1
|
Zhan S, Chen X, Luan X, Feng Y, Song L, Han X, Liu Z. A highly stable gellan gum/potato starch/anthocyanin smart film with ferulic acid co-pigmentation for monitoring fish freshness. Int J Biol Macromol 2025; 288:138763. [PMID: 39674457 DOI: 10.1016/j.ijbiomac.2024.138763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
A novel high stability pH-sensitive smart film (GGPS-R-FA) was prepared by using gellan gum (GG) and potato starch (PS) as the film-forming material, red cabbage anthocyanins extract (RCAE) as the indicator, and ferulic acid (FA) as the co-pigmentation agent. The enhancement effect of co-pigmentation on the stability of RCAE, as well as the performance and application of smart film were investigated. The RCAE co-pigmented with FA showed higher absorbance and greater thermal stability, as evidenced by the retention of anthocyanin content and thermodynamic parameters. The retention rates of anthocyanin content was increased from 24.59 % to 37.94 %. Structural characterization showed that molecular interactions protected the structure of anthocyanins and contributed to form a more stable film network. The EAB of the films was improved to 25.13 % and the opacity was increased to 5.02 A·mm-1. The co-pigmented films exhibited excellent color stability after co-pigmentation. The ∆E of GGPS-R-FA films was lower than 3 during 120 days of storage at 4 °C. The films exhibited a sensitive responsiveness to pH and ammonia. When the films were applied to monitor the fish's freshness, the color changes of GGPS-R-FA1 and GGPS-R-FA2 films represented a strong correlation with the spoilage indices of grass carp.
Collapse
Affiliation(s)
- Shouqing Zhan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Xiuxiu Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Xinyu Luan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Yan Feng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Lisha Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Xiangbo Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China.
| |
Collapse
|
2
|
Huang R, Xia S, Gong S, Wang J, Zhang W, Zhong F, Lin Q, Deng J, Li W. Enhancing sensitivity and stability of natural pigments in pH-responsive freshness indicators: A review. Food Chem 2025; 463:141357. [PMID: 39306990 DOI: 10.1016/j.foodchem.2024.141357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 11/14/2024]
Abstract
Natural pigments are an indicator component in the freshness indicator, which is advantageous due to their safety, renewability, and low cost. However, freshness indicator with natural pigments as pH indicators has the problems of low stability and the color rendering domain could not effectively cover the shelf life of food. This paper describes the types and structures of natural pigments commonly used in freshness indicators and their color change mechanisms under different pH conditions. Also, the preparation methods of natural pigments freshness indicators are reviewed. Based on the current limitations and shortcomings faced by natural pigments freshness indicators, this paper highlights optimization strategies to enhance their sensitivity and stability, including modification, co-pigmentation, natural pigments mixing, encapsulation, and metal-ion complexation. The exploitation of these optimization strategies can help develop natural pigment-based intelligent packaging with superior performance to meet the food industry's needs for quality and safety monitoring.
Collapse
Affiliation(s)
- Rihua Huang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Suxuan Xia
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuaikun Gong
- School of Food Science and Technology, Hunan Agricultural University, Changsha 410005, China
| | - Jingjing Wang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wei Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feifei Zhong
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Changsha Institute for Food and Drug Control, Changsha 410016, Hunan, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
3
|
Singh S, Sendri N, Sharma B, Kumar P, Sharma A, Tirpude NV, Purohit R, Bhandari P. Copigmentation effect on red cabbage anthocyanins, investigation of their cellular viability and interaction mechanism. Food Res Int 2025; 200:115427. [PMID: 39779086 DOI: 10.1016/j.foodres.2024.115427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Anthocyanins (ANS) are an appealing substitute to synthetic colorants; but their practical applicability is limited due to low color stability. Copigmentation can improve both complex's color stability as well as intensity. In this study, we examined the interaction of red cabbage ANS with copigments i.e., two organic acid, two phenolic acid, a flavonoid and three amino acid through experimental and theoretical approach. Among various copigments, phenolic and organic acids induced a strong bathochromic shift of 6.5-7.1 nm and 5.1-11.6 nm. Thermal analysis, anthocyanin content and chromaticity, were used to assess the color intensity and stability of ANS, at 4 ℃, 25 ± 2 ℃, sunlight, oxygen, and heat. Results revealed that oxalic acid copigmented complex followed by chlorogenic and rosmarinic acid exhibits significant thermal stability with greater retention rate at 120 ℃ and 150 ℃. In case of anthocyanin content and colorimetric parameters, chlorogenic acid followed by oxalic and rosmarinic acid exhibits significantly improved stability. Rosmarinic acid copigmented sample showed good cell viability at high concentration (200 µg/mL). Steered molecular dynamics and thermodynamic analysis reveals chlorogenic and rosmarinic acid as promising copigments involving conventional H-bonds, π-π interactions, and carbon hydrogen bonds.
Collapse
Affiliation(s)
- Sarvpreet Singh
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nitisha Sendri
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhanu Sharma
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pramod Kumar
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avisha Sharma
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Narendra Vijay Tirpude
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rituraj Purohit
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Pamita Bhandari
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Geng Y, Cui K, Ding N, Liu H, Huo J, Sui X, Zhang Y. Polyphenol co-pigments enhanced the antioxidant capacity and color stability of blue honeysuckle juice during storage. Food Chem X 2024; 24:101848. [PMID: 39498247 PMCID: PMC11533655 DOI: 10.1016/j.fochx.2024.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
The study aimed to assess the impact of incorporating five co-pigments (gallic acid, quercetin, rutin, catechin, and epigallocatechin gallate (EGCG)) on the color stability of blue honeysuckle juice (BHJ). Additionally, it sought to determine the influence of varying proportions of anthocyanins in an accelerated test (light at 40 °C for 24 d). Results indicated that the addition of polyphenol co-pigments effectively mitigated the thermal degradation of anthocyanins, enhancing color saturation and antioxidant capacity of BHJ. Notably, quercetin, rutin, catechin, and EGCG exhibited superior efficacy compared to gallic acid. FTIR analysis revealed non-covalent complex formation between co-pigments and anthocyanins, including hydrogen bonds and van der Waals forces, thereby shielding them from degradation. HPLC-ESI-QTOF-MS2 identified 15 anthocyanins and 39 non-anthocyanin polyphenols. Addition of co-pigments effectively curbed anthocyanin degradation, thus stabilizing juice system. Consequently, judicious incorporation of co-pigments holds promise as a technology for enhancing the color quality and stability of BHJ during processing.
Collapse
Affiliation(s)
- Yifan Geng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Kaojia Cui
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Na Ding
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Houping Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Huo
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Tan G, Hou J, Meng D, Zhang H, Han X, Li H, Wang Z, Ghamry M, Rayan AM. 3D printing cassava starch-ovalbumin intelligent labels: Co-pigmentation effects of gallic acid on anthocyanins. Int J Biol Macromol 2024; 281:135684. [PMID: 39393990 DOI: 10.1016/j.ijbiomac.2024.135684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/10/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
Anthocyanins are often chosen as signal converters of intelligent labels. However, they are degraded by high-temperature oxidation in the process of intelligent label preparation. The color fading seriously affects the sensitivity of color development. In this study, a green 3D printing intelligent label preparation technique was developed, in which gallic acid (GA) was added to a blueberry anthocyanin (BA) solution to enhance the color of the co-pigment to ensure the color sensitivity. The combined effect of GA-BA reduced the fade rate of the anthocyanins from 35.13 % to 26.44 % at 90 °C. The printing ink has shear-thinning viscosity characteristics and yield stresses in the range of 500-600 MPa for high-quality printing. Structural analysis revealed that GA-BA co-pigmentation enhanced the interaction between ovalbumin and cassava starch. In addition, the method of 3D printing to prepare labels was conducive to solving the problem of waste in traditional labeling process. The results of freshness testing of sea shrimp proved that labels can be applied to fresh boxes to reflect the freshness of food. We provide a method for enhancing the color of 3D-printed smart ink to prepare intelligent labels with reproducible and customizable batch shapes.
Collapse
Affiliation(s)
- Guixin Tan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingjie Hou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dekun Meng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Xiue Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mohamed Ghamry
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
6
|
Cui H, Li X, Ji Y, Zhao S, Yang J. Effects of L-Proline on the Stability of Mulberry Anthocyanins and the Mechanism of Interaction between L-Proline and Cyanidin-3- O-Glycoside. Molecules 2024; 29:4544. [PMID: 39407474 PMCID: PMC11477991 DOI: 10.3390/molecules29194544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
The protective effects of L-aspartic acid, L-valine, and L-proline on the stability of mulberry anthocyanins were investigated. Results showed that L-aspartic acid, L-valine, and L-proline significantly enhanced (p < 0.05) the stability of mulberry anthocyanins under constant light or ascorbic acid (AA). L-Proline had the best protective effect against anthocyanin degradation. The interaction between L-proline and cyanidin-3-O-glucoside (C3G) through hydrogen bonding and van der Waals forces, which improved the stability of C3G, was confirmed using FT-IR, 1H NMR, XRD, and molecular docking analyses, as well as molecular dynamics modes. In vitro digestion experiments yielded that both 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging capacities of the C3G/Pro group were increased in the intestinal fluid (p < 0.05). The above findings suggest that L-proline effectively slowed down the degradation of mulberry anthocyanins, and that it could be used as an auxiliary pigment and food additive to extend the optimal flavor period of products containing mulberry anthocyanins, and can improve the bioavailability of mulberry anthocyanins.
Collapse
Affiliation(s)
- Haipeng Cui
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China; (H.C.); (Y.J.); (S.Z.)
| | - Xianbao Li
- School of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China;
| | - Yuan Ji
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China; (H.C.); (Y.J.); (S.Z.)
| | - Shengxu Zhao
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China; (H.C.); (Y.J.); (S.Z.)
| | - Jianting Yang
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China; (H.C.); (Y.J.); (S.Z.)
| |
Collapse
|
7
|
Wang N, Zang ZH, Sun BB, Li B, Tian JL. Recent advances in computational prediction of molecular properties in food chemistry. Food Res Int 2024; 192:114776. [PMID: 39147479 DOI: 10.1016/j.foodres.2024.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
The combination of food chemistry and computational simulation has brought many impacts to food research, moving from experimental chemistry to computer chemistry. This paper will systematically review in detail the important role played by computational simulations in the development of the molecular structure of food, mainly from the atomic, molecular, and multicomponent dimension. It will also discuss how different computational chemistry models can be constructed and analyzed to obtain reliable conclusions. From the calculation principle to case analysis, this paper focuses on the selection and application of quantum mechanics, molecular mechanics and coarse-grained molecular dynamics in food chemistry research. Finally, experiments and computations of food chemistry are compared and summarized to obtain the best balance between them. The above review and outlook will provide an important reference for the intersection of food chemistry and computational chemistry, and is expected to provide innovative thinking for structural research in food chemistry.
Collapse
Affiliation(s)
- Nuo Wang
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Zhi-Huan Zang
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bing-Bing Sun
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jin-Long Tian
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China.
| |
Collapse
|
8
|
Wang X, Cheng J, Zhu Y, Li T, Wang Y, Gao X. Intermolecular copigmentation of anthocyanins with phenolic compounds improves color stability in the model and real blueberry fermented beverage. Food Res Int 2024; 190:114632. [PMID: 38945622 DOI: 10.1016/j.foodres.2024.114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
To improve the color stability of anthocyanins (ACNs) in blueberry fermented beverage, the intermolecular copigmentation between ACNs and 3 different phenolic compounds, including (-)-epigallocatechin gallate (EGCG), ferulic acid (FA), and gallic acid (GA) as copigments, was compared in the model and the real blueberry fermented beverage, respectively. The copigmented ACNs by EGCG presented a high absorbance (0.34 a.u.) and redness (27.09 ± 0.17) in the model blueberry fermented beverage. The copigmentation by the participation of the 3 different phenolic compounds showed all a spontaneous exothermic reaction, and the Gibbs free energy (ΔG°) of the system was lowest (-5.90 kJ/mol) using EGCG as copigment. Furthermore, the molecular docking model verified that binary complexes formed between ACNs and copigments by hydrogen bonds and π-π stacking. There was a high absorbance (1.02 a.u.), percentage polymeric color (PC%, 68.3 %), and good color saturation (C*ab, 43.28) in the real blueberry fermented beverage aged for 90 days, and more malvidin-3-O-glucoside had been preserved in the wine using EGCG as copigment. This finding may guide future industrial production of blueberry fermented beverage with improved color.
Collapse
Affiliation(s)
- Xiaohan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jingjing Cheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yue Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Tao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yu Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xueling Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
9
|
Liu S, Liu Y, Li Q, Song Y, Zhang L, Peng F, Ma C. Oleanolic acid nanoparticles-stabilized W/O Pickering emulsions: Fabrication, characterization, and delivery application. Food Chem 2024; 444:138598. [PMID: 38310780 DOI: 10.1016/j.foodchem.2024.138598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
Water-in-oil (W/O) Pickering emulsions have wide applications in the food industries. However, the existing W/O Pickering particles have disadvantages such as lack of bioactivity and poor stability. In this study, naturally occurring bioactive oleanolic acid (OA) was used as a novel emulsifier for W/O emulsions. Results revealed that rod-like OA could formulate into spherical nanoparticles by self-assembly, and then be anchored onto the oil-water interface to stabilize the emulsions. Besides, both OA concentration and internal water fraction (φ) had significant effect on the properties of emulsions. Furthermore, the resulted emulsions exhibited potential application as carriers for epigallocatechin-3-gallate (EGCG), which significantly improved its UV and thermal stability. Meanwhile, it could effectively protect EGCG from gastric digestion, and controlled release in the intestine. This work demonstrated the successful application of OA as a stabilizer for W/O emulsions, and provided valuable insight into its potential as delivery system for hydrophilic instable compounds.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - Yuxuan Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Li
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Yuyang Song
- International Division, The Second High School Attached to Beijing Normal University, Beijing 100192, China
| | - Lulu Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chao Ma
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Huang J, Hu Z, Li G, Chin Y, Pei Z, Yao Q, Li D, Hu Y. The stable co-pigmented roselle anthocyanin active film extended shelf life of Penaeus vannamei better: Mechanism revealed by the TMT-labeled proteomic strategy. Food Chem 2024; 432:137238. [PMID: 37651784 DOI: 10.1016/j.foodchem.2023.137238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/06/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
In order to investigate the influences of modified RAE-based film on shrimp quality, the proteomic approach was performed to elucidate preservation mechanism. Results showed that the modified RAE-based film kept better shrimp quality compared with natural RAE-based film in terms of determined biochemical parameters and estimated shelf-life. Totally, 49 differentially abundance proteins (DAPs) were identified compared with shrimp without packaging. Bioinformatics analysis demonstrated that the modified RAE-based film could maintain functional DAPs which were mainly distributed in the binding, catalytic activity, etc., and metabolic signaling pathways like melanogenesis signaling pathway were remarkably enriched. Meanwhile, there were 25 DAPs showing close relationship with quality traits, and some of them, such as myosin chains, troponin I and heat shock protein were considered as the potential biomarkers to evaluate shrimp quality deterioration. In conclusion, this study revealed the preservation mechanism of modified RAE-based active film on shrimp quality at the protein molecular level.
Collapse
Affiliation(s)
- Jiayin Huang
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, Hainan 572022, China; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiheng Hu
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, Hainan 572022, China
| | - Gaoshang Li
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, Hainan 572022, China; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaoxian Chin
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, Hainan 572022, China; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China
| | - Zhisheng Pei
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, Hainan 572022, China; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, 117542, Singapore
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, Hainan 572022, China; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China.
| |
Collapse
|
11
|
Huang J, Hu Z, Li G, Chin Y, Pei Z, Yao Q, Li D, Hu Y. The highly stable indicator film incorporating roselle anthocyanin co-pigmented with oxalic acid: Preparation, characterization and freshness monitoring application. Food Res Int 2023; 173:113416. [PMID: 37803754 DOI: 10.1016/j.foodres.2023.113416] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 10/08/2023]
Abstract
A novel stable PVA/HPMC/roselle anthocyanin (RAE) indicator film co-pigmented with oxalic acid (OA) was prepared, its properties, application effects and stability enhancement mechanism were investigated correspondingly. The structural characterization revealed that more stable network was formed due to the co-pigmentation facilitated generation of molecular interactions. Meanwhile, the co-pigmentation improved film mechanical and hydrophobic properties compared to both PVA/HPMC/RAE newly prepared (PHRN) or stored (PHRS) film, expressing as higher tensile strength values (12.25% and 14.44% higher than PHRN and PHRS), lower water solubility (7.22% and 10.09% lower than PHRN and PHRS) and water vapor permeability values (33.20% and 21.05% lower than PHRN and PHRS) of PVA/HPMC/RAE/OA newly prepared (PHON) or stored (PHOS) film. Compared with the PHRS film, the PHOS film still presented more distinguishable color variations when being applied to monitor shrimp freshness, owing to the stabilization behaviors of co-pigmentation in anthocyanin conformation. Hence, the co-pigmentation was an effective strategy to enhance film stability, physical and pH-responsive properties after long term storage, leading to better film monitoring effects when applied in real-time freshness monitoring.
Collapse
Affiliation(s)
- Jiayin Huang
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiheng Hu
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, Hainan 572022, China
| | - Gaoshang Li
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaoxian Chin
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China
| | - Zhisheng Pei
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China.
| |
Collapse
|
12
|
Ścibisz I, Ziarno M. Effect of Yogurt Addition on the Stability of Anthocyanin during Cold Storage of Strawberry, Raspberry, and Blueberry Smoothies. Foods 2023; 12:3858. [PMID: 37893752 PMCID: PMC10606227 DOI: 10.3390/foods12203858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The addition of yogurt to fruit smoothies enhances their nutritional value by introducing components not naturally found in fruit products. However, the addition of fermented products can affect the stability of fruit bioactive components in fruits, such as anthocyanins. This study aimed to evaluate the effect of varying yogurt additions (0, 10, 20, and 30%) on the stability of anthocyanins during a 4-week refrigerated storage period. The smoothies were obtained from purees of strawberry, raspberry, and blueberry, combined with apple juice and apple puree. In addition, to elucidate the causes of the observed changes in the smoothies, model studies were conducted using purified anthocyanin extracts obtained from the analyzed fruits. We assessed the effects of pH, hydrogen peroxide concentration, and the addition of cell-free extracts from Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus on changes in anthocyanin content during storage. We found that adding yogurt led to a decrease in anthocyanin stability during the 4-week cold storage period. Specifically, a 30% yogurt addition decreased anthocyanin stability in all tested beverages, while a 20% yogurt addition impacted the strawberry and raspberry smoothies. The degree to which yogurt affected anthocyanin stability was dependent on the source of the raw material. The most notable impact was observed in strawberry smoothies and the least in blueberry smoothies. The variability could be attributed to differences in anthocyanin profiles among the fruits, the chemical composition of the beverages, and the observed difference in the survival rates of lactic acid bacteria. Model studies showed that during the storage of anthocyanin extracts, the addition of hydrogen peroxide and cell-free extract had a significant effect, whereas pH within the examined range (3.0-4.5) did not affect anthocyanin stability.
Collapse
Affiliation(s)
- Iwona Ścibisz
- Division of Fruit, Vegetable and Cereal Technology, Institute of Food Sciences, Warsaw University of Life Sciences WULS˗SGGW, 161 Nowoursynowska Str., 02-787 Warsaw, Poland
| | - Małgorzata Ziarno
- Division of Milk Technology, Institute of Food Sciences, Warsaw University of Life Sciences WULS˗SGGW, 161 Nowoursynowska Str., 02-787 Warsaw, Poland;
| |
Collapse
|
13
|
Sendri N, Singh S, Sharma B, Purohit R, Bhandari P. Effect of co-pigments on anthocyanins of Rhododendron arboreum and insights into interaction mechanism. Food Chem 2023; 426:136571. [PMID: 37331145 DOI: 10.1016/j.foodchem.2023.136571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
The impact of intermolecular copigmentation between five phenolic acids, two flavonoid and three amino acids with R. arboreum anthocyanins (ANS) and its isolated cyanidin-3-O-monoglycosides were investigated through experimental and theoretical approach. On addition of different copigments, phenolic acid induced strong hyperchromic (0.26-0.55 nm) and bathochromic shift (6.6-14.2 nm). The color intensity and stability of ANS with, storage at 4 °C & 25 °C, sunlight, oxidation and heat were evaluated by chromaticity, anthocyanin content, kinetic and structural simulation analysis. The strongest copigmentation reaction was observed with narningin (NA) and also showed high thermostability and highest half-life i.e. 3.39 h-1.24 h at 90-160 °C. The cyanidin-3-O-monoglycosides were analysed for their copigmentation effect and observations revealed that NA displayed best copigmentation effect to cyanidin-3-O-arabinoside (B) followed by cyanidin-3-O-galactoside (A), and cyanidin-3-O-rhamnoside (C). Additionally, structural simulation and steered molecular dynamics insights NA is the most favourable co-pigment involving π-π stacking and H-bonding.
Collapse
Affiliation(s)
- Nitisha Sendri
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarvpreet Singh
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhanu Sharma
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rituraj Purohit
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Pamita Bhandari
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|