1
|
Wang B, Jia Y, Li Y, Jiao X, He Y, Wen L, Wang Z. Comprehensive impact of pre-treatment methods on white radish quality, water migration, and microstructure. Food Chem X 2024; 24:101991. [PMID: 39634521 PMCID: PMC11615932 DOI: 10.1016/j.fochx.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
The preprocessing stage is crucial in vegetable processing, significantly influencing the final product's quality. This study investigates the effects of various pre-pre-treatment methods, including cutting, blanching, osmotic, and ultrasound-assisted osmotic treatment, on the quality characteristics, water migration, and microstructure of white radish. The results showed that osmosis and ultrasound-assisted osmosis has the least effect on the total color difference (ΔE) and the greatest water loss (WL) (p < 0.05); blanching has the least effect on the hardness and eutectic points (p < 0.05); and the blanching-ultrasound-assisted osmosis has the greatest solid gain (p < 0.05). The increase of WL led to a decrease in hardness (-0.82). By analyzing the quality characteristics of different pre-treatment methods, contributing to the development of suitable pre-treatment methods for different products and optimization pre-treatments according to requirements. The mechanism of quality characteristics of pre-treatments on products is the future research direction.
Collapse
Affiliation(s)
- Bixiang Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yuanlong Jia
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yue Li
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuan Jiao
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yang He
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Liankui Wen
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Zhitong Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Nian X, Wang J, Wang M, Wang Y, Liu S, Cao Y. Influence of ultrasonic pretreatment on the quality attributes and pectin structure of chili peppers (Capsicum spp.). ULTRASONICS SONOCHEMISTRY 2024; 110:107041. [PMID: 39208593 PMCID: PMC11399734 DOI: 10.1016/j.ultsonch.2024.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chili peppers (Capsicum spp.) exhibit a diverse range of quality characteristics and pectin structures, which are influenced by various factors. This study aimed to investigate the effects of ultrasound (US), ultrasonic combined hot blanching (US-BL), and ultrasonic combined freezing and thawing (US-FT) on the quality characteristics and pectin structure of vacuum pulsation-dried (VP) chili peppers. The results indicated that US-BL samples exhibited the highest L* and a* values, retained maximum capsorubin, and showed an increase in vitamin C, total phenols, and rehydration by 14.28 %, 40.87 %, and 8.66 %, respectively. In contrast, the US-FT samples exhibited the highest capsaicin and dihydrocapsaicin content, which increased by 54.97 % and 64.04 %, respectively. Pretreatment resulted in higher pectin linearity, a lower degree of branching, and a reduced molecular weight in the US-BL sample. Atomic force microscopy confirmed the degrading effect of pretreatment on the pectin structure. Pearson's correlation analysis revealed that capsorubin, capsaicin analogs, vitamin C, and total phenols were highly correlated with pectin linearity and molecular weight. This study found that US-BL was the most effective pretreatment method for improving the quality of pulsatile chili peppers and provides theoretical support for the application of VP chili peppers.
Collapse
Affiliation(s)
- Xin Nian
- School of Food Science and Technology, Ningxia University, Yinchuan, Ningxia 750000, China
| | - Jitao Wang
- School of Civil and Hydrulic Engineering, Ningxia University, Yinchuan, Ningxia 750000, China; Horticulture Technology Extension Center of Ningxia, Ningxia 750000, China
| | - Mengze Wang
- School of Food Science and Technology, Ningxia University, Yinchuan, Ningxia 750000, China.
| | - Yaqi Wang
- School of Food Science and Technology, Ningxia University, Yinchuan, Ningxia 750000, China
| | - Shiwei Liu
- Horticulture Technology Extension Center of Ningxia, Ningxia 750000, China
| | - Yudan Cao
- School of Food Science and Technology, Ningxia University, Yinchuan, Ningxia 750000, China
| |
Collapse
|
3
|
Zhang X, Wang Y, Nian R, Li Q, Zhu D, Cao X. Effects of ultrasonic pretreatment on drying characteristics and water migration characteristics of freeze-dried strawberry. Food Chem 2024; 450:139287. [PMID: 38640541 DOI: 10.1016/j.foodchem.2024.139287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024]
Abstract
The effects of ultrasonic pretreatment on the drying characteristics and microstructure of strawberry slices were investigated. The rehydration characteristics of freeze-dried products, which were pre-frozen at -20 °C and - 80 °C were explored, with a focus on water mobility and distribution. The ultrasonic pretreatment significantly increased the water mobility of the strawberry slices, resulting in a reduction in their water content. However, the application of ultrasound significantly decreased the rehydration speed, indicating a lower moisture absorption capacity in the pretreated sample. The micrographs revealed that the structure of the tissue was more uniform after ultrasonic treatment, and water loss was accelerated. In addition, the contact angle measurements showed that the samples were more hydrophobic after ultrasonic treatment, and the eutectic temperature and fold point of the samples increased. Therefore, this study found that ultrasonic-assisted freeze vacuum drying technology effectively reduces hygroscopicity, improves product storage, and represents a potential method for dried production.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Ya Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Rui Nian
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Qianyu Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xuehui Cao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
4
|
Llavata B, Mello RE, Quiles A, Correa JLG, Cárcel JA. Effect of freeze-thaw and PEF pretreatments on the kinetics and microstructure of convective and ultrasound-assisted drying of orange peel. NPJ Sci Food 2024; 8:56. [PMID: 39181898 PMCID: PMC11344832 DOI: 10.1038/s41538-024-00301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
The main waste generated by juice industry comprises orange peels, which have a great upcycling potential once stabilized. Drying is the most used method for this purpose, but the high energy consumption prompts interest in its intensification. This study assessed the influence of freeze-thaw and pulsed electric field (PEF) pretreatments in conventional and airborne ultrasound-assisted drying (50 °C) of orange peels. None of these pretreatments alone got to reduce processing times significantly, but combined with ultrasound-assisted drying produced a significant shortening of the process. This was particularly important in the lower intensity PEF pretreatment tested (0.33 kJ/kg), indicating the existence of optimum conditions to carry out the pretreatments. Microstructure analysis revealed that the application of ultrasound during drying led to better preservation of the sample structure. Thus, the integration of pretreatment techniques to ultrasound-assisted drying may not only shorten the process but also help to preserve the original structure.
Collapse
Affiliation(s)
- Beatriz Llavata
- Research Group of Analysis and Simulation of Agro-Food Processes (ASPA), Food Engineering Research Institute-FoodUPV, Universitat Politècnica de València, Valencia, Spain
| | - Ronaldo E Mello
- Food Science Department, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Amparo Quiles
- Research Group of Food Microstructure and Chemistry (MIQUALI), Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Valencia, Spain
| | - Jefferson L G Correa
- Food Science Department, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Juan A Cárcel
- Research Group of Analysis and Simulation of Agro-Food Processes (ASPA), Food Engineering Research Institute-FoodUPV, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
5
|
Jiang L, Zhang Z, Qiu C, Wen J. A Review of Whey Protein-Based Bioactive Delivery Systems: Design, Fabrication, and Application. Foods 2024; 13:2453. [PMID: 39123644 PMCID: PMC11312236 DOI: 10.3390/foods13152453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The efficacy of many edible bioactive agents is limited by their low water dispersibility and chemical instability in foods, as well as by their poor bioaccessibility, low absorption, and metabolism within the human gastrointestinal tract. Whey proteins are amphiphilic molecules that can be used to construct a variety of edible carrier systems that can improve the performance of bioactive ingredients. These carrier systems are being used by the food and biomedical industries to encapsulate, protect, and deliver a variety of bioactive agents. In this article, we begin by providing an overview of the molecular and functional characteristics of whey proteins, and then discuss their interactions with various kinds of bioactive agents. The ability of whey proteins to be used as building blocks to assemble different kinds of carrier systems is then discussed, including nanoparticles, hydrogels, oleogels, bigels, nanofibers, nanotubes, and nanoemulsions. Moreover, applications of these carrier systems are highlighted. Different kinds of whey protein-based carriers can be used to encapsulate, protect, and deliver bioactive agents. Each kind of carrier has its own characteristics, which make them suitable for different application needs in foods and other products. Previous studies suggest that whey protein-based carriers are particularly suitable for protecting chemically labile bioactive agents and for prolonging their release profiles. In the future, it is likely that the applications of whey protein-based carriers in the food and pharmaceutical fields will expand.
Collapse
Affiliation(s)
- Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| |
Collapse
|
6
|
Xu H, Sutar PP, Ren W, Wu M. Revealing the mechanism of post-harvest processing on rose quality based on dynamic changes in water content, enzyme activity, volatile and non-volatile metabolites. Food Chem 2024; 448:139202. [PMID: 38579556 DOI: 10.1016/j.foodchem.2024.139202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Existing studies on post-harvest processing of edible roses have mainly focused on processing techniques and physicochemical properties of the final dried products, with limited studies on how changes in metabolites during processing affect the quality of these products. This study investigated changes in water content and status, enzyme activity, phenolic compounds, and volatile and non-volatile compounds during processing and revealed the mechanisms by which post-harvest processing (drying without blanching (WBD) and drying with blanching (BD)) affects the quality of dried roses by establishing their correlations. Results showed that the blanching reduced the relative content of free water and water activity, thus reducing the subsequent drying time and enzyme activity. The BD method caused higher levels of phenolic compounds than the WBD method in terms of gallic acid, ellagic acid, epicatechin, and quercetin. The OPLS-DA analysis identified 6 differential volatiles out of 72 detected volatiles, contributing to the unique aroma of dried roses by activating olfactory receptors through hydrogen bonding and hydrophobic interactions. 58 differential metabolites were screened from 964 non-volatile metabolites. KEGG pathway analysis revealed that the changes in volatile and non-volatile metabolites induced by different processing methods were due to the effect of blanching on glutathione and fatty acid metabolism. These findings provide a comprehensive understanding of how post-harvest processing affects the quality of dried roses.
Collapse
Affiliation(s)
- Huihuang Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Weike Ren
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
7
|
Li X, Pei Z, Meng L, Jiang Y, Liu H, Pan Y. Investigation on epidermal structure and water migration of postharvest passion fruit during storage. J Food Sci 2023; 88:4046-4058. [PMID: 37602822 DOI: 10.1111/1750-3841.16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/15/2023] [Accepted: 07/22/2023] [Indexed: 08/22/2023]
Abstract
Passion fruit is a tropical fruit that has plenty of fruit fragrance. During storage, passion fruit quickly loses water, resulting in its poor quality. Researching the mechanism of water loss contributes to prolonging the storage time. In this study, passion fruit was stored at 7 or 25°C to analyze the relationship between epidermal structure and water migration. The epidermal wax and structure of passion fruit began to show signs of destruction from the middle stage (day 8) during storage. The mobility of free water was decreased at 7°C and increased at 25°C in passion fruit from the middle stage of storage (day 8). The migration rate of free water in passion fruit stored at 7°C was lower than that at 25°C. The mobility of immobile water was weaker in the late storage period but that of bound water changed barely. These results showed that the migration of free, immobile, and bound water had a connection with the epidermal structure. Incomplete epidermal structure promoted water loss in passion fruit, with the most pronounced loss of free water. PRACTICAL APPLICATION: Maintaining the epidermal structure of passion fruit well can decrease the water loss ratio. Passion fruit stored at low temperatures could better sustain the integrity of epidermal wax and structure; it was able to change the water migration rate in the epidermis of passion fruit, which was conducive to maintaining the water content.
Collapse
Affiliation(s)
- Xingyan Li
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Zhisheng Pei
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Yue Jiang
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Hanmei Liu
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Yonggui Pan
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| |
Collapse
|
8
|
Chao E, Fan L. Changes in polyphenolic compounds and antioxidant activities of seed-used pumpkin during hydrothermal treatment. Food Chem 2023; 414:135646. [PMID: 36841106 DOI: 10.1016/j.foodchem.2023.135646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
An environmentally friendly physical processing method, hydrothermal treatment (HT), was used to increase the content of specific compounds and antioxidant activities of seed-used pumpkin byproducts. The influence of hydrothermal temperature (80 °C-160 °C) and time (30-150 min) on changes in polyphenols and antioxidation was evaluated. The results revealed that the maximum free polyphenol content (140 °C for 120 min) was 3.96-fold higher than the untreated samples. Elevated temperature and long duration changed phenolic acid contents. For example, p-coumaric acid, rutin and chlorogenic acid exhibited a decreasing trend, and p-hydroxybenzoic acid, quercetin and cinnamic acid showed an increasing trend. Compared to controls, HT was significantly associated with increased antioxidant activities. To comprehensively reveal the influence of hydrothermal temperature and time on changes in polyphenolic content, back propagation artificial neural network (BP-ANN) models with accurate prediction ability were developed, and the results exhibited well-fitted and strong approximation ability (R2 > 0.95 and RMSE < 2 %) and stability.
Collapse
Affiliation(s)
- Erpeng Chao
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Fernandes FAN, Rodrigues S. Ultrasound applications in drying of fruits from a sustainable development goals perspective. ULTRASONICS SONOCHEMISTRY 2023; 96:106430. [PMID: 37167783 DOI: 10.1016/j.ultsonch.2023.106430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
This review focuses on the many contributions of ultrasound technologies for fruit drying toward the United Nations Sustainable Development Goals (SDG). Along this review, several aspects attained from the application of ultrasound technologies are correlated with the SDGs. The main ultrasonic technologies applied for fruit drying, such as ultrasonic bath, probe ultrasound, air-borne ultrasound air-drying, and ultrasound-assisted contact air-drying, are presented. An in-depth discussion on ultrasound contributions, its advantages, disadvantages, and limitations are made. The effects of ultrasound on water diffusivity in several fruits are presented by correlating this effect with drying time and cost of energy. Ultrasound-assisted fruit drying, like other food processing technologies, directly impacts Zero Hunger, but ultrasound technologies contribute to much more than delivering long shelf-life food. This technology can be used to produce healthy foods and provide well-being, which will be discussed by correlating the effects of ultrasound-assisted air-drying with the concentration of nutritional compounds. Ultrasound-assisted fruit drying reduces wastewater toxicity and energy consumption and improves productivity, potentially improving workplaces and salaries. A walk through the technology is presented from Zero Hunger to No Poverty.
Collapse
Affiliation(s)
- Fabiano A N Fernandes
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici, Bloco 709, 60440-900 Fortaleza, CE, Brazil.
| | - Sueli Rodrigues
- Universidade Federal do Ceará, Departamento de Engenharia de Alimentos, Campus do Pici, Bloco 858, 60440-900 Fortaleza, CE, Brazil
| |
Collapse
|
10
|
Hussain A, Kausar T, Sehar S, Sarwar A, Ashraf AH, Jamil MA, Noreen S, Rafique A, Iftikhar K, Aslam J, Quddoos MY, Majeed MA, Zerlasht M. Utilization of pumpkin, pumpkin powders, extracts, isolates, purified bioactives and pumpkin based functional food products: A key strategy to improve health in current post COVID 19 period: An updated review. APPLIED FOOD RESEARCH 2022; 2:100241. [PMID: 38620808 PMCID: PMC9675195 DOI: 10.1016/j.afres.2022.100241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/07/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023]
Abstract
Progression of today's world has been given setback due to the adversity of a novel, viral and deadly outbreak COVID 19, which raised the concerns of the scientists, researchers and health related officials about the inherent and adaptive immune system of the living body and its relation with healthy diet balanced with pharma foods. Choice of right food can help to build and boost adaptive immunity and pumpkin due to excellent profile of functional and nutraceutical constituents must be the part of both infected and non-infected person's daily diet. Vitamins, minerals, phenolic acids, essential oils, peptides, carotenoids and polysaccharides present in pumpkin could accommodate the prevailing deficiencies in the body to fought against the pathogens. Pumpkins are well equipped with nutraceuticals and functional ingredients therefore, consumption and processing of this remarkable fruit must be encouraged as pharma food due to its antihyperlipidemic, antiviral, anti-inflammatory, antihyperglycemic, immunomodulatory, antihypertensive, antimicrobial and antioxidant potential, and these pharmacological properties of pumpkin are directly or indirectly related to the COVID 19 outbreak. Utilization of pumpkin has a domain in the form of powders, extracts, isolates, and pumpkin incorporated food products. A wide range of healthy, nutritious and functional food products has been developed from pumpkin, which includes juice, soup, porridge, chips, biscuits, bread, cake, bar and noodles. In recent times some innovative and novel technologies have been applied to process and preserve pumpkin for its enhanced shelf life and bioaccessibility of nutrients. Need of healthy eating in current post COVID 19 period is very crucial for healthy population, and medicinal foods like pumpkin, and bioactive compounds present in this functional food could play a vital role in developing a healthy community around the globe.
Collapse
Affiliation(s)
- Ashiq Hussain
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Tusneem Kausar
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Sawera Sehar
- Department of Zoology, University of Sargodha, Pakistan
| | - Ayesha Sarwar
- Institute of Chemistry, University of Sargodha, Pakistan
| | | | | | - Saima Noreen
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Ayesha Rafique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Khansa Iftikhar
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Jawed Aslam
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | | | - Muhammad Abid Majeed
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Mehwish Zerlasht
- Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
11
|
Study on vacuum drying kinetics and processing of the Lonicera japonica Thunb. aqueous extracts. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|