Li D, Zhu L, Wu Q, Chen Y, Wu G, Zhang H. Comparative study of dietary phenols with Tartary buckwheat protein (2S/13S): impact on structure, binding sites and functionality of protein.
JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024;
104:698-706. [PMID:
37653274 DOI:
10.1002/jsfa.12960]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND
This research was to investigate the interaction mechanism between 2S albumin and 13S globulin (2S and 13S, the most important storage proteins in Tartary buckwheat seeds) and three phenols (rutin, quercetin and myricetin) regarding the structural and antioxidant properties of their complexes.
RESULTS
There are differences in the binding affinity of phenols for 2S and 13S. Rutin had a higher binding affinity for 2S, myricetin had a higher binding affinity for 13S, and 13S exhibited a higher affinity toward phenols than did 2S. Binding with phenols significantly changed the secondary and tertiary structures of 2S and 13S, decreased the surface hydrophobic value and enhanced the antioxidant capacity. Molecular docking and isothermal titration calorimetry showed that the binding processes were spontaneous and that there were hydrogen bonds, hydrophobic bonds and van der Waals force interactions between phenols and proteins.
CONCLUSION
These findings could provide meaningful guidance for the further application of buckwheat protein complex. © 2023 Society of Chemical Industry.
Collapse