1
|
Xiao S, Wu J, Kang M, Dong Z. Aptamer regulated peroxidase-like activity of cobalt oxyhydroxide nanosheets for colorimetric detection of kanamycin. ANAL SCI 2024; 40:2181-2190. [PMID: 39196511 DOI: 10.1007/s44211-024-00655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
A straightforward label-free colorimetric aptasensor utilizing the aptamer-enhanced peroxidase-like activity of cobalt oxyhydroxide (CoOOH) nanosheets has been established for kanamycin detection. In the kanamycin-free state, aptamers adsorb onto the CoOOH surface through electrostatic forces, enhancing the peroxidase-like activity of CoOOH and thereby resulting in a strong absorption signal and a yellow hue in 3,3',5,5'-tetramethylbenzidine (TMB) upon termination of the reaction with a stop solution. Conversely, upon the introduction of kanamycin, aptamers and CoOOH nanosheets compete for binding to kanamycin, resulting in a significant decrease in the number of aptamers bound to CoOOH. As a result, the activity of CoOOH diminishes, leading to a corresponding reduction in coloration and absorbance of the solution. Hence, the quantitative determination of kanamycin could be realized by analyzing the absorbance variations. Under optimal conditions, the aptasensor demonstrated high sensitivity and specificity, with a linear detection range from 500 nM to 5 µM and a detection limit as low as 54.6 nM. Moreover, the aptasensor effectively identified kanamycin in river water samples, achieving a recovery rate between 91.7% and 102.1%. This approach offers good practicability and provides a novel platform for kanamycin detection in environmental samples.
Collapse
Affiliation(s)
- Shuyan Xiao
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
- Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
| | - Jiafeng Wu
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Mingqin Kang
- Changchun Customs Technology Center, Changchun, 130062, China
| | - Zhongping Dong
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| |
Collapse
|
2
|
Ye S, Wu X, Chen H, Chen S, Zeng Y, Zhang H, Yu Y. Colorimetric aptasensor based on magnetic beads and gold nanoparticles for detecting mucin 1. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124236. [PMID: 38615415 DOI: 10.1016/j.saa.2024.124236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 04/16/2024]
Abstract
In this work, a colorimetric aptasensor based on magnetic beads (MBs), gold nanoparticles (AuNPs) and Horseradish Peroxidase (HRP) was prepared for the detection of mucin 1 (MUC1). Complementary DNA of the MUC1 aptamer (Apt) immobilized on the MBs was combined with the prepared AuNPs-Apt-HRP complex (AuNPs@Apt-HRP). In the presence of MUC1, it specifically bound to Apt, resulting in the detachment of gold nanoparticles from the MBs. After magnetic separation, AuNPs@Apt-HRP was separated into the supernatant and reacted with 3,3',5,5'-Tetramethylbenzidine (TMB) to produce color reaction from colorless to blue. The linear range of MUC1 was from 75 to 500 μg/mL (R2 = 0.9878), and the detection limit was 41.95 μg/mL. The recovery rate of MUC1 in human serum was 99.18 %∼101.15 %. This method is simple and convenient. Moreover, it does not require complex and expensive equipment for detection of MUC1. It provides value for the development of MUC1 colorimetric sensors and a promising strategy for the determination of MUC1 in clinical diagnosis.
Collapse
Affiliation(s)
- Siying Ye
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaoyan Wu
- Department of Endemic Diseases, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian 350012, China
| | - Huilong Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shuping Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yingying Zeng
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Hongyan Zhang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yuyan Yu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
3
|
Marpaung DSS, Sinaga AOY, Damayanti D, Taharuddin T. Bridging biological samples to functional nucleic acid biosensor applications: current enzymatic-based strategies for single-stranded DNA generation. ANAL SCI 2024; 40:1225-1237. [PMID: 38607600 DOI: 10.1007/s44211-024-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
The escalating threat of emerging diseases, often stemming from contaminants and lethal pathogens, has precipitated a heightened demand for sophisticated diagnostic tools. Within this landscape, the functional nucleic acid (FNA) biosensor, harnessing the power of single-stranded DNA (ssDNA), has emerged as a preeminent choice for target analyte detection. However, the dependence on ssDNA has raised difficulties in realizing it in biological samples. Therefore, the production of high-quality ssDNA from biological samples is critical. This review aims to discuss strategies for generating ssDNA from biological samples for integration into biosensors. Several innovative strategies for ssDNA generation have been deployed, encompassing techniques, such as asymmetric PCR, Exonuclease-PCR, isothermal amplification, biotin-streptavidin PCR, transcription-reverse transcription, ssDNA overhang generation, and urea denaturation PAGE. These approaches have been seamlessly integrated with biosensors for biological sample analysis, ushering in a new era of disease detection and monitoring. This amalgamation of ssDNA generation techniques with biosensing applications holds significant promise, not only in improving the speed and accuracy of diagnostic processes but also in fortifying the global response to deadly diseases, thereby underlining the pivotal role of cutting-edge biotechnology in public health and disease prevention.
Collapse
Affiliation(s)
- David Septian Sumanto Marpaung
- Department of Biosystems Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia.
| | - Ayu Oshin Yap Sinaga
- Department of Biology, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Damayanti Damayanti
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Taharuddin Taharuddin
- Department of Chemical Engineering, University of Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No.1, Gedong Meneng, Kec. Rajabasa, Kota Bandar Lampung, Lampung, 35141, Indonesia
| |
Collapse
|
4
|
Xie L, Fan C, Liu Y, Chen Q, Chen X. A fluorescent aptasensor for enzyme-free and sensitive detection of kanamycin based on entropy-driven strand displacement reaction. Anal Chim Acta 2024; 1308:342659. [PMID: 38740459 DOI: 10.1016/j.aca.2024.342659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/25/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Kanamycin is an antibiotic that can easily cause adverse side effects if used improperly. Due to the extremely low concentrations of kanamycin in food, quantitative detection of kanamycin becomes a challenge. As one of the DNA self-assembly strategies, entropy-driven strand displacement reaction (EDSDR) does not require enzymes or hairpins to participate in the reaction, which greatly reduces the instability of detection results. Therefore, it is a very beneficial attempt to construct a highly sensitive and specific fluorescence detection method based on EDSDR that can detect kanamycin easily and quickly while ensuring that the results are effective and stable. RESULTS We created an enzyme-free fluorescent aptamer sensor with high specificity and sensitivity for detecting kanamycin in milk by taking advantage of EDSDR and the high specific binding between the target and its aptamer. The specific binding can result in the release of the promoter chain, which then sets off the pre-planned EDSDR cycle. Fluorescent label modification on DNA combined with the fluorescence quenching-recovery mechanism gives the sensor impressive fluorescence response capabilities. The research results showed that within the concentration range of 0.1 nM-50 nM, there was a good relationship between the fluorescence intensity of the solution and the concentration of kanamycin. Specificity experiments and actual sample detection experiments confirmed that the biosensor could achieve highly sensitive and specific detection of trace amounts of kanamycin in food, with a detection limit of 0.053 nM (S/N = 3). SIGNIFICANCE To our knowledge, this is the first strategy to combine EDSDR with fluorescence to detect kanamycin in food. Accurate results can be obtained in as little as 90 min with no enzymes or hairpins involved in the reaction. Furthermore, our enzyme-free biosensing method is straightforward, highly sensitive, and extremely specific. It has many possible applications, including monitoring antibiotic residues and food safety.
Collapse
Affiliation(s)
- Longjie Xie
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350116, China
| | - Cong Fan
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350116, China
| | - Yang Liu
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350116, China
| | - Qin Chen
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Xian Chen
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350116, China.
| |
Collapse
|
5
|
Wang X, Zhang F, Xia J, Yan Z, Wang Z. A novel self-enhanced ECL-RET aptasensor based on the bimetallic MOFs with homogeneous catalytic sites for kanamycin detection. Anal Chim Acta 2024; 1304:342524. [PMID: 38637033 DOI: 10.1016/j.aca.2024.342524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
The inappropriate use of antibiotics undoubtedly poses a potential threat to public health, creating an increasing need to develop highly sensitive tests. In this study, we designed a new type of porphyrin metal-organic frameworks (Fe TCPP(Zn) MOFs) with homogeneous catalytic sites. The ferric-based metal ligands of Fe TCPP(Zn) MOFs acted as co-reaction accelerators, which effectively improved the conversion efficiency of H2O2 on the surface of MOFs, then increased the concentration of •OH surrounding porphyrin molecules to achieve self-enhanced electrochemiluminescence (ECL). Based on this, an aptasensor for the specific detection of kanamycin (KAN) in food and environmental water samples was constructed in combination with resonance energy transform (RET), in which Fe TCPP(Zn) MOFs were used as luminescence donor and AuNPs were used as acceptor. Under the best conditions, there was a good linear relationship between the ECL intensity and the logarithm of KAN concentration with a detection limit of 0.28 fM in the range of 1.0 × 10-7-1.0 × 10-13 M, demonstrating satisfactory selectivity and stability. At the same time, the complexity of the detection environment was reduced, which further realized the reliable analysis of KAN in milk, honey and pond water. Overall, this innovative self-enhanced ECL strategy provides a novel approach for constructing efficient ECL systems in MOFs, and also extends the application of MOFs to the analysis and detection of trace antibiotics in food and the environment.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Centre for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, Shandong, 266071, China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Centre for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Centre for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, Shandong, 266071, China
| | - Zhiyong Yan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, 100089, China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Centre for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
6
|
Zheng L, Li Q, Deng X, Guo Q, Liu D, Nie G. A novel electrochemiluminescence biosensor based on Ru(bpy) 32+-functionalized MOF composites and cycle amplification technology of DNAzyme walker for ultrasensitive detection of kanamycin. J Colloid Interface Sci 2024; 659:859-867. [PMID: 38218089 DOI: 10.1016/j.jcis.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
An electrochemiluminescence (ECL) sensing platform for ultrasensitive and highly selective detection of kanamycin (KANA) was developed based on the prepared Ru(bpy)32+-functionalized MOF (Ru@MOF) composites by hydrothermal synthesis and Ag+-dependent DNAzyme. In this sensor, the stem-loop DNA (HP) with the ferrocene (Fc) was used as substrate chain to quench the ECL emission generated by the Ru@MOF. Using the specific recognition effect between KANA and the KANA aptamer (Apt) and the DNAzyme dependence on Ag+, the KANA aptamer as the pendant strand of the DNAzyme was assembled on Ru@MOF/GCE with the aptamer. When both Ag+ and KANA were present simultaneously, KANA specifically was binded to KANA aptamer as a pendant chain. Subsequently, Ag+-dependent DNAzyme walker continuously cleaved the HP chain and released the modified end of Fc to restore the ECL signal of Ru@MOF composites, thus achieving selective and ultrasensitive detection of KANA. The constructed KANA biosensor exhibits a wide detection range (30 pM to 300 μM) accompanied by a low detection limit (13.7 pM). The KANA in seawater and milk samples are determined to evalute the practical application results of the sensor. This ECL detection strategy could be used for detecting other similar analytes and has broad potential application in biological analysis.
Collapse
Affiliation(s)
- Lu Zheng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qing Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xukun Deng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qingfu Guo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dandan Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Guangming Nie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
7
|
Wang J, Chen J, Huang W, Li X, Lai G. Exonuclease-catalyzed recycling and annular four-footed DNA walking amplification-assisted "on-off-super on" signal transitions for photoelectrochemical biosensing of kanamycin. Biosens Bioelectron 2024; 246:115894. [PMID: 38061262 DOI: 10.1016/j.bios.2023.115894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Photoelectrochemical (PEC) biosensors have exhibited a promising potential for assays of a large variety of analytes; however, how to realize their low background-based "super on" signal output is still a great challenge. Herein, we report a novel multiple nucleic acid amplification-assisted "on-off-super on" signal transition mechanism for the PEC biosensing of kanamycin antibiotics. The biosensing platform was constructed on a perylene-3,4,9,10-tetracarboxylic dianhydride-based photoelectrode, and its strong photocurrent could be well inhibited by an anchored ferrocene (Fc)-labeled hairpin DNA to produce a low background signal. Two target biorecognition-triggered exonuclease III-catalytic reactions were adopted to produce an annular four-footed DNA walker (AFW) and a methylene blue (MB)-labeled DNA strand. By using their synergistic effect to release Fc quenchers and simultaneously capture MB sensitizers, a "super on" signal output was realized. As a result, a very wide linear range from 10 fg mL-1 to 10 ng mL-1 and an ultra-low detection limit of 7.8 fg mL-1 were obtained. Meanwhile, the aptamer recognition-based homogeneous reaction and AFW-based multiple nucleic acid amplification effectively simplified the assay manipulation and well ensured the repeatability of the method. The satisfactory sample experiment results indicated its good reliability and accuracy for the antibiotic residue analysis application.
Collapse
Affiliation(s)
- Jiahao Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Jing Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
8
|
Cui S, Cong Y, Zhao W, Guo R, Wang X, Lv B, Liu H, Liu Y, Zhang Q. A novel multifunctional magnetically recyclable BiOBr/ZnFe 2O 4-GO S-scheme ternary heterojunction: Photothermal synergistic catalysis under Vis/NIR light and NIR-driven photothermal detection of tetracycline. J Colloid Interface Sci 2024; 654:356-370. [PMID: 37847950 DOI: 10.1016/j.jcis.2023.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The threat of tetracycline (TC) to human health has become a significant issue that cannot be disregarded. Herein, in order to achieve effective degradation and high-sensitivity detection of TC, BiOBr/ZnFe2O4-GO (BOB/ZFO-GO) S-scheme heterojunction nanocomposites (NCs) have been prepared using hydrothermal method. GO with high light absorption capacity accelerated the electron transfer between BiOBr and ZnFe2O4 nanocrystals and extended the light absorption region of BOB/ZFO NCs. The optimal GO addition of BOB/ZFO-GO NCs could degrade TC solution of 10 mg/L in 80 min and have a high reaction rate constant (k) of 0.072 min-1 under visible/NIR light. According to calculations, the non-metal photocatalyst (BOB/ZFO-GO(2)) with the best degradation performance had a photothermal conversion efficiency of up to 23%. Meanwhile, BOB/ZFO-GO NCs could be recycled by magnetic field. The excellent photocatalytic and photothermal performance could be maintained even after several cycles. In addition, a photothermal detection sensor based on a photothermal material/specific recognition element/tetracycline sandwich-type structure was constructed for the trace detection of TC concentration with a detection limit as low as 10-4 ng/mL. This research provides a unique idea for the multi-functionalization of photocatalysts and has a wide range of potential applications for the identification and treatment of organic wastewater.
Collapse
Affiliation(s)
- Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yuan Cong
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Xiaohan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Bohui Lv
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Hongbo Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| |
Collapse
|
9
|
Cheng JH, Zhang X, Ma J, Sun DW. Fluorescent polythymidine-templated copper nanoclusters aptasensor for sensitive detection of tropomyosin in processed shrimp products. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123271. [PMID: 37714106 DOI: 10.1016/j.saa.2023.123271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023]
Abstract
Tropomyosin (TM) is the main allergen in shellfish. Developing a novel, simple and accurate method to track and detect TM in food products is necessary. In this work, a label-free fluorescent aptasensor based on polythymidine (poly(T))-templated copper nanoclusters (CuNCs) was designed for sensitive detection of TM in processed shrimp products. Magnetic beads (MBs), aptamer and cDNA were used to construct an MBs-aptamer@cDNA complex as a detection probe, and with the presence of TM, the poly(T)-templated CuNCs attached at the end of the cDNA as the fluorescent signal was released from the complex to turn on the fluorescence. Under optimal conditions, the poly(T)-templated CuNCs aptasensor achieved a linear range from 0.1 to 50 μg/mL (R2 = 0.9980), a low limit of detection of 0.0489 μg/mL and an excellent recovery percentage of 105.29%-108.91% in the complex food matrix, providing a new approach for food safety assurance.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Xinxue Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
10
|
Liang P, Huang W, Li C, Li X, Lai G. Dual cascade DNA walking-induced "super on" photocurrent response for constructing a novel antibiotic biosensing method. Anal Chim Acta 2023; 1264:341240. [PMID: 37230718 DOI: 10.1016/j.aca.2023.341240] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
The construction of effective methods for the convenient testing of antibiotic residues in real samples has attracted considerable interest. Herein, we designed a dual cascade DNA walking amplification strategy and combined it with the controllable photocurrent regulation of a photoelectrode to develop a novel photoelectrochemical (PEC) biosensing method for antibiotic detection. The photoelectrode was prepared through the surface modification of a glassy carbon electrode with the TiO2/CdS QDs nanocomposite synthesized by an in situ hydrothermal deposition method. The strong anodic PEC response of the nanocomposite could be well inhibited by the introduction of a silver nanoclusters (Ag NCs)-labeled DNA hairpin onto its surface. Upon the target biorecognition reaction, an Mg2+-dependent DNAzyme (MNAzyme)-driven DNA walking was triggered to release another MNAzyme strand-linked streptavidin (SA) complex. As this SA complex could serve as a four-legged DNA walker, its cascade walking on the electrode surface not only released Ag NCs but also caused the linking of Rhodamine 123 with the electrode to realize the "super on" photocurrent output. By using kanamycin as the model analyte, this method showed a very wide linear range from 10 fg mL-1 to 1 ng mL-1 and a very low detection limit of 0.53 fg mL-1. Meanwhile, the simple photoelectrode preparation and the aptamer recognition-based autonomous DNA walking resulted in the convenient manipulation and excellent repeatability. These unique performances determine the great potential of the proposed method for practical applications.
Collapse
Affiliation(s)
- Pan Liang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Can Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
11
|
Cui W, Liu J, Zhao W, Zhang J, Wang Y, Li Q, Wang R, Qiao M, Xu S. An enzyme-free and label-free fluorescent aptasensor for sensitive detection of kanamycin in milk samples based on hybridization chain reaction. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
Chen J, Shi G, Yan C. Portable biosensor for on-site detection of kanamycin in water samples based on CRISPR-Cas12a and an off-the-shelf glucometer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162279. [PMID: 36801336 DOI: 10.1016/j.scitotenv.2023.162279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
On-site and cost-effective monitoring of antibiotic residue in water samples using a ubiquitous device that is readily available to the general public is a big challenge. Herein, we developed a portable biosensor for kanamycin (KAN) detection based on a glucometer and CRISPR-Cas12a. The aptamer-KAN interactions liberate the trigger C strand, which can initiate the hairpin assembly to produce numerous double-stranded DNA. After recognition by CRISPR-Cas12a, Cas12a can cleave the magnetic bead and invertase-modified single-stranded DNA. After magnetic separation, the invertase can convert sucrose into glucose, which can be quantified by a glucometer. The linear range of the glucometer biosensor is from 1 pM to 100 nM and the detection limit is 1 pM. The biosensor also exhibited high selectivity and the nontarget antibiotics had no significant interference with KAN detection. The sensing system is robust and can work in complex samples with excellent accuracy and reliability. The recovery values were in the range of 89-107.2 % for water samples and 86-106.5 % for milk samples. The relative standard deviation (RSD) was below 5 %. With the advantages of simple operation, low cost, and easy accessibility to the public, this portable pocket-sized sensor can realize the on-site detection of antibiotic residue in resource-limited settings.
Collapse
Affiliation(s)
- Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chong Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
13
|
Wu Y, Feng J, Hu G, Zhang E, Yu HH. Colorimetric Sensors for Chemical and Biological Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052749. [PMID: 36904948 PMCID: PMC10007638 DOI: 10.3390/s23052749] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/12/2023]
Abstract
Colorimetric sensors have been widely used to detect numerous analytes due to their cost-effectiveness, high sensitivity and specificity, and clear visibility, even with the naked eye. In recent years, the emergence of advanced nanomaterials has greatly improved the development of colorimetric sensors. This review focuses on the recent (from the years 2015 to 2022) advances in the design, fabrication, and applications of colorimetric sensors. First, the classification and sensing mechanisms of colorimetric sensors are briefly described, and the design of colorimetric sensors based on several typical nanomaterials, including graphene and its derivatives, metal and metal oxide nanoparticles, DNA nanomaterials, quantum dots, and some other materials are discussed. Then the applications, especially for the detection of metallic and non-metallic ions, proteins, small molecules, gas, virus and bacteria, and DNA/RNA are summarized. Finally, the remaining challenges and future trends in the development of colorimetric sensors are also discussed.
Collapse
Affiliation(s)
- Yu Wu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Feng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - En Zhang
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Huan-Huan Yu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Ashley J, Potts IG, Olorunniji FJ. Applications of Terminal Deoxynucleotidyl Transferase Enzyme in Biotechnology. Chembiochem 2023; 24:e202200510. [PMID: 36342345 DOI: 10.1002/cbic.202200510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Indexed: 11/09/2022]
Abstract
The use of polymerase enzymes in biotechnology has allowed us to gain unprecedented control over the manipulation of DNA, opening up new and exciting applications in areas such as biosensing, polynucleotide synthesis, and DNA storage, aptamer development and DNA-nanotechnology. One of the most intriguing enzymes which has gained prominence in the last decade is terminal deoxynucleotidyl transferase (TdT), which is one of the only polymerase enzymes capable of catalysing the template independent stepwise addition of nucleotides onto an oligonucleotide chain. This unique enzyme has seen a significant increase in a variety of different applications. In this review, we give a comprehensive discussion of the unique properties and applications of TdT as a biotechnology tool, and the application in the enzymatic synthesis of poly/oligonucleotides. Finally, we look at the increasing role of TdT enzyme in biosensing, DNA storage, synthesis of DNA nanostructures and aptamer development, and give a future outlook for this technology.
Collapse
Affiliation(s)
- Jon Ashley
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| | - Indiia G Potts
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| | - Femi J Olorunniji
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| |
Collapse
|
15
|
Zong LP, Chen X, Zhu D, Li XJ, Li F, Cosnier S, Zhang XJ, Marks RS, Shan D. Schiff Base Complexes with Covalently Anchored Luminophores: Self-Enhanced Electrochemiluminescence Detection of Neomycin. ACS Sens 2022; 7:3085-3093. [PMID: 36222744 DOI: 10.1021/acssensors.2c01425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel electrochemiluminescence (ECL) amplification strategy was established aiming to overcome the inherent shortcomings of the current oxygen (O2) coreactant ECL systems. Macrocyclic Schiff base Fe complexes were rationally designed as a novel integrated ECL emitter by iminium linkage between N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and 1,10-phenanthroline-2,9-dicarbaldehyde (PDL) and postmetalation of the macrocyclic Schiff base. Covalently combining luminophore ABEI with a catalytic center endowed the novel ECL emitter with both remarkable redox electrocatalytic properties and significantly enhanced ECL efficiency. The high content of ferrous iron and the dominantly active low-spin Fe state greatly contributed to the inherent catalytic activity for O2 activation. The rational modification of luminophore optimized the spatial distribution and simultaneously shortened the species transport distance of coreactant radicals generated in situ from dissolved O2, resulting in significantly self-enhanced ECL efficiency. Neomycin, which posed a growing threat to aquatic biodiversity and environmental safety, as the model antibiotic was successfully detected with a detection limit of 0.21 pM (S/N = 3), clarifying a promising application prospect of this new luminophore-embedded ECL amplification strategy in biological analysis and environmental monitoring.
Collapse
Affiliation(s)
- Li-Ping Zong
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Xiaozhong Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Dunru Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, P. R. China
| | - Xi-Jie Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Feng Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, GrenobleF-38000, France
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen518060, P. R. China
| | - Robert S Marks
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva84105, Israel
| | - Dan Shan
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| |
Collapse
|
16
|
Hu K, Qin L, Ren X, Guo Z, Wang S, Hu Y. Deoxyribonucleic acid-guided dual-mode electro-chemical/chemiluminescent platform for sensitive and selective examination of Pb2+. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Gao X, Sun Z, Wang X, Zhang W, Xu D, Sun X, Guo Y, Xu S, Li F. Construction of a dual-model aptasensor based on G-quadruplexes generated via rolling circle amplification for visual/sensitive detection of kanamycin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156276. [PMID: 35644384 DOI: 10.1016/j.scitotenv.2022.156276] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
A dual-model colorimetric and electrochemical aptasensor was designed using a large number of G-quadruplexes generated by rolling circle amplification (RCA). Specific binding between target and aptamer during RCA yielded large numbers of G-quadruplexes. A colorimetric sensor was fabricated based on the interaction between the G-quadruplex and hemin, which altered the 3,3',5,5'-Tetramethylbenzidine (TMB)-catalyzed color reaction and facilitated the visual and semi-quantitative detection of kanamycin. An electrochemical sensor was constructed based on the strong interaction between the G-quadruplex and the methylene blue electrical signal molecule. Combining nanocomposites multi-walled carbon nanotubes-chitosan/gold nanoparticles (MWCNTs-CS/AuNPs) and RCA realized double-amplified electrochemical signals. Under optimized conditions, a linear relationship was obtained as the logarithm of different concentrations of kanamycin (KAN). The colorimetric aptasensor had a linear range of 1 × 102 nM to 1 × 103 nM with a detection limit of 1.949 nM. The electrochemical aptasensor had wider a linear range from 1 × 10-3 nM to 2.5 × 103 nM and a lower detection limit of 0.333 pM. The sensor combined the advantages of simple colorimetric visualization with the ultra-precision of electrochemical methods. Aptasensor showed good specificity and prevented interference. Furthermore, the prepared dual-model aptasensor facilitated the practical monitoring of KAN in milk.
Collapse
Affiliation(s)
- Xiaolin Gao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Zhicong Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Xiaoyang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Wanqi Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Deyan Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China.
| |
Collapse
|
18
|
Fan Y, Che S, Zhang L, Zhou C, Fu H, She Y. Highly sensitive visual fluorescence sensor for aminoglycoside antibiotics in food samples based on mercaptosuccinic acid-CdTe quantum dots. Food Chem 2022; 404:134040. [DOI: 10.1016/j.foodchem.2022.134040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022]
|
19
|
Li J, Luo M, Yang H, Ma C, Cai R, Tan W. Novel Dual-Signal Electrochemiluminescence Aptasensor Involving the Resonance Energy Transform System for Kanamycin Detection. Anal Chem 2022; 94:6410-6416. [PMID: 35420408 DOI: 10.1021/acs.analchem.2c01163] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Based on luminol-capped Pt-tipped Au bimetallic nanorods (NRs) (L-Au-Pt NRs) as the anode emitter and SnS2 quantum dots (QDs) hybrid Eu metal organic frameworks (MOFs) (SnS2 QDs@Eu MOFs) as the cathode emitter, a dual-signal electrochemiluminescence (ECL) platform was designed for the ultrasensitive and highly selective detection of kanamycin (KAN). Using a dual-signal output mode, the ratiometric ECL aptasensor largely eliminates false-positives or false-negatives by self-calibration in the KAN assay process. To stimulate the resonance energy transform (RET) system, the KAN aptamer and complementary DNA are introduced for conjugation between the donor and acceptor. With the specific recognition of target KAN by its aptamer, L-Au-Pt NRs-apt partially peels off from the electrode surface. Eventually, the RET system is removed, leading to an increasing cathode signal and a decreasing anode signal. In view of this phenomenon, the ratiometric aptasensor can quantify KAN from 1 pM to 10 nM with a low detection limit of 0.32 pM. This dual-signal ECL aptasensor exhibits great practical potential in environmental monitoring and food safety.
Collapse
Affiliation(s)
- Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Mengyu Luo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Hongfen Yang
- University of Texas at Austin, Austin, Texas 78712, USA
| | - Chao Ma
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Wang X, Xuan T, Huang W, Li X, Lai G. Endonuclease-driven DNA walking for constructing a novel colorimetric and electrochemical dual-mode biosensing method. Anal Chim Acta 2022; 1208:339835. [DOI: 10.1016/j.aca.2022.339835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
|
21
|
Li J, Jiang L, Wang X, Zhu Z, Zhang Q, Liu S, Wang Y, Huang J. Ultrasensitive electrochemical aptasensor based on palindromic sequence mediated bidirectional SDA and a DNAzyme walker for kanamycin detection. NEW J CHEM 2022. [DOI: 10.1039/d2nj01368a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical biosensing platform for kanamycin analysis based on SDA and a DNA walker.
Collapse
Affiliation(s)
- Jingjing Li
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Long Jiang
- Qingdao Spring Water-treatment Co., Ltd, Qingdao 266000, P. R. China
| | - Xu Wang
- Shandong Institute of Metrology and Science, Jinan, 250014, P. R. China
| | - Zhixue Zhu
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Qingxin Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Jiadong Huang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|