 2023; 407:110399. [PMID: 37716309 DOI: 10.1016/j.ijfoodmicro.2023.110399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/17/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
The food industry is facing the challenge of creating innovative, nutritious, and flavored plant-based products, due to consumer's increasing demand for the health and environmental sustainability. Fermentation as a unique and effective tool plays an important role in the innovation of food products. Traditional fermented soy foods are popular in many Asian and African countries as nutritious, digestible and flavorful daily staples or condiments. They are produced by specific microorganisms with the unique fermentation process in which microorganisms convert the ingredients of whole soybean or soybean curd to flavorful and functional molecules. This review provides an overview on traditional fermented food produced from soy, including douchi, natto, tempeh, and sufu as well as stinky tofu, including the background of these products, the manufacturing process, and the microbial diversity involved in fermentation procedures as well as flavor volatiles that were identified in the final products. The contribution of microbes to the quality of these five fermented soy foods is discussed, with the comparison to the role of cheese ripening microorganisms in cheese flavor formation. This communication aims to summarize the microbiology of fermented soy foods in Asia, evoking innovative ideas for the development of new plant-based fermented foods especially plant-based cheese analogues.
Collapse
Affiliation(s)
- Jin Xie
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Hu X, Liu S, Li E. Microbial community succession and its correlation with the dynamics of flavor compound profiles in naturally fermented stinky sufu. Food Chem 2023; 427:136742. [PMID: 37393638 DOI: 10.1016/j.foodchem.2023.136742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/04/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Wuhan stinky sufu is a traditional fermented soybean product with a short ripening period and unique flavor. The aim of this study was to explore the characteristic flavor compounds and core functional microbiota of naturally fermented Wuhan stinky sufu. The results indicated that 11 volatile compounds including guaiacol, 2-pentylfuran, dimethyl trisulfide, dimethyl disulfide, acetoin, 1-octen-3-ol, (2E)-2-nonenal, indole, propyl 2-methylbutyrate, ethyl 4-methylvalerate, nonanal were characteristic aroma compounds, and 6 free amino acids (Ser, Lys, Arg, Glu, Met and Pro) were identified as taste-contributing compounds. 4 fungal genera (Kodamaea, unclassified_Dipodascaceae, Geotrichum, Trichosporon), and 9 bacterial genera (Lysinibacillus, Enterococcus, Acidipropionibacterium, Bifidobacterium, Corynebacterium, Lactococcus, Pseudomonas, Enterobacter, and Acinetobacter) were identified as the core functional microbiota with positive effects on the production of flavor compounds. These findings would enhance the understanding of core flavor-producing microorganisms in naturally fermented soybean products and potentially provide guidance for enhancing the quality of sufu.
Collapse
Affiliation(s)
- Xuefen Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shaoquan Liu
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117543, Singapore
| | - Erhu Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
8
|
Yao H, Liu S, Liu T, Ren D, Zhou Z, Yang Q, Mao J. Microbial-derived salt-tolerant proteases and their applications in high-salt traditional soybean fermented foods: a review. BIORESOUR BIOPROCESS 2023; 10:82. [PMID: 38647906 PMCID: PMC10992980 DOI: 10.1186/s40643-023-00704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/31/2023] [Indexed: 04/25/2024] Open
Abstract
Different microorganisms can produce different proteases, which can adapt to different industrial requirements such as pH, temperature, and pressure. Salt-tolerant proteases (STPs) from microorganisms exhibit higher salt tolerance, wider adaptability, and more efficient catalytic ability under extreme conditions compared to conventional proteases. These unique enzymes hold great promise for applications in various industries including food, medicine, environmental protection, agriculture, detergents, dyes, and others. Scientific studies on microbial-derived STPs have been widely reported, but there has been little systematic review of microbial-derived STPs and their application in high-salt conventional soybean fermentable foods. This review presents the STP-producing microbial species and their selection methods, and summarizes and analyzes the salt tolerance mechanisms of the microorganisms. It also outlines various techniques for the isolation and purification of STPs from microorganisms and discusses the salt tolerance mechanisms of STPs. Furthermore, this review demonstrates the contribution of modern biotechnology in the screening of novel microbial-derived STPs and their improvement in salt tolerance. It highlights the potential applications and commercial value of salt-tolerant microorganisms and STPs in high-salt traditional soy fermented foods. The review ends with concluding remarks on the challenges and future directions for microbial-derived STPs. This review provides valuable insights into the separation, purification, performance enhancement, and application of microbial-derived STPs in traditional fermented foods.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|
9
|
Zhao L, Liu Y, Xu Q, Yu Y, Zheng G, Wang Y, Zhang Q, Xu X, Zhang N, Chu J, Zhang Y, Sun Y, Zhao Q, Zhang Y, Qu Q, Zhong J. Microbial Community Succession and Its Correlation with Quality Characteristics during Gray Sufu Fermentation. Foods 2023; 12:2767. [PMID: 37509859 PMCID: PMC10379170 DOI: 10.3390/foods12142767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Gray sufu, a traditional fermented food derived from soybeans, undergoes a complex fermentation process. This study aimed to investigate the dynamics of the microbial community during sufu fermentation and its relationship with key quality characteristics. Through systematic sampling of sufu at different phases of fermentation, 143 bacterial genera and 84 fungal genera involved in the process were identified. Among these, Chishuiella, Enterococcus, Lactococcus, and Weissella emerged as the predominant bacterial communities. After seven days of ripening fermentation, Trichosporon supplanted Diutina as the predominant fungus, accounting for more than 84% of all fungi. Using redundancy analysis, significant correlations between microbiota and physicochemical properties were uncovered. Chishuiella and Empedobacter displayed positive relationships with pH, soluble protein, and amino nitrogen content. In addition, five biogenic amines were detected, and it was determined that tyramine accounted for more than 75% of the total biogenic amines in the final gray sufu products. Spearman correlation analysis revealed significant positive relationships between Lactococcus, Enterococcus, Tetragenococcus, Halanaerobium, and Trichosporon and the five biogenic amines examined. These findings shed light on the complex interactions between microorganisms and biogenic amines during the fermentation of gray sufu, thereby facilitating the development of microbial regulation strategies for better quality control.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yang Liu
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiong Xu
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Yi Yu
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Guojian Zheng
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Yue Wang
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Qingping Zhang
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Xiaoqian Xu
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Nana Zhang
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Jiayue Chu
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Yuzhu Zhang
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Yingyi Sun
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Qin Zhao
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Yinan Zhang
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Qinfeng Qu
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Jiang Zhong
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
10
|
Ding S, Tian M, Yang L, Pan Y, Suo L, Zhu X, Ren D, Yu H. Diversity and dynamics of microbial population during fermentation of gray sufu and their correlation with quality characteristics. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Chen Z, Song J, Ren L, Wang H, Zhang Y, Suo H. Effect of the succession of the microbial community on physicochemical properties and flavor compounds of Mucor wutungkiao-fermented sufu. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Christensen LF, García-Béjar B, Bang-Berthelsen CH, Hansen EB. Extracellular microbial proteases with specificity for plant proteins in food fermentation. Int J Food Microbiol 2022; 381:109889. [DOI: 10.1016/j.ijfoodmicro.2022.109889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
|