1
|
Song J, Qi M, Han F, Xu M, Li Y, Zhang X, Yan C, Xie Y, Zhang D, Li H. Understanding the anti-browning mechanism and physicochemical properties in potato pulp during the magnetic field processing. Food Chem 2025; 464:141696. [PMID: 39442210 DOI: 10.1016/j.foodchem.2024.141696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/20/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
To reduce the detrimental effects of enzymatic-browning on potato pulp quality, this study investigated the anti-browning potential of magnetic field at varying intensities. The magnetic field (4 mT) enhanced the structural integrity of potato pulp cells, with the highest hardness (119.37 g). Furthermore, the potato pulp subjected to a magnetic field treatment of 4 mT for 60 min at a temperature of 32 °C (PP-MF-4) shown an orderly macromolecular aggregation, increased viscoelastic properties of potato pulp. The PP-MF-4 demonstrated excellent anti-browning capability, as evidenced by the highest L⁎ value (59.18), reduced browning index, and lower accumulation of browning-products. Furthermore, the PP-MF-4 exhibited a significant reduction in oxidative damage, attributed to enhanced antioxidant activity and total phenolic content. Besides, the PP-MF-4 inhibited browning enzymes and improved the molecular structure orderliness. Consequently, magnetic field presents a viable approach for mitigating enzymatic-browning in potato pulp, offering a promising methods for preserving its quality.
Collapse
Affiliation(s)
- Jialin Song
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Mingming Qi
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Feng Han
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Mei Xu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Yueming Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Xin Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Chuangshuo Yan
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Yujian Xie
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Dongliang Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Hongjun Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China.
| |
Collapse
|
2
|
Huang Q, Wen T, Fang T, Lao H, Zhou X, Wei T, Luo Y, Xie C, Huang Z, Li K. A comparative evaluation of the composition and antioxidant activity of free and bound polyphenols in sugarcane tips. Food Chem 2025; 463:141510. [PMID: 39369597 DOI: 10.1016/j.foodchem.2024.141510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
The sugarcane tip is abundant in phenolic compounds. Previous studies have concentrated on the effects of free polyphenols, while bound polyphenols were overlooked. In this study, the content of bound polyphenols (SPB) (31.9 ± 0.9 mg GAE/g DW) was significantly higher than free polyphenols (SPF) (3.4 ± 0.1 mg GAE/g DW). A total of 44 free and 31 bound phenolics were identified by the UPLC-EIS-QTOF-MS/MS. Moreover, the antioxidant activity of SPB was more pronounced, as evidenced by its higher ABTS+ and DPPH scavenging rates than SPF, which was attributed to the higher tannin content. Furthermore, at all tested concentrations (100 and 200 μg/mL), SPB significantly enhanced the survival and antioxidant enzyme activity of Caenorhabditis elegans (C. elegans), while concurrently reducing ROS levels. High concentrations of SPB even exhibited antioxidant activity comparable to Vitamin C (Vc). The collective findings strongly indicate that SPB holds great potential as an effective antioxidant.
Collapse
Affiliation(s)
- Qiqi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tongquan Wen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Taowen Fang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Houyuan Lao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiaohan Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tengqing Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yiwen Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Caifeng Xie
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China.
| | - Zhi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China.
| |
Collapse
|
3
|
Makhija R, Barik P, Mehta A, Ganti SS, Asati V. Sustainable approaches to analyzing phenolic compounds: a green chemistry perspective. ANAL SCI 2024; 40:1947-1968. [PMID: 39107656 DOI: 10.1007/s44211-024-00640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/07/2024] [Indexed: 10/29/2024]
Abstract
Innovative and eco-friendly methodologies for the determination of phenolic compounds, showing a paradigm shift in analytical chemistry toward sustainability. Phenolic compounds, valued for their diverse health benefits, have historically been analyzed using methods that often involve hazardous solvents and energy-intensive processes. This review focuses on green analytical chemistry principles, emphasizing sustainability, reduced environmental impact, and analytical efficiency. The use of DES, specifically Ch: Chl-based DES, emerges as a prominent green alternative for extracting phenolic compounds from various sources. The integration of UAE with DES enhances extraction efficiency, contributing to a more sustainable analytical approach. Furthermore, the review highlights the significance of DLLME and SPME in reducing solvent consumption and simplifying extraction procedures. These techniques exemplify the commitment to making phenolic compound analysis environmentally friendly. The incorporation of portable measurement tools, such as smartphones, into analytical methodologies is a notable aspect discussed in the review. Techniques like UA-DLLME leverage portable devices, making phenolic compound determination more accessible and versatile. Anticipating the future, the review foresees ongoing advancements in sustainable analytical approaches, driven by collaborative efforts across diverse disciplines. Novel solvents, extraction techniques, and portable measurement methods are expected to play pivotal roles in the continuous evolution of green analytical methodologies for the analysis of phenolic compounds. The review encapsulates a transformative journey toward environmentally responsible and efficient analytical practices, paving the way for further research and application in diverse analytical settings.
Collapse
Affiliation(s)
- Rahul Makhija
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Pallavi Barik
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Ashish Mehta
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Subrahmanya S Ganti
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India.
| |
Collapse
|
4
|
Liang J, Li H, Han M, Gao Z. Polysaccharide-polyphenol interactions: a comprehensive review from food processing to digestion and metabolism. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38965668 DOI: 10.1080/10408398.2024.2368055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Most studies on the beneficial effects of polyphenols on human health have focused on polyphenols extracted using aqueous organic solvents, ignoring the fact that a portion of polyphenols form complexes with polysaccharides. Polysaccharides and polyphenols are interrelated, and their interactions affect the physicochemical property, quality, and nutritional value of foods. In this review, the distribution of bound polyphenols in major food sources is summarized. The effect of food processing on the interaction between polyphenols and cell wall polysaccharides (CWP) is discussed in detail. We also focus on the digestion, absorption, and metabolic behavior of polysaccharide-polyphenol complexes. Different food processing techniques affect the interaction between CWP and polyphenols by altering their structure, solubility, and strength of interactions. The interaction influences the free concentration and extractability of polyphenols in food and modulates their bioaccessibility in the gastrointestinal tract, leading to their major release in the colon. Metabolism of polyphenols by gut microbes significantly enhances the bioavailability of polyphenols. The metabolic pathway and product formation rate of polyphenols and the fermentation characteristics of polysaccharides are affected by the interaction. Furthermore, the interaction exhibits synergistic or antagonistic effects on the stability, solubility, antioxidant and functional activities of polyphenols. In summary, understanding the interactions between polysaccharides and polyphenols and their changes in food processing is of great significance for a comprehensive understanding of the health benefits of polyphenols and the optimization of food processing technology.
Collapse
Affiliation(s)
- Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Lee HY, Cho DY, Kim DH, Park JH, Jeong JB, Jeon SH, Lee JH, Ko EJ, Cho KM, Lee JH. Examining the Alterations in Metabolite Constituents and Antioxidant Properties in Mountain-Cultivated Ginseng ( Panax ginseng C.A. Meyer) Organs during a Two-Month Maturation Period. Antioxidants (Basel) 2024; 13:612. [PMID: 38790717 PMCID: PMC11117551 DOI: 10.3390/antiox13050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The current research was the first to prove the existence of fluctuations in the metabolite constituents and antioxidant properties in different organs (leaves, stems, and roots) of the mountain-cultivated ginseng (MCG) plant during a two-month maturation period. Four metabolites, including fatty acids, amino acids, ginsenosides, and phenolic phytochemicals, exhibited considerable differences in organs and maturation times with the following order: leaves > stems > roots. The predominant metabolite contents were found in leaves, with fatty acid (1057.9 mg/100 g) on 31 May, amino acid (1989.2 mg/100 g) on 13 July, ginsenosides (88.7 mg/g) on 31 May, and phenolic phytochemical (638.3 μg/g) on 31 May. Interestingly, ginsenoside content in leaves were highest, with 84.8 → 88.7 → 82.2 → 78.3 mg/g. Specifically, ginsenosides Re, Rd, and F2 showed abundant content ranging from 19.1 to 16.9 mg/g, 8.5 to 14.8 mg/g, and 9.5 to 13.1 mg/g, respectively. Phenolic phytochemicals exhibited remarkable differences in organs compared to maturation periods, with the highest total phenolic content and total flavonoid content recorded at 9.48 GAE and 1.30 RE mg/g in leaves on 31 May. The antioxidant capacities on radical, FRAP, and DNA protection differed significantly, with leaves on 31 May exhibiting the highest values: 88.4% (DPPH), 89.5% (ABTS), 0.84 OD593 nm (FRAP) at 500 μg/mL, and 100% DNA protection at 50 μg/mL. Furthermore, principal cluster analysis revealed metabolite variability as follows: ginsenoside (83.3%) > amino acid (71.8%) > phenolic phytochemical (61.1%) > fatty acid (58.8%). A clustering heatmap highlighted significant changes in metabolite components under the maturation times for each organ. Our findings suggest that MCG leaves on 31 May may be a potential source for developing nutraceuticals, offering highly beneficial components and strong antioxidants.
Collapse
Affiliation(s)
- Hee Yul Lee
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Du Yong Cho
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Du Hyun Kim
- Department of Life Resource Industry, Dong-A University, 37, Nakdong-Daero 550 Beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Jong-Hwan Park
- Department of Life Resource Industry, Dong-A University, 37, Nakdong-Daero 550 Beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Jong Bin Jeong
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Se Hyeon Jeon
- Department of Life Resource Industry, Dong-A University, 37, Nakdong-Daero 550 Beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Ji Ho Lee
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Eun Jeong Ko
- Department of Life Resource Industry, Dong-A University, 37, Nakdong-Daero 550 Beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Kye Man Cho
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Jin Hwan Lee
- Department of Life Resource Industry, Dong-A University, 37, Nakdong-Daero 550 Beon-gil, Saha-gu, Busan 49315, Republic of Korea
| |
Collapse
|
6
|
Nahuelcura J, Ortega T, Peña F, Berríos D, Valdebenito A, Contreras B, Santander C, Cornejo P, Ruiz A. Antioxidant Response, Phenolic Compounds and Yield of Solanum tuberosum Tubers Inoculated with Arbuscular Mycorrhizal Fungi and Growing under Water Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:4171. [PMID: 38140498 PMCID: PMC10747638 DOI: 10.3390/plants12244171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Solanum tuberosum (potato) is one of the most common crops worldwide; however, it is sensitive to water stress, which necessitates the identification of alternative tools to improve their production. Here, we evaluated the inoculation of two arbuscular mycorrhizal fungi (AMF) strains, Claroideoglomus claroideum (CC), Claroideoglomus lamellosum (HMC26), and the MIX (CC + HMC26) in yield and phenolic and antioxidant response using chromatographic and spectroscopic methods in potato crops, at increasing levels of water stress, namely, with 100% (0), 70% (S1), and 40% (S2) soil humidity. Two caffeoylquinic acid isomers were detected and their levels showed a tendency to increase under stress together with the AMF inoculation, reaching up to 19.2 mg kg-1 of 5-caffeoylquinic acid and 7.4 mg kg-1 of caffeoylquinic acid isomer when CC was inoculated, and potato plants grew at the highest water starvation condition (S2). Regarding antioxidant activities, a differentiated response was detected depending on the AMF strain, highlighting the effect of HMC26 on Trolox equivalent antioxidant capacity (TEAC) method and CC in cupric reducing antioxidant capacity (CUPRAC) method, reaching up to 1.5 μmol g-1 of TEAC in plants inoculated with HMC26 and 0.9 μmol g-1 of CUPRAC in plants inoculated with CC, both in potato tubers of plants growing under the S2 stress condition. Meanwhile, the use of AMF did not influence the number and biomass of the tubers, but significant changes in the biochemical properties of tubers were observed. The results suggest that specific AMF adaptations to water stress must be considered when inoculation procedures are planned to improve the yield and quality of tubers in potato crops.
Collapse
Affiliation(s)
- Javiera Nahuelcura
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Avda. Francisco Salazar 01145, Temuco 4811230, Chile; (J.N.); (T.O.); (F.P.); (D.B.); (A.V.); (C.S.)
| | - Tiare Ortega
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Avda. Francisco Salazar 01145, Temuco 4811230, Chile; (J.N.); (T.O.); (F.P.); (D.B.); (A.V.); (C.S.)
| | - Fabiola Peña
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Avda. Francisco Salazar 01145, Temuco 4811230, Chile; (J.N.); (T.O.); (F.P.); (D.B.); (A.V.); (C.S.)
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Región de la Araucanía, Temuco 4811230, Chile
| | - Daniela Berríos
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Avda. Francisco Salazar 01145, Temuco 4811230, Chile; (J.N.); (T.O.); (F.P.); (D.B.); (A.V.); (C.S.)
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Región de la Araucanía, Temuco 4811230, Chile
| | - Analía Valdebenito
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Avda. Francisco Salazar 01145, Temuco 4811230, Chile; (J.N.); (T.O.); (F.P.); (D.B.); (A.V.); (C.S.)
| | - Boris Contreras
- Novaseed Ltda., Loteo Pozo de Ripio s/n, Parque Ivian II, Puerto Varas 5550000, Chile;
| | - Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Avda. Francisco Salazar 01145, Temuco 4811230, Chile; (J.N.); (T.O.); (F.P.); (D.B.); (A.V.); (C.S.)
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, La Palma, Quillota 2260000, Chile
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Avda. Francisco Salazar 01145, Temuco 4811230, Chile; (J.N.); (T.O.); (F.P.); (D.B.); (A.V.); (C.S.)
| |
Collapse
|
7
|
Wang Y, Gao H, Guo Z, Peng Z, Li S, Zhu Z, Grimi N, Xiao J. Free and Bound Phenolic Profiles and Antioxidant Activities in Melon ( Cucumis melo L.) Pulp: Comparative Study on Six Widely Consumed Varieties Planted in Hainan Province. Foods 2023; 12:4446. [PMID: 38137250 PMCID: PMC10742615 DOI: 10.3390/foods12244446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Bound phenolic compounds in the melon pulp have seldom been investigated. This study revealed considerable differences in the total phenolic content (TPC) and antioxidant activity of the free and bound phenolic extracts in the pulps of six melon varieties from Hainan Province, China. Naixiangmi and Yugu demonstrated the highest free TPC, while Meilong showed the highest bound and total TPC and antioxidant activity. UHPLC-QQQ-MS identified and quantified 30 phenolic compounds. The melon cultivars markedly differed in the amount and content of their free and bound phenolic compounds. Xizhoumi No. 25 and Meilong afforded the most phenolic compounds. Hongguan emerged with the highest free phenolic compound content and total content of phenolic compounds; however, Meilong possessed the highest bound phenolic compound content. Hierarchical cluster analysis divided the melon varieties into four different taxa. The present study provides a scientific basis for developing the health-promoting effects of melon pulp.
Collapse
Affiliation(s)
- Yuxi Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Heqi Gao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhiqiang Guo
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Ziting Peng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shuyi Li
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.L.)
| | - Zhenzhou Zhu
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.L.)
| | - Nabil Grimi
- Centre de Recherche Royallieu, Université de Technologie de Compiègne, Sorbonne Universités, CS 60319, 60203 Compiègne CEDEX, France
| | - Juan Xiao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Li T, Wu W, Zhang J, Wu Q, Zhu S, Niu E, Wang S, Jiang C, Liu D, Zhang C. Antioxidant Capacity of Free and Bound Phenolics from Olive Leaves: In Vitro and In Vivo Responses. Antioxidants (Basel) 2023; 12:2033. [PMID: 38136153 PMCID: PMC10740763 DOI: 10.3390/antiox12122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Olive leaves are rich in phenolic compounds. This study explored the chemical profiles and contents of free phenolics (FPs) and bound phenolics (BPs) in olive leaves, and further investigated and compared the antioxidant properties of FPs and BPs using chemical assays, cellular antioxidant evaluation systems, and in vivo mouse models. The results showed that FPs and BPs have different phenolic profiles; 24 free and 14 bound phenolics were identified in FPs and BPs, respectively. Higher levels of phenolic acid (i.e., sinapinic acid, 4-coumaric acid, ferulic acid, and caffeic acid) and hydroxytyrosol were detected in the BPs, while flavonoids, triterpenoid acids, and iridoids were more concentrated in the free form. FPs showed a significantly higher total flavonoid content (TFC), total phenolic content (TPC), and chemical antioxidant properties than those of BPs (p < 0.05). Within the range of doses (20-250 μg/mL), both FPs and BPs protected HepG2 cells from H2O2-induced oxidative stress injury, and there was no significant difference in cellular antioxidant activity between FPs and BPs. The in vivo experiments suggested that FP and BP treatment inhibited malondialdehyde (MDA) levels in a D-galactose-induced oxidation model in mice, and significantly increased antioxidant enzyme activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and the total antioxidant capacity (T-AOC). Mechanistically, FPs and BPs exert their antioxidant activity in distinct ways; FPs ameliorated D-galactose-induced oxidative stress injury partly via the activation of nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway, while the BP mechanisms need further study.
Collapse
Affiliation(s)
- Ting Li
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (T.L.); (J.Z.); (Q.W.)
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenjun Wu
- Gansu Research Academy of Forestry Science and Technology, Lanzhou 730020, China; (W.W.); (C.J.)
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (T.L.); (J.Z.); (Q.W.)
| | - Qinghang Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (T.L.); (J.Z.); (Q.W.)
| | - Shenlong Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.Z.); (E.N.)
| | - Erli Niu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.Z.); (E.N.)
| | - Shengfeng Wang
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Chengying Jiang
- Gansu Research Academy of Forestry Science and Technology, Lanzhou 730020, China; (W.W.); (C.J.)
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (T.L.); (J.Z.); (Q.W.)
| | - Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (T.L.); (J.Z.); (Q.W.)
| |
Collapse
|
9
|
Castro-Muñoz R, Can Karaça A, Saeed Kharazmi M, Boczkaj G, Hernández-Pinto FJ, Anusha Siddiqui S, Jafari SM. Deep eutectic solvents for the food industry: extraction, processing, analysis, and packaging applications - a review. Crit Rev Food Sci Nutr 2023; 64:10970-10986. [PMID: 37395659 DOI: 10.1080/10408398.2023.2230500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Food factories seek the application of natural products, green feedstock and eco-friendly processes, which minimally affect the properties of the food item and products. Today, water and conventional polar solvents are used in many areas of food science and technology. As modern chemistry evolves, new green items for building eco-friendly processes are being developed. This is the case of deep eutectic solvents (DESs), named the next generation of green solvents, which can be involved in many food industries. In this review, we timely analyzed the progress on applying DES toward the development of formulations, extraction of target biomolecules, food processing, extraction of undesired molecules, analysis and determination of specific analytes in food samples (heavy metals, pesticides), food microbiology, and synthesis of new packaging materials, among many other applications. For this, the latest developments (over the last 2-3 years) have been discussed emphasizing innovative ideas and outcomes. Relevantly, we discuss the hypothesis and the key features of using DES in the mentioned applications. To some extent, the advantages and limitations of implementing DES in the food industry are also elucidated. Finally, based on the findings of this review, the perspectives, research gaps and potentialities of DESs are stated.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
- Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy, Buenavista, Toluca de Lerdo, Mexico
| | - Aslı Can Karaça
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | | | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
| | | | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straβe 7, Quakenbrück, Germany
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Xu C, Lu J, Zeng Q, Zhang J, Dong L, Huang F, Shen Y, Su D. Magnetic nanometer combined with microwave: Novel rapid thawing promotes phenolics release in frozen-storage lychee. Food Chem 2023; 410:135384. [PMID: 36610094 DOI: 10.1016/j.foodchem.2022.135384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Magnetic nanometer combined with microwave thawing (MN-MT) could become a novel solution to challenges uneven and overheating of microwave thawing (MT), while retaining high thawing efficiency, compared to conventional water immersion thawing (WT). In this study, MN-MT was applied to thaw fruit (lychee as an example) for the first time, and was evaluated by comparison with WT, MT and water immersion combined with microwave thawing (WI-MT). Results showed that MN-MT could significantly shorten the thawing time of frozen lychee by 80.67%, 25.86% and 18.83% compared to WT, MT and WI-MT, respectively. Compared to WT, MN-MT was the only thawing treatment which significantly enhanced the release of quercetin-3-O-rutinose-7-O-α-l-rhamnoside, according to HPLC-DAD. Meanwhile, thermal-sensitive procyanidin B2, phenylpropionic acid and protocatechuic acid were found to be protected from degradations only by MN-MT based on UPLC-ESI-QTOF-MS/MS results. In summary, MN-MT is a potential novel treatment for rapid thawing and quality maintenance of frozen fruits.
Collapse
Affiliation(s)
- Canhua Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jiaming Lu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Junjia Zhang
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Yingbin Shen
- School of Life Science, Guangzhou University, Guangzhou 510006, PR China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Content and Stability of Hydroxycinnamic Acids during the Production of French Fries Obtained from Potatoes of Varieties with Light-Yellow, Red and Purple Flesh. Antioxidants (Basel) 2023; 12:antiox12020311. [PMID: 36829870 PMCID: PMC9951911 DOI: 10.3390/antiox12020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Potatoes with different flesh colours contain health-promoting compounds, i.e., hydroxycinnamic acids, which vary in content and stability during thermal processing. The aim of this study was to determine the effect of the technological stages of the production of French fries obtained from potatoes with different flesh colours on the content of selected hydroxycinnamic acids, as well as the stability of these acids, their percentage in sum of acids, total phenolic content and antioxidant activity (ABTS, DPPH) in semi-products and ready-to-eat products. During the production of French fries, samples of unpeeled, peeled, cut, blanched, pre-dried and fried potatoes were collected. After peeling, coloured potatoes, especially purple ones, had more hydroxycinnamic (5-CQA, 4-CQA, 3-CQA and CA) acids remaining in the flesh than in the flesh of the light-yellow variety. The greatest losses of the determined hydroxycinnamic acids, regardless of the given potato's variety, were caused by the stage of pre-drying (about 91%) and frying (about 97%). The French fries obtained from the potatoes with coloured flesh, especially those with purple flesh, had the highest amount of stable 5-CQA and 4-CQA acids as well as 3-CQA acid, already absent in light-yellow French fries. The least stable acid was CA acid, which was not found in any of the ready snacks.
Collapse
|
12
|
Shahidi F, Hossain A. Importance of Insoluble-Bound Phenolics to the Antioxidant Potential Is Dictated by Source Material. Antioxidants (Basel) 2023; 12:antiox12010203. [PMID: 36671065 PMCID: PMC9854999 DOI: 10.3390/antiox12010203] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Insoluble-bound phenolics (IBPs) are extensively found in the cell wall and distributed in various tissues/organs of plants, mainly cereals, legumes, and pulses. In particular, IBPs are mainly distributed in the protective tissues, such as seed coat, pericarp, and hull, and are also available in nutritional tissues, including germ, epicotyl, hypocotyl radicle, and endosperm, among others. IBPs account for 20-60% of the total phenolics in food matrices and can exceed 70% in leaves, flowers, peels, pulps, seeds, and other counterparts of fruits and vegetables, and up to 99% in cereal brans. These phenolics are mostly covalently bound to various macromolecules such as hemicellulose, cellulose, structural protein, arabinoxylan, and pectin, which can be extracted by acid, alkali, or enzymatic hydrolysis along with various thermal and non-thermal treatments. IBPs obtained from various sources exhibited a wide range of biological activities, including antioxidant, anti-inflammatory, antihypertensive, anticancer, anti-obesity, and anti-diabetic properties. In this contribution, the chemistry, distribution, biological activities, metabolism, and extraction methods of IBPs, and how they are affected by various treatments, are summarized. In particular, the effect of thermal and non-thermal processing on the release of IBPs and their antioxidant potential is discussed.
Collapse
|
13
|
Conventional vs. Green Extraction Using Natural Deep Eutectic Solvents—Differences in the Composition of Soluble Unbound Phenolic Compounds and Antioxidant Activity. Antioxidants (Basel) 2022; 11:antiox11112295. [DOI: 10.3390/antiox11112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate the effect of the use of green solvents, natural deep eutectic solvents (NaDES), in comparison with conventional solvents on the extraction of free unbound phenolic compounds and the antioxidant activity of extracts of dried bilberry fruit, bilberry leaves and green tea leaves. After preparation of the extracts via ultrasound-assisted extraction using NaDES and conventional solvents (water and ethanol), spectrophotometric determination of total phenolic and flavonoid content, HPLC analysis of extracted polyphenols and antioxidant determination using FRAP, DPPH and ABTS assays were conducted. The results showed that NaDES have a great potential as agents for the extraction of phenolic compounds with potent antioxidant activity; the highest values of phenolic content and antioxidant activity were detected in the samples obtained by extraction using the NaDES combination betaine + urea. The bilberry leaves exhibited the highest flavonoid content among all extracts and turned out to be more active than bilberry fruits, to which they are often just a by-product during processing. The most active extract of all was the betaine-urea green tea leaves extract. Further research into the most active NaDES extracts should be performed.
Collapse
|