1
|
Zhang Q, Wei W, Jin X, Lu J, Chen S, Ogaji OD, Wang S, Du K, Chang Y, Li J. Traditional uses, phytochemistry, pharmacology, quality control and clinical studies of Cimicifugae Rhizoma: a comprehensive review. Chin Med 2024; 19:66. [PMID: 38715120 PMCID: PMC11075223 DOI: 10.1186/s13020-024-00937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Cimicifugae Rhizoma, generally known as "Sheng Ma" in China, has great medicinal and dietary values. Cimicifugae Rhizoma is the dried rhizome of Cimicifuga foetida L., Cimicifuga dahurica (Turcz.) Maxim. and Cimicifuga heracleifolia Kom., which has been used to treat wind-heat headache, tooth pain, aphtha, sore throat, prolapse of anus and uterine prolapse in traditional Chinese medicine. This review systematically presents the traditional uses, phytochemistry, pharmacology, clinical studies, quality control and toxicity of Cimicifugae Rhizoma in order to propose scientific evidence for its rational utilization and product development. Herein, 348 compounds isolated or identified from the herb are summarized in this review, mainly including triterpenoid saponins, phenylpropanoids, chromones, alkaloids, terpenoids and flavonoids. The crude extracts and its constituents had various pharmacological properties such as anti-inflammatory, antitumor, antiviral, antioxidant, neuroprotective, anti-osteoporosis and relieving menopausal symptoms. The recent research progress of Cimicifugae Rhizoma in ethnopharmacology, phytochemistry and pharmacological effects demonstrates the effectiveness of its utilization and supplies valuable guidance for further research. This review will provide a basis for the future development and utilization of Cimicifugae Rhizoma.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Wei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Omachi Daniel Ogaji
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shaoxia Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Liu S, Jin X, Wang R, Meng X, Du K, Li J, Gao X, Chang Y. A metabolomics discrimination-based strategy for screening the antithrombin active markers of perilla seeds: A natural oil crop. Food Chem 2024; 432:137183. [PMID: 37633135 DOI: 10.1016/j.foodchem.2023.137183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Natural crops oil with high nutritional value has gradually attracted attention. Perilla seeds are regarded as a source of functional edible oil in America, Asia and European countries due to its abundant nutrients. In this research, samples were extracted by different polarity solvents and evaluated their thrombin inhibition activities in vitro. Metabolomics combined with chemometrics revealed the antithrombin active markers of perilla seeds. The enzyme kinetics and molecular docking results were useful in clarifying their inhibition of thrombin. The orthogonal experimental design was applied to optimize the extraction process of six antithrombin active markers from perilla seeds. The results showed that rosmarinic acid, luteolin, luteolin-7-O-glucoside, α-linolenic acid, linoleic acid, and oleic acid were screened out as functional and active markers. Besides, perilla seeds as a natural oil crop had the potential of antithrombin. It can also be applied in the food field because of its nutraceutical functions. Metabolomics combined with chemometrics will facilitate the discovery of functional, active markers in perilla seeds, which is conducive to accurate quality control.
Collapse
Affiliation(s)
- Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Wu G, Wei X, Li D, Xiao G, Jia C, Zeng Z, Chen Z. Selection and evaluation of quality markers for the regulation of PXR-CYP3A4/FXR-LXRα by Exocarpium Citri Grandis for the treatment of hyperlipidaemia with dispelling blood stasis and removing phlegm. Biomed Pharmacother 2024; 170:116089. [PMID: 38157640 DOI: 10.1016/j.biopha.2023.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Hyperlipidaemia is described as "excessive phlegm" and "blood stasis" in the classic theory of traditional Chinese medicine. Exocarpium Citri Grandis has the effect of dispelling blood stasis and removing phlegm, which can better meet the treatment needs of this disease. However, there is still a lack of focus and depth in the study of the chemical composition of this medicine, and the correlation between the study of relevant medicinal substances and the efficacy of dispelling stasis and removing phlegm is insufficient. To address this issue, this study was carried out to validate the overall efficacy and identify and determine the chemical composition of Exocarpium Citri Grandis. The regulatory mechanism of the PXR-CYP3A4/FXR-LXRα pathway and its active ingredients were screened, and a pharmacokinetic study of active ingredients was performed. The obtained multidimensional data were statistically analysed and comprehensively evaluated. The quality marker of Exocarpium Citri Grandis in the treatment of hyperlipidaemia based on the PXR-CYP3A4/FXR-LXRα mechanism to exert the efficacy of dispelling blood stasis and removing phlegm was finally determined. Based on the above experiments, we identified 27 compounds from the ethanol extract of Exocarpium Citri Grandis. Among them, naringenin, meranzin hydrate, apigenin, caffeic acid phenethyl ester, anacardiin, hesperidin and naringin can significantly regulate all or part of the targets in the PXR-CYP3A4/FXR-LXRα pathway. It also has suitable content and pharmacokinetic characteristics in vivo. In conclusion, this study established quality markers to characterize the efficacy of Exocarpium Citri Grandis in dispelling blood stasis and removing phlegm, which provides a scientific basis for the targeted evaluation of the hypolipidaemic activity of this medicinal plant.
Collapse
Affiliation(s)
- Guangying Wu
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China
| | - Xingqin Wei
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China
| | - Dongmei Li
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China
| | - Guanlin Xiao
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China
| | - Canchao Jia
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China
| | - Zhihao Zeng
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China
| | - Zhao Chen
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China.
| |
Collapse
|
4
|
Santa K, Watanabe K, Kumazawa Y, Nagaoka I. Phytochemicals and Vitamin D for a Healthy Life and Prevention of Diseases. Int J Mol Sci 2023; 24:12167. [PMID: 37569540 PMCID: PMC10419318 DOI: 10.3390/ijms241512167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
A variety of phytocompounds contained in medical plants have been used as medication, including Kampo (traditional Japanese) medicine. Phytochemicals are one category of the chemical compounds mainly known as antioxidants, and recently, their anti-inflammatory effects in preventing chronic inflammation have received much attention. Here, we present a narrative review of the health-promotion and disease-prevention effects of phytochemicals, including polyphenols, the latter of which are abundant in onions, oranges, tea, soybeans, turmeric, cacao, and grapes, along with the synergetic effects of vitamin D. A phenomenon currently gaining popularity in Japan is finding non-disease conditions, so-called ME-BYO (mibyou) and treating them before they develop into illnesses. In addition to lifestyle-related diseases such as metabolic syndrome and obesity, dementia and frailty, commonly found in the elderly, are included as underlying conditions. These conditions are typically induced by chronic inflammation and might result in multiple organ failure or cancer if left untreated. Maintaining gut microbiota is important for suppressing (recently increasing) intestinal disorders and for upregulating immunity. During the COVID-19 pandemic, the interest in phytochemicals and vitamin D for disease prevention increased, as viral and bacterial infection to the lung causes fatal inflammation, and chronic inflammation induces pulmonary fibrosis. Furthermore, sepsis is a disorder inducing severe organ failure by the infection of microbes, with a high mortality ratio in non-coronary ICUs. However, antimicrobial peptides (AMPs) working using natural immunity suppress sepsis at the early stage. The intake of phytochemicals and vitamin D enhances anti-inflammatory effects, upregulates immunity, and reduces the risk of chronic disorders by means of keeping healthy gut microbiota. Evidence acquired during the COVID-19 pandemic revealed that daily improvement and prevention of underlying conditions, in terms of lifestyle-related diseases, is very important because they increase the risk of infectious diseases. This narrative review discusses the importance of the intake of phytochemicals and vitamin D for a healthy lifestyle and the prevention of ME-BYO, non-disease conditions.
Collapse
Affiliation(s)
- Kazuki Santa
- Department of Biotechnology, Tokyo College of Biotechnology, Ota-ku, Tokyo 114-0032, Japan;
| | - Kenji Watanabe
- Center for Kampo Medicine, Keio University, Tokyo 160-8582, Japan
- Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Yoshio Kumazawa
- Vino Science Japan Inc., Kawasaki 210-0855, Japan
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Isao Nagaoka
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Faculty of Medical Science, Juntendo University, Urayasu 279-0013, Japan
| |
Collapse
|
5
|
Ye T, Zheng Y, Guan Y, Sun Y, Chen C. Rapid determination of chemical components and antioxidant activity of the fruit of Crataegus pinnatifida Bunge by NIRS and chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122215. [PMID: 36508903 DOI: 10.1016/j.saa.2022.122215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE To establish a method for quality evaluation of the fruit of Crataegus pinnatifida Bunge, also known as Shanzha, by near-infrared spectroscopy combined with chemometrics. METHOD Seventy-two batches of Shanzha samples were collected, and the content of total components (flavonoids, phenols and organic acids), monomer components (chlorogenic acid, hyperoside and isoquercitrin), as well as the antioxidant activity of 60% ethanol extract were determined by usual methods. Then, all measured values were correlated with the near infrared spectra of Shanzha, and the partial least squares regression models were established. As to improve the model performance, various methods for spectra pretreatment and wavelength selection were investigated. RESULTS After optimization, the models obtained the coefficients of determination in both calibration and prediction >0.9, and the residual prediction deviations >3, indicating that the models had good prediction abilities. CONCLUSION The present method can serve as an alternative to the methods for comprehensive and rapid quality evaluation of Shanzha.
Collapse
Affiliation(s)
- Tianya Ye
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuhui Zheng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ying Guan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of Digitalization Quality Evaluation of Chinese Materia Medica of SATCM, Guangzhou 510006, PR China; Research Center for Quality Engineering & Technology of Chinese Materia Medica of Guangdong Province, Guangzhou 510006, PR China.
| | - Chao Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of Digitalization Quality Evaluation of Chinese Materia Medica of SATCM, Guangzhou 510006, PR China; Research Center for Quality Engineering & Technology of Chinese Materia Medica of Guangdong Province, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Pu T, Zhao ZN, Yu X. The complete chloroplast genome of Crataegus scabrifolia (Franch.) Rehd (Rosaceae), a medicinal and edible plant in Southwest China. Mitochondrial DNA B Resour 2023; 8:81-85. [PMID: 36643811 PMCID: PMC9833407 DOI: 10.1080/23802359.2022.2160668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Crataegus scabrifolia (Franch.) Rehd is a medicinal and edible plant in Southwest China. The chloroplast genome of C. scabrifolia was analyzed by high-throughput sequencing technology, and its genetic relationship to related species was discussed. The chloroplast genome is 159,637 bp long, with two inverted repeat (IR) regions (26,384 bp each) that separate a large single-copy (LSC) region (87,730 bp) and a small single-copy (SSC) region (19,139 bp). A total of 127 genes were annotated, including 83 protein-coding genes, 8 rRNA genes, and 36 tRNA genes. The phylogenetic tree shows that C. hupehensis is closely related to C. scabrifolia with strong bootstrap support.
Collapse
Affiliation(s)
- Tian Pu
- School of Forestry, Southwest Forestry University, Kunming, China
| | - Zhen-Ning Zhao
- School of Forestry, Southwest Forestry University, Kunming, China
| | - Xiao Yu
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China,CONTACT Xiao Yu School of Landscape Architecture, Southwest Forestry University, 300 Bailong temple, Qingyun Street, Kunming, 650224China
| |
Collapse
|
7
|
Hu Z, Ma Y, Liu J, Fan Y, Zheng A, Gao P, Wang L, Liu D. Assessment of the Bioaccessibility of Carotenoids in Goji Berry ( Lycium barbarum L.) in Three Forms: In Vitro Digestion Model and Metabolomics Approach. Foods 2022; 11:foods11223731. [PMID: 36429323 PMCID: PMC9689010 DOI: 10.3390/foods11223731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Goji berry (Lycium barbarum L., LBL) is a good source of carotenoids, while the bioaccessibility of various types of LBL carotenoids has not been explored. In the study, eight carotenoids, three carotenoid esters and two carotenoid glycosylated derivatives were identified by a non−targeted metabolomics approach. The dried LBL (DRI), LBL in water (WAT), and LBL in “Baijiu” (WIN) were used to recreate the three regularly chosen types of utilization, and the in vitro digestion model showed that the bioaccessibility of the carotenoids increased significantly from the oral to the gastric and intestinal phase (p < 0.05). The bioaccessibility of LBL carotenoids was the most elevated for DRI (at 28.2%), followed by WIN and WAT (at 24.9% and 20.3%, respectively). Among the three carotenoids, zeaxanthin dipalmitate showed the highest bioaccessibility (51.8−57.1%), followed by β−carotene (51.1−55.6%) and zeaxanthin (45.2−56.3%). However, the zeaxanthin from DRI exhibited significantly higher bioaccessibility (up to 58.3%) than WAT and WIN in both the gastric and intestinal phases (p < 0.05). Results of antioxidant activity tests based on DPPH, FRAP, and ABTS showed that the addition of lipids improved the bioaccessibility of the carotenoids. (p < 0.05).
Collapse
Affiliation(s)
- Ziying Hu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- National Key Laboratory for Market Supervision of Quality and Safety of Goji Berry & Wine, Yinchuan 750021, China
| | - Yanan Ma
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Jun Liu
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Yijun Fan
- School of Statistics, University of International Business and Economics, Beijing 100029, China
| | - Anran Zheng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Pengyan Gao
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Liang Wang
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Dunhua Liu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- National Key Laboratory for Market Supervision of Quality and Safety of Goji Berry & Wine, Yinchuan 750021, China
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Correspondence: ; Tel.: +86-13995288707
| |
Collapse
|
8
|
Innovative Application of Metabolomics on Bioactive Ingredients of Foods. Foods 2022; 11:foods11192974. [PMID: 36230049 PMCID: PMC9562173 DOI: 10.3390/foods11192974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolomics, as a new omics technology, has been widely accepted by researchers and has shown great potential in the field of nutrition and health in recent years. This review briefly introduces the process of metabolomics analysis, including sample preparation and extraction, derivatization, separation and detection, and data processing. This paper focuses on the application of metabolomics in food-derived bioactive ingredients. For example, metabolomics techniques are used to analyze metabolites in food to find bioactive substances or new metabolites in food materials. Moreover, bioactive substances have been tested in vitro and in vivo, as well as in humans, to investigate the changes of metabolites and the underlying metabolic pathways, among which metabolomics is used to find potential biomarkers and targets. Metabolomics provides a new approach for the prevention and regulation of chronic diseases and the study of the underlying mechanisms. It also provides strong support for the development of functional food or drugs. Although metabolomics has some limitations such as low sensitivity, poor repeatability, and limited detection range, it is developing rapidly in general, and also in the field of nutrition and health. At the end of this paper, we put forward our own insights on the development prospects of metabolomics in the application of bioactive ingredients in food.
Collapse
|
9
|
Wu X, Luo D, Zhang Y, Yang C, Crabbe MJC, Zhang T, Li G. Comparative Genomic and Phylogenetic Analysis of Chloroplast Genomes of Hawthorn (Crataegus spp.) in Southwest China. Front Genet 2022; 13:900357. [PMID: 35860470 PMCID: PMC9289535 DOI: 10.3389/fgene.2022.900357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
The hawthorns (Crataegus spp.) are widely distributed and famous for their edible and medicinal values. There are ∼18 species and seven varieties of hawthorn in China distributed throughout the country. We now report the chloroplast genome sequences from C. scabrifolia, C. chungtienensis and C. oresbia, from the southwest of China and compare them with the previously released six species in Crataegus and four species in Rosaceae. The chloroplast genome structure of Crataegus is typical and can be divided into four parts. The genome sizes are between 159,654 and 159,898bp. The three newly sequenced chloroplast genomes encode 132 genes, including 85 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Comparative analysis of the chloroplast genomes revealed six divergent hotspot regions, including ndhA, rps16-trnQ-UUG, ndhF-rpl32, rps16-psbK, trnR-UCU-atpA and rpl32-trnL-UAG. According to the correlation and co-occurrence analysis of repeats with indels and SNPs, the relationship between them cannot be ignored. The phylogenetic tree constructed based on the complete chloroplast genome and intergenic region sequences indicated that C. scabrifolia has a different origin from C. chungtienensis and C. oresbia. We support the placement of C. hupehensis, C. cuneata, C. scabrifolia in C. subg. Crataegus and C. kansuensis, C. oresbia, C. kansuensis in C. subg. Sanguineae. In addition, based on the morphology, geographic distribution and phylogenetic relationships of C. chungtienensis and C. oresbia, we speculate that these two species may be the same species. In conclusion, this study has enriched the chloroplast genome resources of Crataegus and provided valuable information for the phylogeny and species identification of this genus.
Collapse
Affiliation(s)
- Xien Wu
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Dengli Luo
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Yingmin Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Congwei Yang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - M. James C. Crabbe
- Wolfson College, Oxford University, Oxford, United Kingdom
- Institute of Biomedical and Environmental Science and Technology, School of Life Sciences, University of Bedfordshire, Luton, United Kingdom
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Ticao Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Ticao Zhang, ; Guodong Li,
| | - Guodong Li
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Ticao Zhang, ; Guodong Li,
| |
Collapse
|