1
|
Zhang T, Liu Y, Cao J, Liu Y, Hao L, Lin K, Yi H. Exploration of Novel Plasmin Inhibitor from β-Lactoglobulin for Enhancing the Storage Stability of UHT Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17041-17050. [PMID: 39024493 DOI: 10.1021/acs.jafc.4c04986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Plasmin-induced protein hydrolysis significantly compromises the stability of ultrahigh-temperature (UHT) milk. β-Lactoglobulin (β-Lg) was observed to inhibit plasmin activity, suggesting that there were active sites as plasmin inhibitors in β-Lg. Herein, plasmin inhibitory peptides were explored from β-Lg using experimental and computational techniques. The results revealed that increased denaturation of β-Lg enhanced its affinity for plasmin, leading to a stronger inhibition of plasmin activity. Molecular dynamics simulations indicated that electrostatic and van der Waals forces were the primary binding forces in the β-Lg/plasmin complex. Denatured β-Lg increased hydrogen bonding and reduced the binding energy with plasmin. The sites of plasmin bound to β-Lg were His624, Asp667, and Ser762. Four plasmin inhibitory peptides, QTMKGLDI, EKTKIPAV, TDYKKYLL, and CLVRTPEV, were identified from β-Lg based on binding sites. These peptides effectively inhibited plasmin activity and enhanced the UHT milk stability. This study provided new insights into the development of novel plasmin inhibitors to improve the stability of UHT milk.
Collapse
Affiliation(s)
- Tai Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
- Food Laboratory of Zhongyuan, Luohe, Henan Province 462300, China
| | - Yisuo Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
- Food Laboratory of Zhongyuan, Luohe, Henan Province 462300, China
| | - Jiayuan Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Yinxue Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Linlin Hao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Kai Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Huaxi Yi
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
- Food Laboratory of Zhongyuan, Luohe, Henan Province 462300, China
| |
Collapse
|
2
|
Wang D, Cao Z, Gao Y, Yang L, Zhao L. Impact of the Pre-Dehydration and Drying Methods on the Mass Transfer and Quality Attributes of Yak Milk Casein. Foods 2024; 13:1062. [PMID: 38611365 PMCID: PMC11012072 DOI: 10.3390/foods13071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Drying is an important preservation method of casein. Traditional natural draining and drying processes have low efficiency, long processing time, and poor product quality, which urgently need to be improved. This study investigated the effects of pre-dehydration intensities (30 N 30 min (PreD1) and 50 N 30 min (PreD2)) and drying methods (including pulsed vacuum drying (PVD), infrared drying (IRD), and hot air drying (HAD)) on the drying kinetics, drying modeling, and quality of yak milk casein. These findings reveal that PreD2 and PVD both had a positive impact on shortening the drying time. Compared to other combined treatments, PreD2-PVD had the shortest drying time of 6 h. The Midilli-Kucuk mathematical model effectively predicted the drying of casein. The yak milk casein powder treated with PreD2-PVD possessed a higher content of gross compositions, superior color, lower levels of fat oxidation and 5-hydroxymethylfurfural (5-HMF), and higher emulsifying activity index (EAI) and emulsion stability index (ESI) values. Overall, combining pre-dehydration with PVD proved effective in improving the drying rate and maintaining a good quality of yak milk casein, showing promising potential for industrial applications.
Collapse
Affiliation(s)
- Dong Wang
- College of Mechanical & Electrical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China;
| | - Zhi Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.C.); (Y.G.)
| | - Yumei Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.C.); (Y.G.)
| | - Lin Yang
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China;
| | - Lili Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.C.); (Y.G.)
| |
Collapse
|
3
|
Aasmul-Olsen K, Akıllıoğlu HG, Christiansen LI, Engholm-Keller K, Brunse A, Stefanova DV, Bjørnshave A, Bechshøft MR, Skovgaard K, Thymann T, Sangild PT, Lund MN, Bering SB. A Gently Processed Skim Milk-Derived Whey Protein Concentrate for Infant Formula: Effects on Gut Development and Immunity in Preterm Pigs. Mol Nutr Food Res 2024; 68:e2300458. [PMID: 38389157 DOI: 10.1002/mnfr.202300458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/15/2023] [Indexed: 02/24/2024]
Abstract
SCOPE Processing of whey protein concentrate (WPC) for infant formulas may induce protein modifications with severe consequences for preterm newborn development. The study investigates how conventional WPC and a gently processed skim milk-derived WPC (SPC) affect gut and immune development after birth. METHODS AND RESULTS Newborn, preterm pigs used as a model of preterm infants were fed formula containing WPC, SPC, extra heat-treated SPC (HT-SPC), or stored HT-SPC (HTS-SPC) for 5 days. SPC contained no protein aggregates and more native lactoferrin, and despite higher Maillard reaction product (MRP) formation, the clinical response and most gut and immune parameters are similar to WPC pigs. SPC feeding negatively impacts intestinal MRP accumulation, mucosa, and bacterial diversity. In contrast, circulating T-cells are decreased and oxidative stress- and inflammation-related genes are upregulated in WPC pigs. Protein aggregation and MRP formation increase in HTS-SPC, leading to reduced antibacterial activity, lactase/maltase ratio, circulating neutrophils, and cytotoxic T-cells besides increased gut MRP accumulation and expression of TNFAIP3. CONCLUSION The gently processed SPC has more native protein, but higher MRP levels than WPC, resulting in similar tolerability but subclinical adverse gut effects in preterm pigs. Additional heat treatment and storage further induce MRP formation, gut inflammation, and intestinal mucosal damage.
Collapse
Affiliation(s)
- Karoline Aasmul-Olsen
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Halise Gül Akıllıoğlu
- Section for Ingredient and Dairy Technology, Department of Food Science, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Line Iadsatian Christiansen
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Kasper Engholm-Keller
- Section for Ingredient and Dairy Technology, Department of Food Science, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Anders Brunse
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Denitsa Vladimirova Stefanova
- Section for Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, 1958, Denmark
| | | | | | - Kerstin Skovgaard
- Section for Protein Science and Biotherapeutics, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Thomas Thymann
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Per Torp Sangild
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, 2100, Denmark
- Hans Christian Andersen Children's Hospital, Odense, 5000, Denmark
| | - Marianne Nissen Lund
- Section for Ingredient and Dairy Technology, Department of Food Science, University of Copenhagen, Frederiksberg, 1958, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Stine Brandt Bering
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| |
Collapse
|
4
|
Custodio-Mendoza JA, Muñoz-Menendez L, España-Fariñas MP, Valente IM, Rodrigues JA, Almeida PJ, Lorenzo RA, Carro AM. Simultaneous determination of carbonyl compounds related to thermal treatment and oxidative stability of infant formulas by gas-diffusion microextraction and high-performance liquid chromatography with ultraviolet detection. Anal Chim Acta 2024; 1288:342164. [PMID: 38220296 DOI: 10.1016/j.aca.2023.342164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
Infant formulae are the only possible alternative to breastfeeding during the first year of life, so it is crucial to assure their innocuousness. Infant formula undergoes heat treatments to ensure safety and shelf life. However, such processes impact health as they lead to the formation of malondialdehyde, acrolein, and α-dicarbonyl compounds, related to Maillard reaction. Thus, there is a need for improved analytical methods to ensure the safety, quality, and nutritional value of infant formulae, and also exploring the potential of specific compounds as indicators for quality control and monitoring purposes. We developed and validated a novel, efficient, and cost-effective method using gas-diffusion microextraction for the simultaneous quantification of carbonyl compounds in infant formula. Malondialdehyde, acrolein, glyoxal, methylglyoxal, and diacetyl were detected as o-phenylenediamine derivatives using HPLC with UV detection. Parameters influencing extraction efficiency were studied using an asymmetric screening design. The validated method has shown excellent linearity, sensitivity, accuracy, and precision. It was applied to analyze 26 infant formula samples, including starter, follow-up, and special formulated powdered infant formula. Methylglyoxal was found in all samples (0.201-3.153 μg mL-1), while malondialdehyde was present only in certain starter formulas (1.033-1.802 μg mL-1). Acrolein (0.510-3.246 μg mL-1), glyoxal (0.109-1.253 μg mL-1), and diacetyl (0.119-2.001 μg mL-1) were detected in various sample types. Principal components and hierarchical cluster analyses have showcased distinct sample clustering based on analyte contents. This study presents a novel methodology for the analysis of markers of thermal treatment and oxidative stability in infant formula. It contributes to the characterization of the products' composition and quality control of infant formulae, thereby enhancing their safety and nutritional adequacy. This study also presents the first reported quantification of acrolein in infant formula and introduces the application of the acrolein-o-phenylenediamine derivative for food analysis.
Collapse
Affiliation(s)
- Jorge A Custodio-Mendoza
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c, 02-776, Warszawa, Poland; Department of Analytical Chemistry, Nutrition and Food Science. University of Santiago de Compostela. 15782, Santiago de Compostela, Spain.
| | - Luis Muñoz-Menendez
- Department of Analytical Chemistry, Nutrition and Food Science. University of Santiago de Compostela. 15782, Santiago de Compostela, Spain
| | - M Pilar España-Fariñas
- Department of Analytical Chemistry, Nutrition and Food Science. University of Santiago de Compostela. 15782, Santiago de Compostela, Spain
| | - Inês M Valente
- REQUIMTE, LAQV, ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - José A Rodrigues
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Paulo J Almeida
- REQUIMTE, LAQV, ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Rosa A Lorenzo
- Department of Analytical Chemistry, Nutrition and Food Science. University of Santiago de Compostela. 15782, Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS). University of Santiago de Compostela. 15782, Santiago de Compostela, Spain
| | - Antonia M Carro
- Department of Analytical Chemistry, Nutrition and Food Science. University of Santiago de Compostela. 15782, Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS). University of Santiago de Compostela. 15782, Santiago de Compostela, Spain; Instituto de Materiais (iMATUS). University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Sun J, Akıllıoğlu HG, Zhong J, Muk T, Pan X, Lund MN, Sangild PT, Nguyen DN, Bering SB. Ultra-High Temperature Treatment of Liquid Infant Formula, Systemic Immunity, and Kidney Development in Preterm Neonates. Mol Nutr Food Res 2023; 67:e2300318. [PMID: 37888862 DOI: 10.1002/mnfr.202300318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/25/2023] [Indexed: 10/28/2023]
Abstract
SCOPE Ready-to-feed liquid infant formulas (IFs) are increasingly being used for newborn preterm infants when human milk is unavailable. However, sterilization of liquid IFs by ultra-high temperature (UHT) introduces Maillard reaction products (MRPs) that may negatively affect systemic immune and kidney development. METHODS AND RESULTS UHT-treated IF without and with prolonged storage (SUHT) are tested against pasteurized IF (PAST) in newborn preterm pigs as a model for preterm infants. After 5 days, blood leukocytes, markers of systemic immunity and inflammation, kidney structure and function are evaluated. No consistent differences between UHT and PAST pigs are observed. However, SUHT increases plasma TNFα and IL-6 and reduces neutrophils and in vitro response to LPS. In SUHT pigs, the immature kidneys show minor upregulation of gene expressions related to inflammation (RAGE, MPO, MMP9) and oxidative stress (CAT, GLO1), together with glomerular mesangial expansion and cell injury. The increased inflammatory status in SUHT pigs appears unrelated to systemic levels of MRPs. CONCLUSION SUHT feeding may impair systemic immunity and affect kidney development in preterm newborns. The systemic effects may be induced by local gut inflammatory effects of MRPs. Optimal processing and length of storage are critical for UHT-treated liquid IFs for preterm infants.
Collapse
Affiliation(s)
- Jing Sun
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | | | - Jingren Zhong
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Tik Muk
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Marianne Nissen Lund
- Department of Food Science, University of Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
- Hans Christian Andersen Children's Hospital, Odense, Denmark
- Department of Neonatology, Rigshospitalet, Denmark
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Stine Brandt Bering
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| |
Collapse
|
6
|
Chu F, Liu Z, Miao J, Huang Y, Niu L, Lai K. Formation of advanced glycation end-products in minced pork during frozen-then-chilled storage and subsequent heating. Food Chem 2023; 426:136616. [PMID: 37354580 DOI: 10.1016/j.foodchem.2023.136616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
The influences of frozen-then-chilled storage of minced pork on the formation of advanced glycation end-products (AGEs) including Nε-carboxymethyllysine and Nε-carboxyethyllysine, and their corresponding α-dicarbonyl precursors (α-DPs; glyoxal and methylglyoxal) during storage and subsequent heating were investigated in comparison with chilled storage. During cold storage, the levels of AGEs, trichloroacetic acid-soluble peptides, and Schiff bases in minced pork continuously increased while α-DPs decreased. The 30 min heating (100 °C) resulted in 64-560% increase of AGEs in pork, corresponding with an increase of Schiff bases and decreases of α-DPs. Compared to the chilled storage, the frozen-then-chilled storage led to no significant difference (P > 0.05) on the levels of AGEs and α-DPs in raw or heat-treated pork, implying that the formation and thawing of ice crystals in pork during the frozen-then-chilled storage had minor to no effects on the formation of AGEs and their α-DPs.
Collapse
Affiliation(s)
- Fuyu Chu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410004, Hunan, China
| | - Zhijie Liu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Junjian Miao
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410004, Hunan, China.
| | - Lihong Niu
- School of Food Engineering, Ludong University, No. 186, Middle Hongqi Road, Yantai 264025, Shandong, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
7
|
Yan S, Zhang M, Yuan Y, Mu G, Xu H, Zhao T, Wang Y, Xue X. Chaste honey in long term-storage: Occurrence and accumulation of Maillard reaction products, and safety assessment. Food Chem 2023; 424:136457. [PMID: 37247601 DOI: 10.1016/j.foodchem.2023.136457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Honey, a natural sweetener that can be stored long-term, is prone to Maillard reactions. Maillard reaction products (MRPs), such as 5-hydroxymethylfurfural (5-HMF), α-dicarbonyl compounds (α-DCs), and advanced glycation end products (AGEs), negatively affect human health. We analyzed MRP accumulation in chaste honey over four years. In the first year, α-DCs were dominant with total contents of 509.7 mg/kg. In the second year, Amadori compounds increased, accounting for the largest percentage. Their formation at the initial stage showed inhibition of the Maillard reaction over time. AGE contents were approximately 1.00 mg/kg over four years, which is negligible compared to other foods. Increased 5-HMF was significantly correlated with storage time (p < 0.01), making it a suitable indicator of honey quality. Due to the lack of MRP risk assessments, we compared our findings with daily intake of MRPs from other foods, and the levels of MRPs in honey over four years are acceptable.
Collapse
Affiliation(s)
- Sha Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Min Zhang
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuzhe Yuan
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Guodong Mu
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Haitao Xu
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Tian Zhao
- Animal Husbandry and Veterinary Medicine Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Yinchen Wang
- Animal Husbandry and Veterinary Medicine Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China.
| | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
8
|
Kijewska M, Zawadzka M, Stefanowicz P. High-Temperature, Solid-Phase Reaction of α-Amino Groups in Peptides with Lactose and Glucose: An Alternative Mechanism Leading to an α-Ketoacyl Derivative. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5796-5803. [PMID: 37000938 PMCID: PMC10103172 DOI: 10.1021/acs.jafc.3c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The reaction of proteins with reducing sugars results in the formation of Amadori products, which involves the N-terminal group and/or ε-amino group of the lysine side chain. However, less attention has been given to the reactivity of the N-terminus of a peptide chain under similar conditions. In our work, we focused on the reaction of the α-amino group of peptides in the presence of a reducing sugar, specifically lactose. We optimized the reaction conditions of model peptides with lactose in the solid phase and showed that temperatures above 120 °C lead to the deamination of the N-terminal amino acid moiety, ultimately resulting in α-ketoacids. We carried out detailed studies to confirm the structure of the deaminated product using analytical methods such as ESI-MS and LC-MS/MS, as well as chemical methods that involved the reduction of the carbonyl group combined with isotopic exchange and the reactivity of the carbonyl group with the hydroxylamine derivative. The structure of the reaction product was also confirmed by chemical synthesis. We suggested plausible mechanisms for the formation of the deaminated product and considered the probable path of its formation. Our aim was to determine whether the reaction proceeds according to the Strecker-based mechanism and direct imine isomerization by carrying out reactions of model peptides in the presence of lactose under aerobic and anaerobic conditions and comparing the results obtained.
Collapse
|
9
|
Sun J, Akıllıoğlu HG, Aasmul‐Olsen K, Ye Y, Lund P, Zhao X, Brunse A, Nielsen CF, Chatterton DEW, Sangild PT, Lund MN, Bering SB. Ultra-High Temperature Treatment and Storage of Infant Formula Induces Dietary Protein Modifications, Gut Dysfunction, and Inflammation in Preterm Pigs. Mol Nutr Food Res 2022; 66:e2200132. [PMID: 36052940 PMCID: PMC9786312 DOI: 10.1002/mnfr.202200132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/10/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Ready-to-feed liquid infant formula is increasingly used for preterm infants when human milk is unavailable. These formulas are sterilized by ultra-high temperature treatment, but heating and storage may reduce bioactivity and increase formation of Maillard reaction products with potential negative consequences for immature newborns. METHODS AND RESULTS Using preterm pigs as a model for sensitive newborn infants, the study tests the intestinal responses of feeding experimental liquid formula within 5 days. A pasteurized formula (PAST) with the same nutrient composition but less protein modifications serves as control to ultra-high temperature-treated formula without (UHT) and with prolonged storage (SUHT). Relative to PAST, UHT contains lower levels of lactoferrin and IgG. Additional storage (40 °C, 60 days, SUHT) reduces antimicrobial capacity and increases non-reducible protein aggregates and Maillard reaction products (up to 13-fold). Pigs fed SUHT have more diarrhea and show signs of intestinal inflammation (necrotizing enterocolitis) compared with pigs fed PAST and UHT. These clinical effects are accompanied by accumulation of Maillard reaction products, protein cross-links, and inflammatory responses in the gut. CONCLUSION The results demonstrate that feeding UHT infant formulas, particularly after prolonged storage, adversely affects gut maturation and function in preterm pigs used as a model of preterm infants.
Collapse
Affiliation(s)
- Jing Sun
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenDyrlægevej 68Frederiksberg C1870Denmark
| | - Halise Gül Akıllıoğlu
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26Frederiksberg1958Denmark
| | - Karoline Aasmul‐Olsen
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenDyrlægevej 68Frederiksberg C1870Denmark
| | - Yuhui Ye
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26Frederiksberg1958Denmark
| | - Pernille Lund
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26Frederiksberg1958Denmark
| | - Xiao Zhao
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26Frederiksberg1958Denmark
| | - Anders Brunse
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenDyrlægevej 68Frederiksberg C1870Denmark
| | | | | | - Per Torp Sangild
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenDyrlægevej 68Frederiksberg C1870Denmark
- Department of Pediatrics and Adolescent MedicineRigshospitaletBlegdamsvej 9Copenhagen Ø2100Denmark
- Hans Christian Andersen Children's HospitalJ. B. Winsløws Vej 4Odense C5000Denmark
| | - Marianne N. Lund
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26Frederiksberg1958Denmark
- Department of Biomedical SciencesUniversity of CopenhagenBlegdamsvej 3BCopenhagen N2200Denmark
| | - Stine Brandt Bering
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenDyrlægevej 68Frederiksberg C1870Denmark
| |
Collapse
|