Renz M, Rohn S, Hanschen FS. Thermal degradation and oxidation of glucosinolates in model systems and Brassica vegetable broth is mediated by redox-active compounds.
Food Chem 2024;
431:137108. [PMID:
37595380 DOI:
10.1016/j.foodchem.2023.137108]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Glucosinolates (GLSs) are secondary plant metabolites with health-promoting effects found in Brassica vegetables. Recently, next to non-enzymatic degradation yielding nitriles, 4-(methylthio)butyl GLS (4MTB-GLS) was shown to undergo side chain oxidation during thermal treatment, forming 4-(methylsulfinyl)butyl GLS (4MSOB-GLS). Here, we investigated natural plant components and artificial analogs on their capability of altering the thermal reactivity of 4MTB-GLS in vegetable broths and model systems using buffers. Addition of ascorbic acid and dehydroascorbic acid caused varying effects: in broth samples, it increased nitrile formation, while in buffer, 4MSOB-GLS was formed. In further experiments, the antioxidant compounds quercetin and Trolox triggered the side chain oxidation of 4MTB-GLS, while H2S terminated its degradation. A synergistic effect of ascorbic acid and Fe2+ was observed, degrading 98% of 4MTB-GLS to the nitrile after 60 min of boiling. Deepening the understanding of factors that influence the non-enzymatic degradation of GLSs will help to preserve their health-promoting effects.
Collapse