1
|
Zeng R, Zhou F, Wang Y, Liao Z, Qian S, Luo Q, Zheng J. Polydopamine modified colloidal gold nanotag-based lateral flow immunoassay platform for highly sensitive detection of pathogenic bacteria and fast evaluation of antibacterial agents. Talanta 2024; 278:126525. [PMID: 38991406 DOI: 10.1016/j.talanta.2024.126525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Bacterial infection is a great threat to human health. Lateral flow immunoassays (LFIAs) with the merits of low cost, quick screening, and on-site detection are competitive technologies for bacteria detection, but their detection limits depend on the optical performance of the adopted nanotags. Herein, we presented a LFIA platform for bacteria detection using polydopamine (PDA) functionalized Au nanoparticles (denoted as Au@PDA) as the nanotag. The introduction of PDA could provide enhanced light absorption of Au, as well as numerous functional groups for conjugation. Small recognition molecules i.e. vancomycin (Van) and p-mercaptophenylboronic acid (PMBA) were covalently anchored to Au@PDA, and selected as the specific probes towards Gram-positive (G+) and Gram-negative (G-) bacteria, respectively. Taken Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) as the representative targets of G+ and G- bacteria, two LFA strips were successfully constructed based on the immuno-sandwich principle. They could quantitatively detect S. aureus and E. coli both down to 102 cfu/mL, a very competitive detection limit in comparison with other colorimetric or luminescent probes-based LFIAs. Furthermore, the proposed two strips were applied for the quantitative, accurate, and rapid detection of S. aureus and E. coli in food and human urine samples with good analytical results obtained. In addition, they were integrated as a screening platform for quick evaluation of diverse antibacterial agents within 3 h, which is remarkably shortened compared with that of the two traditional methods i.e. bacterial culture and plate-counting.
Collapse
Affiliation(s)
- Ruoxi Zeng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315302, PR China
| | - Fangfang Zhou
- Department of Nephrology, Ningbo No. 2 Hospital, Ningbo, 315010, PR China
| | - Yuhui Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315302, PR China.
| | - Zixuan Liao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315302, PR China
| | - Sihua Qian
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315302, PR China
| | - Qun Luo
- Department of Nephrology, Ningbo No. 2 Hospital, Ningbo, 315010, PR China.
| | - Jianping Zheng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315302, PR China.
| |
Collapse
|
2
|
Du Y, Xu CM, Zhang YM, Pan ZX, Wang FS, Yang HM, Tang JB. Fabrication of cysteine-modified antibodies with Fc-specific conjugation for covalent and oriented immobilization of native antibodies. Int J Biol Macromol 2024; 276:133962. [PMID: 39029833 DOI: 10.1016/j.ijbiomac.2024.133962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Covalent and oriented immobilization of antibodies (Abs) can substantially improve the sensitivity and stability of solid-phase immunoassays. By modifying the natural Abs with functional groups that provide unique handles for further conjugation, Abs could be immobilized onto the solid matrices with uniform orientation. Herein, an effective approach for Fc-specific modification of Abs was developed for the oriented and covalent immobilization of Abs. Twelve photoreactive Z-domain variants, incorporated with a photoactivable probe (p-benzoyl-L-phenylalanine, Bpa) at different positions and carrying a C-terminal Cys-tag (i.e. ZBpa-Cys variants), were individually constructed and produced in Escherichia coli and tested for photo-cross-linking to various IgGs. The different ZBpa-Cys variants demonstrated large differences in photo-conjugation efficiency for the tested IgGs. The conjugation efficiencies of 17thZBpa-Cys ranged from 90 % to nearly 100 % for rabbit IgG and mouse IgG2a, IgG2b and IgG3. Other variants, including 5thZBpa-Cys, 18thZBpa-Cys, 32thZBpa-Cys, and 35thZBpa-Cys, also displayed conjugation efficiencies of 61 %-83 % for mouse IgG1, IgG2a and IgG3. Subsequently, the photo-modified Abs, namely IgG-Cys conjugates, were covalently immobilized onto a maleimide group-functionalized solid-phase carrier on the basis of the reaction of sulfhydryl and maleimide. Thus, a generic platform for the controlled and oriented immobilization of Abs was developed, and the efficacy and potential of the proposed approach for sensitive immunoassays was demonstrated by detecting human α-fetoprotein.
Collapse
Affiliation(s)
- Yue Du
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Chong-Mei Xu
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Yu-Min Zhang
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Zheng-Xuan Pan
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Feng-Shan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hong-Ming Yang
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China.
| | - Jin-Bao Tang
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
3
|
Xu X, Lin X, Wang L, Ma Y, Sun T, Bian X. A Novel Dual Bacteria-Imprinted Polymer Sensor for Highly Selective and Rapid Detection of Pathogenic Bacteria. BIOSENSORS 2023; 13:868. [PMID: 37754102 PMCID: PMC10526176 DOI: 10.3390/bios13090868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
The rapid, sensitive, and selective detection of pathogenic bacteria is of utmost importance in ensuring food safety and preventing the spread of infectious diseases. Here, we present a novel, reusable, and cost-effective impedimetric sensor based on a dual bacteria-imprinted polymer (DBIP) for the specific detection of Escherichia coli O157:H7 and Staphylococcus aureus. The DBIP sensor stands out with its remarkably short fabrication time of just 20 min, achieved through the efficient electro-polymerization of o-phenylenediamine monomer in the presence of dual bacterial templates, followed by in-situ template removal. The key structural feature of the DBIP sensor lies in the cavity-free imprinting sites, indicative of a thin layer of bacterial surface imprinting. This facilitates rapid rebinding of the target bacteria within a mere 15 min, while the sensing interface regenerates in just 10 min, enhancing the sensor's overall efficiency. A notable advantage of the DBIP sensor is its exceptional selectivity, capable of distinguishing the target bacteria from closely related bacterial strains, including different serotypes. Moreover, the sensor exhibits high sensitivity, showcasing a low detection limit of approximately 9 CFU mL-1. The sensor's reusability further enhances its cost-effectiveness, reducing the need for frequent sensor replacements. The practicality of the DBIP sensor was demonstrated in the analysis of real apple juice samples, yielding good recoveries. The integration of quick fabrication, high selectivity, rapid response, sensitivity, and reusability makes the DBIP sensor a promising solution for monitoring pathogenic bacteria, playing a crucial role in ensuring food safety and safeguarding public health.
Collapse
Affiliation(s)
- Xiaoli Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohui Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lingling Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yixin Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Tao Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaojun Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
4
|
Wang H, Logue CM, Nolan LK, Lin J. Assessment of an Enterobactin Conjugate Vaccine in Layers to Protect Their Offspring from Colibacillosis. Pathogens 2023; 12:1002. [PMID: 37623962 PMCID: PMC10458604 DOI: 10.3390/pathogens12081002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Colibacillosis, caused by avian pathogenic Escherichia coli (APEC), is an important infectious disease in chickens and a major cause of mortality in young chicks. Therefore, protecting young chickens from colibacillosis is important for improving welfare and productivity in the poultry industry. Recently, we developed a novel enterobactin (Ent) conjugate vaccine that could induce high titers of anti-Ent immunoglobulin Y (IgY) in chicken serum and consequently mitigate the organ lesions caused by APEC infection. Considering that maternal immunization is a practical approach to confer instant immune protection to the hatchlings, in this study, we immunized breeder hens with the Ent conjugate vaccine and evaluated the maternal immune protection on the progenies challenged with APEC. Three doses of the vaccine induced high titers of anti-Ent IgY in the hens (about 16- and 64-fold higher than the control group in the sera and egg yolks, respectively), resulting in an eight-fold of increase in anti-Ent IgY in the sera of progenies. However, the anti-Ent maternal immunity did not display significant protection against APEC challenge in the young chicks as there was no significant difference in APEC load (in liver, lung, and spleen) or organ lesions (in heart, liver, spleen, lung, and air sac) between the vaccinated and control groups. In future studies, the APEC infection model needs to be optimized to exhibit proper pathogenicity of APEC, and the maternal immunization regimen can be further improved to boost the maternally derived anti-Ent IgY in the hatchlings.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Animal Science, University of Tennessee, Knoxville, TN 37919, USA
| | - Catherine M. Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Lisa K. Nolan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jun Lin
- Department of Animal Science, University of Tennessee, Knoxville, TN 37919, USA
| |
Collapse
|
5
|
Cavas L, Kirkiz I. Characterization of siderophores from Escherichia coli strains through genome mining tools: an antiSMASH study. AMB Express 2022; 12:74. [PMID: 35704153 PMCID: PMC9200922 DOI: 10.1186/s13568-022-01421-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Although urinary tract infections (UTIs) affect many people, they are usually a disease observed in women. UTIs happen when exogenous and endogenous bacteria enter the urinary tract and colonize there. Cystitis and pyelonephritis occur when bacteria infect the bladder and the kidneys, respectively. UTIs become much serious if the bacteria causing the infection are antibiotic resistant. Since the pathogenic microorganisms have been adopted to current antibiotics via genetic variations, UTIs have become an even more severe health problem. Therefore, there is a great need for the discovery of novel antibiotics. Genome mining of nonpathogenic and pathogenic Escherichia coli strains for investigating secondary metabolites were conducted by the antiSMASH analysis. When the resulting secondary metabolites were examined, it was found that some of the siderophores are effective in UTIs. In conclusion, since the siderophore production in E. coli is directly related to UTIs, these molecules can be a good target for development of future pharmaceutical approaches and compounds. Siderophores can also be used in industrial studies due to their higher chelating affinity for iron. ![]()
Genome mining on nonpathogenic and pathogenic E. coli was studied. Comprehensive and comparative analysis of siderophores were investigated. The results may open a new gate on the development of new drugs on pathogenic E. coli-based diseases.
Collapse
Affiliation(s)
- Levent Cavas
- The Graduate School of Natural and Applied Sciences, Department of Biotechnology, Dokuz Eylül University, Kaynaklar Campus, 35390, İzmir, Türkiye. .,Dokuz Eylül University, Faculty of Science, Department of Chemistry, 35390, Kaynaklar Campus, İzmir, Türkiye.
| | - Ibrahim Kirkiz
- The Graduate School of Natural and Applied Sciences, Department of Biotechnology, Dokuz Eylül University, Kaynaklar Campus, 35390, İzmir, Türkiye
| |
Collapse
|
6
|
Wang L, Lin X, Liu T, Zhang Z, Kong J, Yu H, Yan J, Luan D, Zhao Y, Bian X. Reusable and universal impedimetric sensing platform for the rapid and sensitive detection of pathogenic bacteria based on bacteria-imprinted polythiophene film. Analyst 2022; 147:4433-4441. [DOI: 10.1039/d2an01122k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bacteria-imprinted polythiophene film (BIF)-based impedimetric sensor was proposed for the rapid and sensitive detection of S. aureus. A significant improvement is the reduced time for both BIF fabrication (15 min) and bacterial capturing (10 min).
Collapse
Affiliation(s)
- Lingling Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohui Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Kong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hai Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Juan Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Donglei Luan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaojun Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|