1
|
Ruiyi L, Qingqing X, Zaijun L, Ruiling Z, Yongqiang Y, Xiaohao L. Synthesis of histidine, serine and folic acid-functionalized and boron and iron-doped graphene quantum dot with excellent optical behavior and peroxidase-like activity for colorimetric and fluorescence detection of H 2O 2 in food. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124950. [PMID: 39133976 DOI: 10.1016/j.saa.2024.124950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Low fluorescence under visible light excitation and catalytic activity limit many applications of graphene quantum dots in optical detection, biosensing, catalysis and biomedical. The paper reports design and synthesis of histidine, serine and folic acid-functionalized and boron and iron-doped graphene quantum dot (Fe/B-GQD-HSF). The Fe/B-GQD-HSF shows excellent fluorescence behavior and peroxidase-like activity. Excitation of 330 nm ultraviolet light produces the strongest blue fluorescence and excitation of 480 nm visible light produces the strongest yellow fluorescence. The specific activity reaches 92.67 U g-1, which is higher than that of other graphene quantum dots. The Fe/B-GQD-HSF can catalyze oxidation of 3,3',5,5'-tetramethylbenzidine with H2O2 to form blue compound. Based on this, it was used for colorimetric and fluorescence detection of H2O2. The absorbance at 652 nm linearly increases with the increase of H2O2 concentration between 0.5 and 100 μM with detection limit of 0.43 μM. The fluorescence signal linearly decreases with the increase of H2O2 concentration between 0.05 and 100 μM with detection limit of 0.035 μM. The analytical method has been satisfactorily applied in detection of H2O2 in food. The study also paves one way for design and synthesis of functional graphene quantum dots with ideal fluorescence behavior and catalytic activity.
Collapse
Affiliation(s)
- Li Ruiyi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xie Qingqing
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Li Zaijun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Zhang Ruiling
- Jiangsu Province New Type Functional Polymer Material Engineering Technology Research Center, Wuxi Acrylic Technology Co., Ltd., Wuxi 214199, China
| | - Yang Yongqiang
- National Graphene Products Quality Supervision and Inspection Center (Jiangsu), Jiangsu Province Special Equipment Safety Supervision Inspection Institute·Branch of Wuxi, Wuxi 214174, China
| | - Liu Xiaohao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Nandhini C, Huang CH, Arul P, Huang ST. Fabrication of hybrid nanocomposites for electrochemical evaluation of food-based preservative and bioactive targets of hydrogen peroxide and rutin in real fruit and drug samples. Food Chem 2024; 469:142502. [PMID: 39708649 DOI: 10.1016/j.foodchem.2024.142502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Development of a reliable tool to detect hydrogen peroxide (H2O2) and rutin in food-derived products and bioactive flavonoids is essential for food safety. Nevertheless, food/drug-based real samples are complex matrices that affect the sensor's specificity and sensitivity. For this purpose, we developed a simple electrochemical detection platform using covalent organic framework‑silver nanoparticles (COF-AgNPs). Based on spectral and electrochemical tests, COF-AgNPs displayed enhanced electroactive sites and facile electron transfer. For H2O2 and rutin, the designed sensor surface exhibited outstanding concentration linearity of 0.5 nM-1000 μM and 1 nM-900 μM, respectively, along with superior detection limits of 0.126 nM and 0.133 nM. Additionally, it demonstrated acceptable reproducibility and interference capability. In practical analysis, H2O2 and rutin were detected in milk, fruits, and drug samples with high recovery rates of 94.60-99.31 % (n = 3). Consequently, the designed sensor is ideal for screening targets for H2O2 and rutin in food sources and for food research.
Collapse
Affiliation(s)
- Chinnathambi Nandhini
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24303, Taiwan
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24303, Taiwan; Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243303, Taiwan; College of Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Ponnusamy Arul
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Sheng-Tung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan
| |
Collapse
|
3
|
Guo J, Wu J, Xu L, Yuan X, Tan C, Wang Q, Xiong X. Microplasma-assisted construction of cross-linked network hierarchical structure of NiMoO 4 nanorods @NiCo-LDH nanosheets for electrochemical sensing of non-enzymatic H 2O 2 in food. Food Chem 2024; 461:140940. [PMID: 39182335 DOI: 10.1016/j.foodchem.2024.140940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The accumulation of small doses of hydrogen peroxide (H2O2) into food can cause many diseases in the human body, and it is urgent to develop efficient detection methods of H2O2. Herein, the hierarchical structure composite of NiCo-LDH nanosheets crosslinked NiMoO4 nanorods was grown in situ on carbon cloth (NiMoO4 NRs@NiCo-LDH NSs/CC) by micro-plasma assisted hydrothermal method. Thanks to the synergistic effect of three metals and (NiMoO4 NRs@NiCo-LDH NSs/CC) provided by nanorods/nanosheets hierarchical structure, NiMoO4 NRs@NiCo-LDH NSs/CC exposes more active sites and achieves rapid electron transfer. The H2O2 electrochemical sensor was constructed as the working electrode with a linear range of 1 μmol L-1 to 9.0 mmol L-1 and detection limit of 112 nmol L-1. In addition, the sensor has been successfully applied to the detection of H2O2 in food samples, the recovery rate is 95.2%-106.62%, RSD < 4.89%.
Collapse
Affiliation(s)
- Junchun Guo
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jiaying Wu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Li Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiangwei Yuan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Chao Tan
- Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, 644000, Sichuan, China
| | - Qian Wang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Xiaoli Xiong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
4
|
Hu X, Wei W, Li X, Yang Y, Zhou B. Recent advances in ratiometric electrochemical sensors for food analysis. Food Chem X 2024; 23:101681. [PMID: 39157660 PMCID: PMC11328010 DOI: 10.1016/j.fochx.2024.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Ratiometric electrochemical sensors are renowned for their dual-signal processing capabilities, enabling automatic correction of background noise and interferences through built-in calibration, thus providing more accurate and reproducible measurements. This characteristic makes them highly promising for food analysis. This review comprehensively summarizes and discusses the latest advancements in ratiometric electrochemical sensors and their applications in food analysis, emphasizing their design strategies, detection capabilities, and practical uses. Initially, we explore the construction and design strategies of these sensors. We then review the detection of various food-related analytes, including nutrients, additives, metal ions, pharmaceutical and pesticide residues, biotoxins, and pathogens. The review also briefly explores the challenges faced by ratiometric electrochemical sensors in food testing and potential future directions for development. It aims to provide researchers with a clear introduction and serve as a reference for the design and application of new, efficient ratiometric electrochemical sensors in food analysis.
Collapse
Affiliation(s)
- Xincheng Hu
- College of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Wei Wei
- College of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Xinyi Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yewen Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Binbin Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
5
|
Du X, Zhang B, Lian Y, Jiang X, Li Y, Jiang D. A bulit-in self-calibration ratiometric self-powered photoelectrochemical sensor for high-precision and sensitive detection of microcystin-RR. Mikrochim Acta 2024; 191:379. [PMID: 38856817 DOI: 10.1007/s00604-024-06447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
A novel high-precision aptasensor of microcystin-RR (MC-RR) is developed based on a ratiometric self-powered photoelectrochemical platform. In detail, the defective MoS2/Ti3C2 nanocomposite with good photoelectric activity was designed to serve as the photoanode of the sensor for enhancing the signal and improving the detection sensitivity. In order to effectively eliminate external interferences, the key point of this ratiometric device is the introduction of the spatial-resolved technique, which includes the detection section and the reference section, generating reference signals and response signals, respectively. Moreover, output power was used as the detection signal, instead of the traditional photocurrent or photovoltage. Further, potassium persulfate was introduced as electron acceptor, which was beneficial for improving the electron transport efficiency, hindering electron-hole recombination, and significantly promoting the performance of the sensor. Finally, aptamer was adopted as recognition element to capture MC-RR molecules. The prepared sensor had a linear range from 10-12 to 10-6 M, and the detection limit was 5.6 × 10-13 M (S/N = 3). It has good precision, selectivity, and sensitivity, which shows great prospects in the on-site accurate analysis of samples with high energy output in the self-powered sensing field.
Collapse
Affiliation(s)
- Xiaojiao Du
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China.
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China.
| | - Bing Zhang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Yuebin Lian
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Xiaoyan Jiang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Yan Li
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Ding Jiang
- Jiangsu Key Laboratory of Materials Surface Science and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, P.R. China.
| |
Collapse
|
6
|
Kokulnathan T, Wang TJ, Ahmed F, Alshahrani T, Arshi N. Synergism of Holmium Orthovanadate/Phosphorus-Doped Carbon Nitride Nanocomposite: Nonenzymatic Electrochemical Detection of Hydrogen Peroxide. Inorg Chem 2024; 63:3019-3027. [PMID: 38286799 PMCID: PMC10865356 DOI: 10.1021/acs.inorgchem.3c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
Developing efficient and robust electrode materials for electrochemical sensors is critical for real-time analysis. In this paper, a hierarchical holmium vanadate/phosphorus-doped graphitic carbon nitride (HoVO4/P-CN) nanocomposite is synthesized and used as an electrode material for electrochemical detection of hydrogen peroxide (H2O2). The HoVO4/P-CN nanocomposite exhibits superior electrocatalytic activity at a peak potential of -0.412 V toward H2O2 reduction in alkaline electrolytes while compared with other reported electrocatalysts. The HoVO4/P-CN electrochemical platform operated under the optimized conditions shows excellent analytical performance for H2O2 detection with a linear concentration range of 0.009-77.4 μM, a high sensitivity of 0.72 μA μM-1 cm-2, and a low detection limit of 3.0 nΜ. Furthermore, the HoVO4/P-CN-modified electrode exhibits high selectivity, remarkable stability, good repeatability, and satisfactory reproducibility in detecting H2O2. Its superior performance can be attributed to a large specific surface area, high conductivity, more active surface sites, unique structure, and synergistic action of HoVO4 and P-CN to benefit enhanced electrochemical activity. The proposed HoVO4/P-CN electrochemical platform is effectively applied to ascertain the quantity of H2O2 in food and biological samples. This work outlines a promising and effectual strategy for the sensitive electrochemical detection of H2O2 in real-world samples.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department
of Electro-Optical Engineering, National
Taipei University of Technology, Taipei 106, Taiwan
| | - Tzyy-Jiann Wang
- Department
of Electro-Optical Engineering, National
Taipei University of Technology, Taipei 106, Taiwan
| | - Faheem Ahmed
- Department
of Applied Sciences & Humanities, Faculty of Engineering &
Technology, Jamia Millia Islamia, New Delhi 110025, India
| | - Thamraa Alshahrani
- Department
of Physics, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nishat Arshi
- Department
of Basic Sciences, Preparatory Year Deanship, King Faisal University, P.O. Box-400, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
7
|
Aliakbarpour S, Amjadi M, Hallaj T. A colorimetric assay for H 2O 2 and glucose based on the morphology transformation of Au/Ag nanocages to nanoboxes. Food Chem 2024; 432:137273. [PMID: 37660579 DOI: 10.1016/j.foodchem.2023.137273] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Herein, we introduced a sensitive colorimetric platform for hydrogen peroxide (H2O2) assay based on gold/silver (Au/Ag) nanocages with porous structure. In the presence of H2O2, the morphology of hollow Au/Ag nanocages was converted to closed nanoboxes, altering their localized surface plasmon resonance (LSPR) peak position and the solution color from light blue to deep blue. The morphology transformation and LSPR peak position of Au/Ag nanocages were proportional to H2O2 concentration at the range of 0.1 to 50 µM. The limit of detection (LOD) was obtained to be 0.02 µM, and the relative standard deviation (RSD, for 0.2, 2.0, and 20 µM) was 2.7, 2.3, and 2.9%, respectively. Moreover, a smartphone-based colorimetric sensor was developed for H2O2 assay at the concentration range of 0.25-4.0 µM, with LOD of 0.2 µM and RSD of 3.2, 2.5, and 2.9% (for 0.5, 1.0, and 3.0 µM, respectively). We exploited the established sensor for glucose assay by measuring the generated H2O2 from the enzymatic reaction between glucose and glucose oxidase. There was a linear relationship between LSPR peak wavelength variations and the amount of glucose from 1.0 to 50 µM, with LOD of 0.4 µM and RSD of 3.2, 3.1, and 3.8% (for 2.0, 10, and 30 µM, respectively). The sensor was successfully applied to determine H2O2 and glucose in food and human serum samples, respectively.
Collapse
Affiliation(s)
- Saeid Aliakbarpour
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| |
Collapse
|
8
|
Zhang Y, Jin Y, Yuan X, Zhao S, Ye J, Xue K, Hu J, Xiong X. Layered bimetallic hydroxide nanocage assembled on MnO 2 nanotubes: A hierarchical porous sugar gourd-like electrocatalyst for the sensitive detection of hydrogen peroxide in food. Food Chem 2023; 426:136517. [PMID: 37348396 DOI: 10.1016/j.foodchem.2023.136517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
Hydrogen peroxide is used widely as a disinfection or bleaching additive during processing in the food industry. However, excessive residues of hydrogen peroxide in food have serious human health implications. In the present study, a novel electrochemical sensing electrode (MnO2/ZIF-67@LDH) with hierarchical porous sugar gourd-like structure was fabricated through a multi-step hydrothermal method using ZIF as the precursor. The unique porous nanocage structure of the sensing electrode provided multidimensional charge transfer channels and accelerated the electron transfer rate. As a hydrogen peroxide sensor, the electrode had two detection linear ranges of 1×10-3-4 mmol L-1 and 4-8 mmol L-1, and the detection limit was 0.26 µmol L-1. The MnO2/ZIF-67@LDH sensor was also applied to determine the content of hydrogen peroxide in actual food samples of juice and milk, and satisfactory recovery were achieved. The present study provides a novel and effective design strategy for the construction of electrochemical sensing electrodes.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China
| | - Yao Jin
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China
| | - Xiangwei Yuan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China
| | - Shan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China
| | - Jun Ye
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 611130, Sichuan, China.
| | - Kang Xue
- Food Safety Detection Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China; Technology Center of Chengdu Customs, Chengdu, 610041, Sichuan, China
| | - Jiangtao Hu
- Food Safety Detection Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China; Technology Center of Chengdu Customs, Chengdu, 610041, Sichuan, China
| | - Xiaoli Xiong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China.
| |
Collapse
|
9
|
Zhang C, Yin H, Bai X, Yang Z. Ru doping induced lattice distortion of Cu nanoparticles for boosting electrochemical nonenzymatic hydrogen peroxide sensing. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Zhang J, Fu Y, Li L, Yan L, Wu X, Lei C. Ratiometric Electrochemical Determination of Ascorbic Acid Using a Copper Nanoparticle@Resin Nanosphere (CuNPs@RNS) Modified Glassy Carbon Electrode (GCE) by Differential Pulse Voltammetry (DPV). ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2180644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Jie Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Yulin Fu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Lin Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Liqiang Yan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xiongzhi Wu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Chenghong Lei
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
11
|
Xu Y, Zhang Y, Li N, Yang M, Xiang T, Huo D, Qiu Z, Yang L, Hou C. An ultra-sensitive dual-signal ratiometric electrochemical aptasensor based on functionalized MOFs for detection of HER2. Bioelectrochemistry 2022; 148:108272. [DOI: 10.1016/j.bioelechem.2022.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
|
12
|
Fabrication of Ag nanoparticles coupled with ferrous disulfide biocatalyst as a peroxidase mimic for sensitive electrochemical and colorimetric dual-mode biosensing of H2O2. Food Chem 2022; 393:133386. [DOI: 10.1016/j.foodchem.2022.133386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023]
|