1
|
Jasińska JM, Michalska K, Szuwarzyński M, Mazur T, Cholewa-Wójcik A, Kopeć M, Juszczak L, Kamińska I, Nowak N, Jamróz E. Phytolacca americana extract as a quality-enhancing factor for biodegradable double-layered films based on furcellaran and gelatin - Property assessment. Int J Biol Macromol 2024; 279:135155. [PMID: 39214197 DOI: 10.1016/j.ijbiomac.2024.135155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
For the first time, novel active double-layered films based on furcellaran (FUR) and gelatin (GEL) with the addition of Phytolacca americana (PA) extract were obtained. The 1st layer consisted of FUR and GEL, while the aqueous extract of P. americana berries was added in three different concentrations to the 2nd FUR-based layer. The films were characterised by good mechanical (TS range of 0.0011-0.0013 MPa, EAB range between 30.38 %-33.51 %) and water properties (WVTR range of 574.74-588.49 g/m2xd). Structural analysis (SEM and AFM) confirmed good film structure: regular, without cracks or air bubbles. The films showed antioxidant activity tested via the Folin-Ciocâlteu method (4.77-20.70 mg GAExg-1), FRAP assay (0.18-3.40 mM TExg-1) and CUPRAC assay (48.63-53.99 mM TExg-1). The film with the highest PA concentration (6 %) demonstrated the ability to neutralise free radicals, DPPH• and ABTS2+•, at the levels of 1.97 % and 17.34 %, respectively. The ecotoxicity test performed on Lepidium sativum seeds confirmed the lack of ecotoxic film aspects. The biodegradation test indicated that the films are biodegradable. The obtained films can be a good alternative to plastic packaging films (used in the food packaging industry), which are currently a global problem related to the development of post-consumer plastics.
Collapse
Affiliation(s)
- Joanna Maria Jasińska
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland.
| | - Klaudia Michalska
- Department of Phytochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków PL-31-343, Poland
| | - Michał Szuwarzyński
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Tomasz Mazur
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Agnieszka Cholewa-Wójcik
- Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Kraków, Poland
| | - Michał Kopeć
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Kraków, al. Mickiewicza 21, PL-31-120 Kraków, Poland
| | - Lesław Juszczak
- Department of Dietetics and Food Studies, Faculty of Science & Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, PL-42-200 Czestochowa, Poland; Department of Food Analysis and Evaluation of Food Quality, University of Agriculture in Krakow, Balicka 122, PL-30-149 Kraków, Poland
| | - Iwona Kamińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, PL-31-120 Kraków, Poland
| | - Nikola Nowak
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland; Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Kraków, Poland
| |
Collapse
|
2
|
Bhat ZF, Bhat HF, Manzoor M, Abdi G, Aadil RM, Hassoun A, Aït-Kaddour A. Enhancing the lipid stability of foods of animal origin using edible packaging systems. Food Chem X 2024; 21:101185. [PMID: 38384687 PMCID: PMC10879673 DOI: 10.1016/j.fochx.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Foods of animal origin are prone to oxidation due to their high lipid content and fatty acid profile. Edible packaging systems have evolved as a new way of preserving animal-derived foods and have been reported to retard lipid oxidation using antioxidant molecules from side-streams, waste, and agricultural by-products. Studies have evaluated previously undocumented film materials and novel bioactive molecules as additives for edible packaging for animal-derived foods. However, none of the studies is specifically focused on evaluating the packaging systems available for enhancing lipid stability. This paper thoroughly examines and discusses the application of edible packaging containing novel antioxidant molecules for controlling the lipid oxidation of animal-derived foods. The paper analyses and interprets the main findings of the recently published research papers. The materials and active principles used for enhancing lipid stability have been summarised and the underlying mechanisms discussed in detail. Studies should aim at using cheaper and readily available natural ingredients in future for the production of affordable packaging systems.
Collapse
Affiliation(s)
| | - Hina F. Bhat
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | - Mehnaza Manzoor
- Fermentation and Microbial Biotechnology Division, CSIR-IIIM, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, 75169, Iran
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdo Hassoun
- Univ. Littoral Côte d’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | | |
Collapse
|
3
|
Stępień A, Tkaczewska J, Nowak N, Grzebieniarz W, Goik U, Żmudziński D, Jamróz E. Sugar-Free, Vegan, Furcellaran Gummy Jellies with Plant-Based Triple-Layer Films. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6443. [PMID: 37834583 PMCID: PMC10573701 DOI: 10.3390/ma16196443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Increasing consumer awareness of the impact of nutrition on health and the growing popularity of vegan diets are causing a need to look for new plant-based formulations of standard confectionery products with high energy density and low nutritional value, containing gelatin. Therefore, the aim of this study was to develop vegan and sugar-free gummy jellies based on an algae-derived polysaccharide-furcellaran (FUR). Until now, FUR has not been used as a gel-forming agent despite the fact that its structure-forming properties show high potential in the production of vegan confectionery. The basic formulation of gummy jellies included the addition of soy protein isolate and/or inulin. The final product was characterized regarding its rheological, antioxidant, mechanical and physicochemical properties. Eco-friendly packaging for the jellies composed of a three-layer polymer film has also been developed. It was observed that the highest values of textural parameters were obtained in jellies containing the addition of soy protein isolate, whose positive effect was also found on antioxidant activity. Before drying, all furcellaran-based gel systems showed G' and G" values characteristic of strong elastic hydrogels. Storing jellies for a week under refrigeration resulted in an increase in hardness, a decrease in moisture content and reduced water activity values. Overall, our study indicates the high potential of furcellaran both as a gelling agent in confectionery products and as a base polymer for their packaging.
Collapse
Affiliation(s)
- Anna Stępień
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland; (U.G.); (D.Ż.)
| | - Joanna Tkaczewska
- Department of Animal Products Processing, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland;
| | - Nikola Nowak
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland; (N.N.); (W.G.)
| | - Wiktoria Grzebieniarz
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland; (N.N.); (W.G.)
| | - Urszula Goik
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland; (U.G.); (D.Ż.)
| | - Daniel Żmudziński
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland; (U.G.); (D.Ż.)
| | - Ewelina Jamróz
- Department of Product Packaging, Cracow University of Economics, Rakowicka Street 27, PL-31-510 Cracow, Poland;
| |
Collapse
|
4
|
Grzebieniarz W, Tkaczewska J, Juszczak L, Krzyściak P, Cholewa-Wójcik A, Nowak N, Guzik P, Szuwarzyński M, Mazur T, Jamróz E. Improving the quality of multi-layer films based on furcellaran by immobilising active ingredients and impact assessment of the use of a new packaging material. Food Chem 2023; 428:136759. [PMID: 37418883 DOI: 10.1016/j.foodchem.2023.136759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
To improve the quality of multi-layer film, four-layer films based on furcellaran and active ingredients: gelatin hydrolysate, curcumin, capsaicin, montmorillonite and AgNPs, were produced in an innovative manner. The films were characterised by SEM and AFM analysis. Along with an increase in the concentration of active ingredients, the structure of the film becomes less homogeneous, which may affect the functional properties. The objective of the study was to analyse changes in the functional properties of the newly-obtained films and to verify their potential as packaging materials for fish products. With the increase in active ingredient concentration, water properties also improved, but there were no noticeable significant effects on mechanical properties. For antioxidant properties, the obtained values were within 1.04-2.74 mM Trolox/mg (FRAP) and 7.67-40.49% (DPPH). The obtained multi-layer films were examined with regard to the shelf-life of salmon. For this purpose, salmon fillets were packed in films having good antioxidant and functional properties. The films were effective in microorganism growth inhibition responsible for fillet spoilage during storage. The microorganism number in the active film-stored samples was lower by 0.13 log CFU/g on day 12 versus the control. However, film application did not retard lipid oxidation in the salmon fillets. Nonetheless, the films show great potential as active packaging materials, extending the shelf-life of the packed foods.
Collapse
Affiliation(s)
- Wiktoria Grzebieniarz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland.
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Lesław Juszczak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, PL-42-200 Częstochowa, Poland
| | - Paweł Krzyściak
- Department of Infection Control and Mycology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, PL-31-121 Kraków, Poland
| | - Agnieszka Cholewa-Wójcik
- Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Kraków, Poland
| | - Nikola Nowak
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Paulina Guzik
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Michał Szuwarzyński
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, PL-30-059 Kraków, Poland
| | - Tomasz Mazur
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, PL-30-059 Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| |
Collapse
|
5
|
Grzebieniarz W, Tkaczewska J, Juszczak L, Kawecka A, Krzyściak P, Nowak N, Guzik P, Kasprzak M, Janik M, Jamróz E. The influence of aqueous butterfly pea (Clitoria ternatea) flower extract on active and intelligent properties of furcellaran Double-Layered films - in vitro and in vivo research. Food Chem 2023; 413:135612. [PMID: 36773363 DOI: 10.1016/j.foodchem.2023.135612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Innovative, intelligent and active double-layer films, based on furcellaran and with the addition of gelatin hydrolysates, have been obtained for the first time. An aqueous extract of clitoria flower in 3 concentrations was included in the 1st FUR layer. The films demonstrated strong antimicrobial effects, but did not exhibit fungicidal properties. The antioxidant properties of the films were within the range of 2.27-3.92 mM Trolox/mg (FRAP method) and 36.67-61.24 % (DPPH method). The films were used as active packaging materials in salmon fillets, which were stored for a period of 12 days in 4 °C. Analysis concerning microbiological properties of the stored fillets showed the possibility of extending their shelf-life by 6 days. Lipid oxidation, determined by TBARS has delayed. The obtained films are a promising material for the packaging industry. This is an important aspect within the context of global food waste and also the need to reduce synthetic materials.
Collapse
Affiliation(s)
- Wiktoria Grzebieniarz
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland.
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| | - Lesław Juszczak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej Street 13/15, PL-42-200 Częstochowa, Poland
| | - Agnieszka Kawecka
- Department of Product Packaging, Cracow University of Economics, Rakowicka Street 27, PL-31-510 Kraków, Poland
| | - Paweł Krzyściak
- Department of Infection Control and Mycology, Faculty of Medicine, Jagiellonian University Medical College, Czysta Street 18, PL-31-121 Kraków, Poland
| | - Nikola Nowak
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| | - Paulina Guzik
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| | - Mirosław Kasprzak
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| | - Magdalena Janik
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| |
Collapse
|
6
|
Liu B, Ye HB, Liang QY, Jiang LL, Chen MM, Yang SB. Development and characterization of pectin and chitosan films incorporated with a new cross-linking agent. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1964-1973. [PMID: 36533998 DOI: 10.1002/jsfa.12395] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/23/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In this study, a new crosslinking agent (CA) containing whey protein, papin, glycerin, and epigallocatechin gallate (EGCG), was prepared. The effects of CA content (0, 10, 20, 30, and 40%, v/v) on food packaging properties, crystallinity, microstructure, and antioxidant properties of pectin-CA and chitosan-CA composite films were analyzed. The results of this research offer a theoretical basis for engineering improved films for food packing. RESULTS Pectin-CA (30%) and chitosan-CA (40%) composite films showed the best light transmission, water retention, breathability, plasticity, and antioxidant activity. Scanning electron microscopy revealed that these composite films exhibited a uniform and homogeneous structure without obvious pores. Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) indicated that the amino acids and EGCG in CA were bonded to the film substrate (pectin/chitosan) via electrostatic interactions, hydrogen bonding, and covalent bonding, which led to an improvement in the film's properties. CONCLUSION The CA has broad application prospects in food packaging as a cross-linking agent and antioxidant. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bing Liu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, PR China
| | - Hong-Bin Ye
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, PR China
| | - Qiu-Yan Liang
- Xinjiang Uygur autonomous region product quality supervision and inspection institute, Xinjiang Uygur autonomous region, Urumqi, PR China
| | - Liang-Liang Jiang
- School of Geography and Tourism, Chongqing Normal University, Chongqing, China
| | - Miao-Miao Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, PR China
| | - Shan-Bin Yang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, PR China
| |
Collapse
|
7
|
Grzebieniarz W, Biswas D, Roy S, Jamróz E. Advances in biopolymer-based multi-layer film preparations and food packaging applications. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Kruk J, Tkaczewska J, Szuwarzyński M, Mazur T, Jamróz E. Influence of storage conditions on functional properties of multilayer biopolymer films based on chitosan and furcellaran enriched with carp protein hydrolysate. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Preparation, characterization, and application of edible antibacterial three-layer films based on gelatin–chitosan–corn starch–incorporated nisin. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Mortazavi Moghadam FA, Khoshkalampour A, Mortazavi Moghadam FA, PourvatanDoust S, Naeijian F, Ghorbani M. Preparation and physicochemical evaluation of casein/basil seed gum film integrated with guar gum/gelatin based nanogel containing lemon peel essential oil for active food packaging application. Int J Biol Macromol 2022; 224:786-796. [DOI: 10.1016/j.ijbiomac.2022.10.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|